
LATENT VARIABLE MODELS FOR ANALYSIS OF SURVEY DATA 

Paul B. Massell, U.S. Census Bureau 
SRD, Room 3209-4, Washington, D.C. 20233 

Key Words: Latent Class Models, Missing Data, 
Identifiability 

Introduction to Latent Class Analysis 1 
Latent class analysis is a fairly advanced statistical topic 
that may be viewed as a part of categorical data analysis. 
It is advanced since it builds on material from categorical 
data analysis, such as log-linear models, and ideas about 
model building with social science data, and algorithms 
for treating missing data. It is a fairly new branch of 
statistics; the first papers were written about 1950 but 
significant use of latent class methods did not occur until 
the 1970's when good computational methods became 
available (ref: GOO, DEM). Building latent class models 
poses all the challenges of traditional categorical data 
modeling plus others. This paper is an attempt to provide 
an introduction to the fundamental mathematical and 
statistical ideas that underlie latent class analysis in a 
style typical of introductory mathematical statistics texts 
rather than the style of social science monographs in 
which most introductory treatments now appear. This 
style might appeal most to readers with a mathematics or 
statistical computing background. After defining the basic 
ideas of the subject, we give a list of simple latent class 
models and state what is known about their identifiability 
and other properties. These models have recently been 
used to model response error in important federal surveys 
(ref: BILE). 

Missing Data Problems 

Latent class models are often used for the analysis of 
categorical data when one of the first two "missing data" 
cases listed below applies. "Missing data" here means at 
least part of the set of "true values" of the relevant 
variables are missing. Using this notion of "missing data" 
there are three cases to consider (ref: VER, p.5) 

1This paper reports the results of research and 
analysis undertaken by Census Bureau staff. It has 
undergone a Census Bureau review more limited in 
scope than that given to official Census Bureau 
publications. This report is released to inform 
interested parties of ongoing research and to encourage 
discussion of work in progress. 

1. Missing data may exist in hidden (i.e., lurking) 
variables. Such a variable might simplify the 
relationships among the observed variables (i.e., the 
indicators). The goal is to determine whether such a 
variable exists for some assumed relationship to the 
indicators. With categorical indicators, one often models 
the hidden variable as a latent class variable. One may test 
if the assumption of the indicators being conditionally 
independent given the latent class produces a good fit. 

2. Data may be missing due to measurement error. Note 
response error is often the dominant component of this 
error and is sometimes used as a synonym (ref: SAR, p. 
547). The true values of an observed variable may be 
missing since the observed values contain measurement 
error. For example, employment status may be clearly 
defined for everyone in some population; there exists a 
true value for this variable even if it is not observed. The 
value that actually appears in the response file can be 
different from the true value due to various reasons, e.g., 
intentional or unintentional respondent error or data 
processing errors. In a reinterview survey, there may 
exist two different responses for the same true value. 

3. Perhaps the most common type of missing data is that 
of partial nonresponse; for this case variable values exist 
for some respondents but are missing for others. When 
there are missing data, parameter estimates are likely to 
be biased because data that are missing are often not 
missing at random. Traditionally these types of problems 
have been handled by imputation methods (ref: article by 
Rovine in VEC) rather than with latent variables. 

Example of hidden type latent variable in survey data 
This is a sketch of work by R.A. Johnson, on the 
measurement of Hispanic Ethnicity in the U.S. based on 
1986 National Content Test data (ref: JOH). The author 
notes there are two major aspects of Hispanicity; viz., use 
of the Spanish language and Hispanic ancestry. On the 
questionnaire, there are separate questions for Spanish 
language usage and Hispanic ancestry. The author shows 
that responses from these two questions can be combined 
in various ways using latent class variables to model each 
aspect of Hispanicity. The author suggests that such 
models are superior to linear probability error models 
whenever the response categories are not known to be 
valid. These linear models require reinterview data and 
make assumptions that often are not realistic. 
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Definition: If a variable cannot, in theory, be directly 
measured or observed it is called latent. Such variables 
are sometimes called indirectly observed or unobserved. 
We can extend this standard definition, by defining a 
variable to be latent w.r.t, to a given dataset, if the 
variable does not exist in a given dataset either explicitly 
or implicitly. If a latent variable is categorical, its 
categories are called latent classes. 
(note: Latent class analysis and latent trait analysis are 
special cases of latent structure analysis. In latent class 
analysis the latent variable is categorical; in latent trait 
analysis and in factor analysis, the latent variable is 
continuous. (ref: VEC, p.226)) 

Relating a Latent Class Variable to its Indicators 
The calculation of a latent variable often is done as 
follows. We assume a latent variable X exists. We then 
construct conditional response probabilities that relate 
the indicators (also called responses or observed or 
manifest variables) to the initially unknown X. In simple 
models, we often have dichotomous (i.e. 2-valued) 
indicators for a latent variable X, which is also assumed 
to be dichotomous. If we assume we have three indicators 
for X, denoted A,B,C, then we would need to compute 
six conditional probabilities, viz. P(A=IIX=i), 
P(B=IIX=i), and P(C=IIX=i) for i=1,2, as well as the 
latent (class) probability P(X= 1). Note that the omitted 
parameters (e.g. P(X=2)) can be computed simply from 
the seven listed parameters. However, without additional 
information, we cannot say if such a model is identifiable 
for the given observed data, i.e. whether there are unique 
solutions for the seven parameters. 

Decomposition of a joint distribution (table) using a 
latent class variable 
Suppose we have two indicators, A with I classes and B 
with J classes. Then we could form a relative frequency 
(I by J) table T in which each cell value is the observed 
fraction of the total responses for that cell. T is an 
estimate of the joint distribution of A and B, Pv- If there 
exists a variable X with K classes, such that for each class 
k =1,2 ..... K, the variables A and B are conditionally 
independent given X, and if px(k) denotes the 
probability that X has value k, let it can be shown that Pv 
can  be d e c o m p o s e d  as f o l l o w s :  

K 

Pr = Z px (k)" outer(PAIk , PB]k ) 
k=l 

(ref: AGR, p. 164). PAIk ' PBIk denote the 

distributions of A and B given X=k. The outer product of 
two vectors is the matrix formed by multiplying the 
column version of the first by the row version of the 

second. This is the simplest case of a joint distribution 
expressed as a mixture of several simpler distributions. In 
general one does not know a priori if such a 
decomposition is possible. Even when theory suggests 
such a decomposition is possible for some K (the number 
of latent classes), computation may be required to find the 
"oest' value of K. 

Parameter Estimation for Latent Class Models 

Maximum Likelihood Estimation (MLE) of Parameters. 
In latent class analysis, one tries to find a decomposition 
for the observed frequency table T analogous to the 
decomposition for the theoretical joint distribution 
described above. The modeler may suspect that such a 
decomposition is possible based on subject matter 
knowledge. He may also have an idea of the number of 
latent classes K. To confirm his suspicions, he may build 
and test a model as follows. 

Consider a model with one latent variable X with two 
classes (i.e. a dichotomous variable) and three associated 
indicators. At first glance, it seems that direct estimation 
of the response probabilities is impossible since we have 
no direct measurement of X. However, the EM algorithm 
(see below) does allow estimation of the proportions of 
the two latent classes as well as the six response 
probabilities listed above. To estimate the proportions for 
this X requires just one parameter, P(X= 1). Thus we have 
a total, so far, of seven parameters to be estimated. If 
conditional independence is assumed (see below), then 
these seven parameters fully specify the model. As is 
standard in latent class modeling, we use maximization of 
the likelihood function associated with the given data and 
model. It is often convenient to maximize the logarithm 
of the likelihood function but this leads to the same 
parameter solutions. 

Before specifying the assumptions using equations, it is 
useful to state some general properties of the indicator- 
latent variable relationship. 

(1) The latent variable is the variable which comes closest 
to being consistent with the information provided by the 
indicators. Using geometric language, we may view the 
indicators as the projections of some unknown physical 
object, and the latent variable, when unique, is the most 
likely shape of this object. 
(2) If there is not sufficient information provided by the 
indicators, there may be many solutions for the latent 
variables, all equally likely as measured by the likelihood 
function. 
(3) If all the indicators are flawed in the same way, i.e., 
all fail to measure some common aspect of the hidden 
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variable, then the estimate of the latent variable will also 
be flawed. Using more statistical language, we can say 
that if all the indicators have a common bias, so will the 
estimated latent variable. This happens since the best that 
the estimation process can do is to extract common 
information from the indicators; the latent variable 
information can only be as good as that revealed by its 
indicators. 

The EM algorithm: a brief overview. 

The EM algorithm is a general scheme for treating a wide 
variety of applications in which there are missing data. 
The general idea is to start with some initial estimate of 
the missing data and using that estimate, estimate the 
optimal model parameter values. The optimization 
involves maximizing the likelihood function; i.e., MLE. 
One can now try to "improve the missing data" by 
calculating the expected value of the missing data, given 
(i) the current parameter estimates and (ii) the non- 
missing data. One continues this alternation of 
improvement in parameter estimates and improvement in 
missing data estimates until the procedure converges. 
The EM theory (ref: DEM) guarantees convergence to a 
local maximum under weak conditions (ref: VER, p.66) 

The name of the algorithm derives from the fact 
that the step in which the expected values for the missing 
data values are calculated is called the Expectation step 
(the 'E' step) whereas the step in which the optimal 
parameter values are estimated is called the 
Maximization Step (the 'M' step). 

The EM algorithm for the latent class problem 
can be implemented easily (see example EM2 below). 
The EM algorithm is both conceptually and 
computationally very simple (ref: VER, p.66). Generally, 
random starting values are good enough. The accuracy of 
the parameter estimates can be (roughly) assessed by 
examining their standard errors (see section on 
information matrices below). 

The measured data is in general a compression 
and/or a distortion of the "theoretical" data; i.e., values of 
the variables that represent the true values. An example 
of compression is a measured variable that is the sum of 
two or more latent variables. An example of distortion, is 
a measured variable that is the noisy version of a single 
latent variable. Creating theoretical data from the 
observed data and the model (with the current estimates 
of parameters) can be done in various ways. In the EM 
algorithm, theoretical data is created (i.e., imputed) using 
the expectation operator. 

Example EMI: Using the EM algorithm to distribute 
compressed data. Suppose we use a multinomial 
distribution to model a possibly unfair die that is thrown 
100 times. Suppose our model for the 6 possible 

outcomes is as follows" p x = (p/12, p/6, p/4, p/4, p/6, 

p/12), i.e. we suspect that the low and high values don't 
occur as often as the middle values. Let xi= true number 
of times that the value i arose in 100 throws. Suppose we 
have compressed data ; e.g. we have direct estimates for 
x-1,2,3 but only the sum of values for x-4,5,6. Thus we 
observe (y 1 ,y2,y3,yup) where y 1 -x 1; y2-x2, y3-x3 but 
yup=x4+x5+x6. (e.g. (yl,y2,y3,yup)-(15, 20,10,55)). If 
the current estimate of p is p0, what are the expected 
values of the xi's ? The EM expectation operator here 
uses the observed data for values that are directly 
observed; thus E(xl) - yl ,  E(x2) = y2, E(x3) -y3. But 
the EM expectation operator requires use of both the 
observed data and the model to estimate x4,x5,and x6. 
In this case, the EM expectation operator simply leads to 
the familiar formula for the expected value of a 
multinomial variable: Then E(x4) - ((p/4)/pup) * yup; 
where pup = p/4 + p/6 + p/12.Similar formulas hold for 
E(x5), and E(x6). Thus the operator uses the model to 
distribute the compressed data, yup, to x4, x5, x6. 

Example EM2: Using the EM algorithm to estimate the 
latent class sizes and conditional response probabilities. 
Assume the latent class variable X has two classes 
denoted 1 and 2. Let pi - P(X= 1). Let A and B be two 
indicators of X; assume A and B have the same classes as 
X. Let eps = P(A=21X=I). Assume eps represents this 
misclassification error for B as well. Assume also that the 
response errors for A and B are independent, given the 
value of X; i.e. A and B are conditionally independent 
given X. It is common to use a random number generator 
to choose starting values for pi and eps. With these 
starting values (a.k.a. initial 'estimates') for pi and eps we 
can form the complete table 'X by A by B' and compute 
the expected frequency value for each cell since each 
such expected value can be expressed in terms of pi, eps, 
and the observed data in the incomplete table 'A by B.' 
This is the expectation step. Using these estimates for the 
frequencies for each cell in the complete table, one can 
form the likelihood equation and estimate the values of pi 
and eps that maximize the log of the likelihood function, 
LogL. This process converges (in general) for any given 
starting values of pi and eps. However, different starting 
values may lead to different final values. It is for this 
reason that it is necessary to run the program many times 
to become convinced that one has covered a large portion 
of the parameter space and that the computed global 
maximum of LogL is close to the true global maximum. 
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Degrees of Freedom 
There are various definitions of degrees of freedom. We 
use the term as applied to contingency tables [ref: AGR, 
p. 176]. 
Let N be the number of cells in the contingency table. 
The dimension of the table is not relevant for the 
discussion that follows; i.e., if the table is d-way, the 
results are independent of d. Assume a sampling model 
SM for the table. The two most commonly used are: 
Poisson and multinomial. 
The Poisson has one parameter per (table) cell and there 
are no constraints on the N parameters; therefore there are 
N independent parameters. The multinomial also has one 
parameter per cell but there is one constraint on the N 
parameters; viz. that the sum of cell counts = n (= total 
sample size) is fixed; therefore there are N-1 independent 
parameters. Note that the parameters in SM refer only to 
the manifest (i.e. directly observed) variables. 
Notation: Let NP(SM) = number of independent 
parameters in the sampling model. 
Let Model G = model for a given contingency table. 
Note that Model G typically imposes constraints on the 
parameters of SM in an indirect way. One usually uses a 
log-linear model for the table which uses a 
parameterization of the table which is equivalent to the 
simple parameterization in which the SM is given. One 
then often assumes that certain interaction terms in this 
new parameterization of SM are zero. However, when G 
contains latent variables it must contain parameters for 
the latent variable itself and its interactions with the 
manifest variables. 
Notation: Let NP(G) = number of independent 
parameters in model G 
When G contains latent variables it is possible that NP(G) 
> NP(SM). 

Definition: The Degrees of Freedom (DoF) for testing 
a model G 
Using the definitions of NP(SM) and NP(G) above, we 
define DoF= NP(SM)-  NP(G). 
Remark: The DoF is an integer, and if it is positive, there 
are theorems that show that it represents the DoF for test 
statistics that are measures of goodness of fit of G and 
that are asymptotically chi-squared. The two most 
commonly used statistics for testing goodness of fit in 
LCA are the Pearson chi-square statistic and the 
likelihood-ratio chi-square statistic [ref; VER.,p.19, 
AGR., p47-8]. 
Equivalent definition: The DoF for testing G = (number 
of independent data cell values) - (number of parameters 
in G that we need to estimate) 

Identifiability 
One goal of modeling is to estimate the size of the latent 
classes and the conditional response probabilities relating 
manifest variables to these latent classes. This goal is 
achieved most easily when there is a unique solution to 
the EM estimation algorithm that is run against the data. 
Even when there is a unique solution, it may not be easy 
to find it. Since the estimation often involves non-linear 
functions of the parameters, the possibility of local 
maxima for the loglikelihood function LogL arises. As is 
frequently the case in non-linear problems, one must 
explore the parameter space thoroughly before one can be 
convinced that one has found a local maximum that is 
also a global maximum. (ref: LEM, § 10.2 ) 

Multiple Solutions 
Frequently, models with latent variables are not globally 
identifiable. This means that there are two or more sets 
of values for the parameters that yield the same globally 
maximal log-likelihood value. If there are just a few such 
maximal sets of parameter values, it may be possible to 
rule out all but one set on various grounds. For example, 
the modeler commonly has some a priori knowledge of 
the acceptable (i.e. sensible) ranges for some or all of the 
parameters. If all but one of the parameter sets have some 
unacceptable value, then the solution is the unique set of 
estimates which are all acceptable 

Information Matrix 
There is another way to determine local identifiability. 
One can compute numerically the Hessian matrix H (the 
matrix of 2 "d order partial derivatives) of LogL with 
respect to the model parameters as follows. 

H - O 2LogL / O~i O~j 
Then define the expected information matrix as the 
expected value of H: 

In fo  = - E ( H )  

It can  be  s h o w n  tha t "  
N 

Info = N ~(1/~rk).(0rt" k/~fl~) (~rc k/~fl~) 
k=l  

where N is the number of cells in the (manifest) variable 

table and ~ k  is the probability associated with cell k in 

the incomplete (manifest) table (ref: VER, p.317). 

The expected information matrix is sometimes called 
Fisher's information matrix. The information matrix, Info 
= - H, without the expected value, is sometimes called the 
observed information. (ref: LIT, p.85, a Bayesian 
argument suggests use of the observed information, a 
frequentist argument suggests use of the expected 
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information). Info is positive semi-definite, in theory. A 
theorem of Goodman (ref:GOO) states a sufficient 
condition for local identifiability is that Info is positive 
definite (ref: VER., p. 69). In general, global 
identifiability can be determined only by comparison of 
local maxima of LogL over the parameter space. 

Standard Errors 
For asymptotically large samples, it is known that the 
parameter covariance matrix is the inverse of Info; i.e. 
Cov= (Info) ~. This implies that the standard error of the 
ith parameter is the square root of the ith diagonal 
element of Cov. For finite samples, the Cramer-Rao 
inequality shows that (Info) 1 is a lower bound for Cov. 

Algorithms for Computing Parameter Estimates and 
Standard Errors 

In addition to the EM algorithm used in LEM, there are 
several other algorithms that can handle missing data. 
Two commonly used algorithms for ML parameter 
estimation are both examples of gradient search 
algorithms. They are Fisher scoring and Newton- 
Raphson. They differ only in that Fisher scoring uses the 
expected information (i.e. the Fisher information) matrix 
whereas Newton-Raphson uses the observed information 
matrix. When all variables of a log-linear model are 
manifest (i.e. observed), the two algorithms are 
equivalent because in that case the observed and expected 
information matrices are equal. (ref: VER, p.65, AGR, 
p.l14). The main disadvantage of these methods 
compared to the EM algorithm when the model includes 
latent variables, is that they need starting values close to 
the solution to converge (ref: VER, p.65). The EM 
algorithm, although not as fast as these algorithms near a 
solution, does converge to (at least) a local maximum 
under relatively weak conditions, even with bad starting 
values; in fact, in general, random starting values are 
good enough (ref: VER, p.66). (As implemented in LEM, 
after the EM algorithm converges, the expected 
information matrix is computed and inverted to find the 
standard errors (ref: VER,p.66).) 

Examples of Models run on LEM 
General properties of solutions to latent class models. 

a) In order to have a chance of creating identifiable 
models, one needs to impose constraints on the 
parameters. One usually assumes that one or more easy to 
state properties hold, such as conditional independence or 
identical response probabilities across subpopulations. 
Such properties, if there is some reason to believe that 
they hold, we call a reasonable assumption set or a 

reasonable constraint set. 

b) Specification of independence in LEM 
If two variables appear in a log-linear model, we express 
that by including at least the main effect parameters for 
both variables. If we wish to assume that the variables are 
independent we do that simply by omitting any interaction 
terms involving those two variables. Thus 
"independence" is the relationship that requires the fewest 
number of parameters to specify. 

c) Switching of latent classes 
Often when one runs a program that allows latent class 
models (e.g. LEM), one finds that on one run, a certain 
latent class, e.g. the largest one, is assigned one code 
whereas on the next run it is assigned some other code. 
This happens because there simply is no information to 
determine a specific set of codes for the latent classes. 
This variability of assignment of codes is not a serious 
problem if there is only one population being modeled 
since if the relative sizes of the latent classes are well 
separated, the modeler will probably be able to provide a 
useful interpretation to each latent class. However when 
2 or more subpopulations are being modeled, switching 
of latent classes codes within the subpopulations may 
lead to multiple solutions (see example M5 below). 

d) In the table below we present a summary of facts for 
five simple latent class response error models. See 
(ref:MAS) for details on these and other models. 

Open questions 

There is much need for more results on identification of 
latent class models. Are proofs of global identifiability 
possible for certain types of models ? For which models 
is computational exploration of the parameter space the 
only way to determine identifiability ? A precise analysis 
of how identification relates to the data space would also 
be helpful (e.g. loss of identifiability for Hui-Walter 
models when data for two or more subpopulations are not 
sufficiently separated). 
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Simple Latent Class Response Error Models and their Identifiability 
(all models have 1 latent variable X and 2 or 3 indicators A,B,(C); all are dichotomous) 

(DoF refers to degrees of freedom for testing; recall DoF=(#(cells)-1 - #(ind parms)) 
(AIX denotes 'A given X'; CRP denotes 'conditional response probability) 

Model # 

M1 

M2 

M3 

M4 

M5 

Verbal Model 
Description 

2 indicators with 
independent and equal 
CRP's 

3 indicators with ind. 
CRP's 

3 indicators with ind. and 
equal CRP's 

2 indicators and 1 
grouping variable G; 
G defines 2 subpops; 
(Hui-Walter method) 

2 indicators and G; Given 
a latent class and a 
subpop, CRP's for both 
indicators are equal 

Symbolic Model 
Description 

x ,AIX, 
BIX = AIX, 
(note: DoF = 0) 

{ X,XA,XB,XC } 
(note: DoF=O) 

X, AIX, 
BIX : AIX 
ClX = AIX; 
(note: DoF=4) 

XIG, AIXG, BIXG, 
for each indicator, 
CRP's for two 
subpops are equal 

XIG AIXG BIXG= 
A[XG 

Data: Table for 
Indicators 

AbyB: 
[300 25 50 400] 

A by B by C:[100 
2 4 6 8 10 12 300] 

Aby B by C: [100 
2 4 6 8 10 12 300] 

G by A by B 

[150 1020250 
150 5 3 150] 

G by A by B 

[100 1 2 300 
190 3 4 380] 

Selected Output; 
Conclusions 

P(X= 1) not unique; 
Not Identifiable; 

CRP's not unique; 
Not Identifiable 

, ,  

Appears to be 
Identifiable (even when 
small data values are 
set to 0) 

Identifiable for this 
data; note: method 
assumes subpops have 
different latent class 
probs 

Not identifiable 
but solution space is 
interesting 
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