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1. Introduction 

Multilevel (hierarchical) linear regression analysis is 
often applied in social research, especially educational 
research due to an increasing awareness that many 
problems in educational research have multilevel 
characteristics and due the numerous recent related 
studies and the development of computer software. The 
theoretical and the computing development, however, 
although very appealing, is mostly limited within the 
classical framework, i.e., assuming the data are 
generated by the underlying multilevel linear model and 
no complex sample selection effects are taken into 
account. 

As the multilevel (hierarchical) linear modeling 
technique gets widely applied, researchers realized that 
the data available for the application are rarely that 
simple. The data almost universally come from large- 
scale complex surveys. And the sample selection 
procedure of the survey almost always has features such 
as multistage, unequal probability selection, clustering, 
etc. The realized sample is the product of both 
underlying multilevel model and sample selection 
procedure. Ignoring the selection effects may cause 
bias in both point estimate and variance estimates. 

Different approaches have been taken to tackle the 
problem. One approach is to use the standard multilevel 
regression software (HLM, for example) and apply 
sampling weights since the software provides this 
option. In this approach, researchers can take the 
multilevel error structure the data present into account 
and still correct the point estimate bias caused by the 
unequal probability selection. In another approach, the 
researchers realize that the effect of sampling selection 
may be more than just biased point estimates. The 
variance estimates can be also biased too. But since the 
standard multilevel regression software does not 
specifically calculate the variance caused by the sample 
selection, the researchers turn to the available one level 
design based regression software such as SUDAAN and 
WESVAR. In this approach, the level-2 data (school 
data, for example) are merged to level-1 data (student 
data, for example) and a one level design based 
regression analysis is performed. Here the sampling 

selection effect is well addressed but the multilevel error 
structure is given up. Therefore it might turn out to be 
less efficient than this is also incorporated into the 
estimation. 

In this study, we discuss the efficacy of these different 
approaches in terms of the biases of point estimates and 
related variance estimates. In section 2 we introduce 
multilevel linear regression models. We can then see 
that the model coefficients 7" (including the school 

effects) can be also estimated by one level model. In 
section 3, we discuss the efficacy of multilevel 
modeling vs. one level modeling within the classical 
framework, assuming no selection effects. In section 4, 
we examine the efficacy of the one level design based 
regression approach. In section 5, we examine the 
weighted multilevel regression approach and discuss the 
conditions that this approach stands. 

2. Hierarchical (Multilevel) Linear Model 

A good example of a hierarchical structure is an 
educational system where students are "clustered" or 
grouped within classes. To reflect this in the model, 
assume there are m groups, indexed by j, and there are 

n j  of individuals in groupj. Let 
f 
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The macro level (or level 2) model is 

(2.2) /qj -- Z i g  + y j .  

It is assumed that all entries of oej are independent of 

each other and different £a. are independent of each 

other and different 8 j  are independent of each other. It 

is also assumed that the macro level disturbances _o"j 

are independent of the micro level disturbances £ j .  For 

the expectation and covariance matrix, it is often 

assumed that E ( ~ j ) -  O, V~_j)= o-21, E~_j)= 0 and 

TO0 TO 1 "'" /'O,P-1 

Vl,.g. ~_~-~ = 510 Tll "" T1,p_ 1 
w-j/  : : ... : • 

Yp-l,O "Fp-I,1 . . .  "l'p_l,p_ 1 

Model (2.1) and (2.2) can be combined into: 
(2.3) y j  = X jZ jy  + X j S j  + £j  . 

A more compact form can be obtained as following: let 
X = X  14-...4-Xm, (the direct sum of Xj ' s ,  X is an 

n x m P  block diagonal matrix with X1,...,X m as the 

_ on top of each other to form diagonal blocks), stack y j 

the n-vector y ,  stack ~j  and f l j  in the same way to 

form _~ and f l ,  that is 

Yl 1 0 ... 0 fll 

. . .  o 7 
y _ =  , x =  . . . 

Y 0 "'" Xm ~m 

£ "- (°el' £ 2 ' ' "  £m ) '" The combined matrix form is: 

(2.4) y = XZy + X~ + £ ,  

with variance-covariance matrix 

(2.5) Vary )=  X ~ X ' +  0"21 = V o -2 " 

0 ... 0 

0 ~ ... 0 
Here E = . " i . Assume V is nonsingular. 

° ° ,  

0 0 ... 

A very important consequence of the model (2.4) is the 
loss of independence among the entries of y .. This can --j 

be seen from the variance-covariance matrix of y . "  --j 

Var(y_j]= Var(XjS_j+ a ' j )= X j ~ X ) + o r 2 1 .  It is easy 

to see the off diagonal entices of the variance- 
covariance matrix usually are not zeros. 

When there are no random effects in the macro level 
model (2.2), the hierarchical linear model reduces to the 
ordinary regression model that includes micro-level 
variables, XO., macro-level variables, Z¢ and their 

interaction terms. Actually the model becomes 
(2.5) y = X Z y  + g.  

3. One Level Model vs. Multilevel Level Mode l  

One level linear regression model (2.5) is often used in 
school effects research especially before i980's. 
Usually the school characteristics are merged to student 
data (students within the same school are merged with 
the same school level variables), then treat the school 
level variables and the student level variables as they 
are from the same level and perform the ordinary one 
level regression analysis. If the data structure exhibits 
intra-cluster correlation and the analyst fails to take 
account of the correlation structure in the statistical 
model, the underlined model is misspecified. In this 
section, we study the effect of this model 
misspecification. 

First consider the combined matrix form (2.4) that 
correctly models the data. Although now the 
observations are not independent of each other, it can be 
shown that the minimum variance unbiased estimator 
(BLUE) of ,7" is 

(3.1) ?GLS -- (Z 'X 'V-I  XZ)-I  Z ' X ' V - l y .  

It is easy to see rials is unbiased. That is 

z , x , v - ,  = 

And the variance - covariance matrix of f'GLS is 

(3.2) Var@GLS)=(Z 'X 'V- IXz) - l cr  2 . 

1 / \  
In reality, V = / 1 / o - 2 j X y X ' + I  is never known. 

Various methods and software (HLM and MP3, for 
example) were developed to estimate the parameters. 

In another hand, if the correlation structure is 
overlooked and the model is misspecified, that is, if the 
second level random effects 8 are set to zero and OLS 

is applied to the ordinary regression model 
y = X Z ? ' + £ ,  the resulting estimator of y is the 

ordinary least square (OLS) estimator 

(3.3) f'oLs = (Z'X'XZ) -1Z 'X 'y .  
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?OLS is also unbiased for y .  That is 

E(f'OLS ) :  (Z'X'XZ)-I z'x'E@__)= y . 

But the associated variance-covariance matrix becomes 

(3.4) Var(~'oL s ) :  (Z'X'XZ)- '  Z 'X'VXZ(Z'X'XZ)- '  o .2 . 

Compare (3.4) with (3.2), we see in general elements of 
(3.4) would provide larger variances both for individual 
coefficients and for linear functions of the coefficients. 
Therefore, both ?GLS and f'OLS are unbiased for y ,  but 

YOLS is less efficient. For a special case of two level 

model, Scott & Holt (1982) showed that 

Var(c,f, ol.s ) < (21 .+_ An )2 
l < var(e' f/GLS ) - 4212 ~ ' 

here e'f, OL s is any linear combination of the regression 

coefficients f'OLS , 2~ >_ A 2 >_... >_ 2~ are the 

eigenvalues of V. Their conclusion is that the loss of 
efficiency is not usually worth worrying about when 
compared with the other usual problems that we 
encounter with survey data, such as nonresponse, 
adequacy of the model, and so on. 

The application of OLS estimator may cause another 
problem. In standard software programs such as SAS 
and SPSS, when OLS is applied, the estimate of 
Var(~oL s ) can be seriously misleading. The estimate 

of Var~ol. s ) produced from these programs is 

(3.5) V~OLS )= (Z'X'XZ) -10"2LS, 

with o'~LS (Y XZ?oLS (Y XZYoLs)/ (n  P) 

Compare (3.5)to (3.4) we can see that I)(20LS) can be 

a badly biased estimate of the true variance matrix. As 
in the special case shown by Scott and Holt (1982) 

where E(~'OL s )~ o .2 , the difference between (3.4) and 

E[V@oLs)J is factor (Z'X'XZ) -1Z'X'VXZ. 

4. Design-Based One Level Regression Analysis of 
Multilevel Survey Data 

In the previous sections, we assumed that the sample is 
generated by a hypothetical sequence of replications of 
an experiment described by multilevel model (2.4). 
And our goal is to estimate and inference y .  In reality, 

however, the sample is often selected from a larger 
existing finite population of the data in stead of a 
sequence of replications of an experiment. Usually the 
selection of the observed sample is performed according 
to a probability sampling design. Efficiency and 
administration consideration and complex population 
structure often lead to a complex sampling design for 
the sample selection procedure. For example, the finite 

population may be stratified according to some auxiliary 
variable known to all the units in the population and 
units in different strata are selected with different 
probability. 

Therefore, the observed sample selected according to a 
complex sampling design can be viewed as a product of 
a two step procedure ( Hartley and Sielken, 1975): 
1. An N unit population is generated by a hypothetical 
sequence of N replications of an experiment described 
by a model such as (2.4); 
2. An n < N  unit sample is selected from the 

population of size N obtained in step 1 according to a 
complex survey design. 

The complex sample selection in step 2 adds another 
stochastic mechanism to the realized sample. So now 
there are two random components to be taken into 
account: one is the distribution described by model 
(2.4), also referred as ¢" distribution, and the second one 

is the randomization distribution, also referred as D 
distribution. 

Failed to take the randomization distribution into 
account, the two estimators of ?" considered in the 

previous section, f'G~.S and f'oLs both are biased in 

general when selection effect presents (see for example, 
Nathan and Holt, 1980). 

In practice, in order to take the randomization into 
account and also due to the limitation of available 
computing software, analysts often merge the level 2 
data to the level 1 data. And conduct a one level design 
based regression analysis using software such as 
SUDAAN that can incorporate the effect of complex 
sampling. The design based one level regression 
approach uses the following weighted ordinary least 
square estimator to estimate y:  

(41) ;' = Z'sX'sn Ys,  
where I-I~ = diag(lfi,...,1r,,) and ~i is the probability 

that unit / is selected into the sample s. And the design 
variance of f'WOLS is estimated. In other words, the 

variance with respect to the randomization is estimated 
and used as the variance estimate of ,PWOLS. This 

approach can be justified as following. First, f'wol.s is 

approximately unbiased with respect to both model and 
randomization distribution. Actually, notice 

, , 

t ZN XN Y U ----- f/WOLS,N, 
here subscript N represent the N units in the finite 
population (see, for example, S/imdal et al 1991). Since 
the N units in the finite population are outcomes of N 
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replications of the model, fi'WOLS,N is unbiased under 

distribution for y .  Therefore E4ED @WOLS ) ~ Y" 

For the variance estimation, notice we may decompose 
the variance of f'WOLS as (see for example, Pfeffermann 

1993) 
(4.2) 

: E([VarD Cf'wOLs l YN )I+ o(N-1) . 
Therefore when the population size N is large the 
variance of f%OLS under the D (  distribution can be 

estimated by randomization variance Var D @WOLS l YN ). 
Methods of estimating Var D (,¢%OLS l Yu ) have been 

developed (see, for example, S~irndal et al 1991) and 
software is available (e.g. SUDAAN, WesVar PC). 

5. Multilevel Linear Regression Analysis of 
Multilevel Survey Data 

In the one level design based approach described in the 
above section, the multilevel error structure of the data 
is not taken into account in the modeling and estimation. 
According to the discussion in Section 3, incorporating 
the multilevel error structure into the estimation may 
result in more efficient estimator. To this end, different 
approaches are taken in practice. The first approach we 
shall discuss here is ordinary multilevel regression 
analysis (section 5.1), which completely ignores 
selection effect. The second approach we shall 
discussed is the weighted multilevel regression analysis 
(section 5.2), which incorporates the unequal selection 
probability but does not calculate the randomness 
variance. The third approach considered (section 5.3) 
not only use design based approximately unbiased point 
estimator but also estimates its randomness variance. 

5.1 Ordinary Multilevel 
Multilevel Survey Data 

Regression Analysis of 

When ordinary multilevel regression analysis is 
performed to complex survey data, the multilevel survey 
data are treated as if they are n replicates of model (4.1) 
and the multilevel error structure is taken into account 
in the estimation but the sampling design is totally 

ignored. Here f'aLS (Z;XsVslX~Zs)-1 = z;X'sW ys 

is used to estimate 7' and V~(,f'GLS ), the variance 

estimate of fi'CLS with respect to the model, is used to 

estimate the total variance. For this approach, both 
point estimator and variance-covariance estimators can 
be biased. For the point estimator, as Nathan and Holt 

1980 have pointed out, estimator fi'aLS is in general 

biased for y under D (  distribution. One argument for 

this approach and the approach described in the next 
subsection 5.2 is that the multilevel nature of 
hierarchical linear model directly models the multilevel 
sampling design used in the data collection. Therefore 
the modeling that is performed in the commonly used 
hierarchical linear model software accurately reflects 
the sampling design. This is a misunderstanding of the 
relationship between population structure and design. 
In one hand it is the population structure, as described 
by the model such as (2.4), that generates the multilevel 
error data. Therefore, the analyst must take account of 
the population structure in the statistical model no 
matter what design has been is used. In another hand, 
however, different designs generate different sample 
spaces that in turn will affect the statistical properties of 
the underlying estimators. As for the variance- 
covariance estimator, even in the case where the 
specified population structure coincides with the 
multilevel sampling design, e.g. sampling students 
within sampled schools, the estimating performed in the 
standard hierarchical linear model software such as 
HLM or HLMPV does not necessarily reflect the 
randomness variance. Failed to estimate the 
randomness variance may lead to bias in the variance- 
covariance matrixes of f'CLS and f'WGLS, the weighted 

version of f'GLS which we will discuss in the next 

subsection. 

Next, we consider the condition that sampling design 
can be ignored in the reference of 7 when ordinary 

multilevel regression analysis is performed. And we 
only consider the maximum likelihood estimator since 
the generalized least square estimator, maximum 
likelihood and empirical Byes estimator are actually all 
identical (Raudenbush, 1984). 

When maximum likelihood method is used to estimate 
7' and the sampling design is completely ignored, the 

likelihood is based only on the conditional distribution 
of the sampled y's with the sample s fixed and ignore all 
other random components. That is the likelihood is 
based on the following density function of the observed 
data in order to obtain the maximum likelihood 
estimator of y:  

f,(y  
or equivalently based on conditional density function 
(5.1  f , ( y ,  I 
The likelihood function based on (5.1) is sometimes 
called the face-value likelihood since it is not based on 
the full distribution of all random components. As we 
saw in section 4, the realized sample can be viewed as a 
product of a two-step procedure. One is the replication 
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of the model and the other one is the probability 
sampling. In probability sampling, the sample selection 
only depends on certain design variables that are differ 
from the response variable y. In other words in 
probability sampling the designs can be written as 
p(s  l u) , s  E N. Here s is the realized sample, N is the 

set of all feasible samples, and u are the design 
variables, which may include label information such as 
cluster or stratum indicator variables which determine 
group membership, other group variables and 
quantitative variables such as measures of size. In 
reality, however, the design information known to the 
analyst is usually only partial design information, which 
can be denoted as a function of u: d s = Ds(u ). Here 

d s = Ds(u ) is data derived from knowledge of the 

selection mechanism and from values of the selection 
probabilities and also from any known values or 
functions of u (Sugden and Smith, 1984). Therefore, 
the full likelihood should be based on the joint density 
function of (s, y s ,Xs ,Zs ,  d~ )" 

g(s, ys , Xs , Zs , ds ; C~, 7"2 , cP) 

IP(S ITs,  Xs , Zs , u; (~) f s (Ys [ Xs , Zs , u; 7"2 ) 
19, 

hs (xs , Z s , U; go) du . 

Here ys are the observed y 's  and Ds = 

{ u "D~ (u)= d~ }. Since for all probability samplings 

the designs only depend on the design variable u, that is 
p(s [w,u; ¢¢)= p ( s [ u )  for any variable w and parameter 

~¢, we can rewrite the above joint density function as 

(5.2) g(s, Ys , x ,  , z s , d s ; ¢~, 7"2, cp) 

= I p ( s l u ) f s ( Y s  IXs ,Zs ,U;7"2 )hs (x s ,Zs ,U;~)du .  
D~ 

Compare (5.1) and (5.2) we can see that a sufficient 
condition of complete ignorance of design information 
is that Ys and u are independent conditional on 

(Xs,Z~). That is 

(5.3) f s (Ys  [ Xs,Zs,U;7"2)= f s (Ys  [ Xs,Zs;7"l). 

An interesting special case where (5.3) stands is when 
all design variables u are included in the model 

predictor x and/or z. Let x ,  and z,  be the design 

variables that are also level-1 or level-2 predictors 
respectively, that is u = ( x , , z , ) .  Notice since we 

assume all design variables are included in the model, 
the columns of x, and z, are subsets of the columns of 

x s and z s . Although u has rows for all N units in the 

finite population and x s and z s only have rows for the 

n units in the sample s, this information is redundant for 
y~ given (x s,z~).  Therefore, 

L(y, JXs,Zs,U;r )= fs(ys 
= f s ( Y s  l Xs ,Zs;7" l )  . 

Situation where design variables coincide with 
predictors is not rare in educational surveys. For 
example, school sector (public/private) is often used as 
a first stage stratification variable and student ethnicity 
is often used as a second stage stratification variable and 
both variables are often used as predictors in multilevel 
regression analysis. However, it should be pointed out 
that in reality usually only partial design variables are 
included in the model so the design can still be 
informative for the inference of 7'. 

5.2 Weighted Ordinary Multilevel Regression Analysis 
of Multilevel Survey Data 

This approach is often seen when analysts use standard 
multilevel regression software such as HLM or HLM-pv 
and apply sampling weights in the analysis. In this 
approach, unequal selection probability and the 
multilevel error structure are taken into account in the 
parameter estimation but the randomness variance is not 
estimated. Here the finite population parameter to be 

) , , ,  
estimated is X N VN 1XN Z N ZN XN VN 1Y N' 

Obviously this quantity is unbiased for 7' under ( 

distribution. It is not clear to us what exact estimator is 
used to estimate this quantity in HLM. But Pfeffermann 
& LaVange 1989 propose the following estimator: 

y . . . ] l  
?'waLs = m 1 W c X  c - X c WcXcQc- 1 x c W c X  c R 

c=l ]re 
f where Q c = X c x ¢ + cr 2 A 1 . n" C is the cluster 

c inclusion probability. And W e = diag(wcl ,.. .  Wen c ) 

is the matrix of sampling weights corresponding to 
sampling within the cth selected cluster. 

Qc,w = Y'~WcXc + crzA -1 , X~ = X c Z  c and 

. . . .  l ,  ] X W X  X WY. R =  - -  rVc~- c c cQ~,w c c c 
c=l "tic 

Pfeffermann and LaVange 1989 claim f%aLs is 

approximately unbiased under D distribution for 
/ x  

(Z 'NX 'NVN1XNZN)- IZ 'NX 'NV~lYN . Therefore it is 

also approximately unbiased for y under D (  

distribution. As for the variance estimation, similarly 
the variance of ?'veaLs can be written as 

Var19( C~waLs ) = E (  [Var19 (YwcLs [ Y N )1 

+ Var( [Eo (YwGLS [Y U )1. 

In the standard ordinary multilevel regression software, 
the estimated variance of ,~wcLs is not the design based 
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variance component Var D C¢'wcLs [ y N ). Hence the 

estimated variance-covariance matrix can be biased. 

In this approach, partial design information (design 
weight) is taken into account in the estimation. In the 
following, we consider the conditions under which 
partial design information is sufficient to ignore the 
selection effect for the reference of 2". 

When partial design information is used in the 
maximum likelihood estimation but the selection is 
ignored, the likelihood function is based on the 
following density function 
ks (y~,x~ ,zs ,ds  ; y, , c~,). 

= IJ , (y ,  I s,Z,,U;y, 
Ds 

However, the full distribution of the data 
(S, ys ,Xs ,Zs ,ds)  is still (5.2). Apply a result of Sugden 

& Smith 1984, the condition for the ignorability of 
sampling selection can be written as 

fs(y.  I fx(y. IXs,Z.,d,;y,). 

In other words, observed y's are independent of full 
design variable vector u given the partial design 

information d s . When this condition stands, we have 

ks ( Ys , Xs , Z s , d s ; 7"l , Cr, ) 

: Ss(y  I 
Ds 

and 

g(s,Ys,Xs,Zs,ds;Yl,~) 

= f , ( y s  [Xs,Z~,ds;7",) ~p(s[u) h~(x~,z~,u;~)du 
Ds 

Therefore, the likelihood functions based on both 
density functions produce the same maximum 
likelihood estimator of Yl. Sugden and Smith 1984 

examine some standard probability designs to see to 
what extent they satisfy the conditions for ignorability. 
It should be pointed out that in general knowing the 
inclusion probabilities even for all units is not sufficient 
to ignore the sampling design. 

5.3 Design Based Multilevel Regression Analysis of 
Multilevel Survey Data 

This approach is an improvement of the approach 
described in subsection 5.2. Here f'wcLs is used as 

estimator of y to take the multilevel error structure into 

account and to obtain an approximately unbiased 
estimate of y under the joint D (  distribution. And the 

randomness variance is estimated and incorporated into 
the variance estimates. An example of this approach 
can be found in Pfeffermann et al 1998, in which design 

variance is estimated by Taylor Linearization method 
and used as estimate of the total variance. 

Although with this approach the multilevel error 
structure and the selection effect both are taken cared of 
very well, ,~vcLs is not necessary more efficient than 

f'woLs. Compare with that in section 3 we showed 

YcLs is more efficient than f'oLs when there is no 

selection effect. In other words, this approach is not 
necessarily more efficient than the design based one 
level regression approach. Actually, notice 

VarD( C¢'w6Ls )= E ~ [Var D (?'w6Ls [ Y N )] + O( N-1 ) 

and 

VarD((f'wOLS ) :  E( [Var D ~wozs [ YN )] + O( N-I ). 

Here both Var D (f'waLs [ YN ) and Var D (f/woLs [ YN ) 
depend on sampling design. Therefore, efficiency must 
be considered with respect to the specific sampling 
design. And this needs to be further investigated. 
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