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1.0 Introduction 
Three commonly used methodologies for 

variance estimation are the balanced half-sample 
replication (BHR), the jackknife and the bootstrap. 
BHR was initially developed for finite population 
sampling, but of the three methods, it has the most 
restrictive assumptions. BHR requires that exactly 
two primary sampling units (PSUs) be selected with 
replacement within each stratum. 

The jackknife and the bootstrap were initially 
developed for situations where some type of 
observations ( O i, i = 1 to n ) are independent and 

identically distributed (iid). For the jackknife, 0 i are 

the jackknife pseudo-values for an estimate0. An 

additional assumption is V (0 i ) = V ( ~ n O ) .  For the 

bootstrap, 0 i are the actual observations and an 

additional requirement is an estimate for the 
cumulative distribution function of 0;. 

Because of the iid assumption, neither the 
jackknife nor the bootstrap can directly be used 
with finite population sampling. Instead, 
modifications are required which adjust the 
variance estimates for the dependent sampling. The 
jackknife usually clusters the final stage units, so 
that the clusters are approximately iid within each 
stratum. For the bootstrap, the bootstrap estimator 
is compared with an unbiased sample variance 
estimator and some parameter(s) (e.g., the bootstrap 
sample size) is (are) adjusted to eliminate any bias. 

Comparing these three approaches, one might 
surmise the bootstrap would be more flexible than 
either the BHR or the jackknife, since it has more 
flexibility in adjusting for the dependent sampling. 
As such, one might expect the bootstrap to work 
best in very complex sample designs, assuming an 
appropriate adjustment can be derived to correct for 
the dependence in the sampled units. 

Given the flexibility of the bootstrap, this paper 
will describe a bootstrap methodology for variance 
estimation that can be applied to a variety of 
complex sample designs. It will then be applied to a 
very complex sample design. This design will be a 
two-stage design, where the first stage is a 
randomized systematic probability proportional to 
size sample (PPS) (Kaufman, 1999) and the second 
stage is a simple random sample without 
replacement (SRS w/o replacement). What makes 
the design very complex is the requirement that the 

variance estimation must appropriately reflect the 
without replacement aspect of the PPS selection, 
but reflect a with replacement SRS, instead of the 
actual w/o replacement SRS. (Section 4.0, explains 
why such a variance estimator is useful.) After the 
bootstrap variance estimator is derived, a 
simulation study will measure its performance. 
2.0 The Bootstrap Variance 

Assume x i , i = l t o n ,  are iid, where x;is 

generated from a distribution function F ( x ) .  "r, is 

some total generated from the x,. 's. Let an estimate 

of V (7~,) be v(7~, ) - cr(F, 7~, ) ,  where cr represents 

some function of F and 7~n. The bootstrap 

variance estimate is defined to be 

v* (7~n) - cr(t ~, 7~, ) ,  where /~ is an estimate of F .  

If F is the empirical distribution function of x i and 

7~,is X, then v * ( X - , ) = o ' 2 / n ,  where 0"2= 

~ ( x ~ - ~ - ) 2 / n .  
i=l 

The Monte Carlo approximation for V(7~,), 
B 

v* (7~ * ) ,  is 1/(B - 1). y__, (7~b,. -- T,,. )2 , where 7 ~*b.. is 
b=l  

the bootstrap analog of 7~, using n* independent 

selections from ,k. This is independently repeated 
" ,  , 

B times to get B Tb. s Since o'(F,7~,)may be 

unknown or extremely complex, v* (7~, *) is often 

used as v* (7~,). 

Using stratified SRS w/o replacement, let 

n h = n  h,  let Tbe  the sample mean X and let 

Fh(x)be the empirical distribution function of 

• 2. E* is the x . E  v * ( 7 ~ * ) = ~ l / n h ( n  h - 1 ) / n h s  h 
h=l 

expectation with respect to the bootstrap 

2 is the usual unbiased estimate of the sampling, s h 

stratum population variance and H is the number 
of stratum h. This estimator is biased because of 

the (n h - 1 ) / n  h term, as well as the missing finite 

population correction (FPC) 1 - nh / Nh ' 

So, a na]ve application of the bootstrap does not 
work in the finite population setting. However, by 

choosing an appropriate n h , an unbiased bootstrap 

estimator can be obtained. See example 3.1. 
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3.0 Bootstrap Distribution Funct ion 
In this discussion, the bootstrap will be defined 

in terms of the sampling process rather than in 
terms of a specific variable of interest (i.e., the 
object is to generate a set of bootstrap samples). 
The advantage of this is that once the bootstrap 
samples are generated, there is no need to repeat the 
resampling process for each variable. In fact, a set 
of bootstrap replicate weights can be generated 
similar to BHR replicate weights (Kaufman, 1999). 

In this context, let I =G(I  n h )  where I is 

a vector representing a bootstrap PSU sample of 

size n h and G(Inh ,n h) is some random mechanism 

generating I . that's a function of the original PSU 
/1 h 

sample Inh and n h . G(I~ ,n h) must preserve the 

first-order expectations for every n h (i.e., 
, ^ ,  , 

E T h = 7~h for all n h , 7~h being the full-sample 

estimated stratum total). 
G(-) can be a function of more variables. In 

Sitter' s mirror-match bootstrap (1992), 
(11 . ik~ • ,;,,.., , ; ) = G ( I ~ ,  k h , n h ) ,  where k h represents 

the number of times G(I~ ,rt h ) is repeated. 

3.1 Ex. 1 - Stratified SRS w/o Replacement  

In this example, it is assumed G(I~h  , n  h)  directly 

selectsI*, with-replacement from I n .  The object 
nh 

then is to choose n h SO the bootstrap variance 

estimator is unbiased. By comparing the bootstrap 
expectation of the bootstrap variance estimator with 
the traditional unbiased variance estimator, one can 

see that n h = (n  h - 1)/(1- n h / N h)  will do the job. 

See McCarthy and Snowden (1985). This is called 
the with-replacement bootstrap (BWR). 
3.2 Ex. 2 - Rao, Hartley, Cochran Sampl ing  

Rao, Hartley Cochran (Cochran, 1977) proposed 
a simple way of selecting a without replacement 
unequal probability sample. To do this, the PSUs 
on the frame are randomly placed into n h groups. 

Each PSU, has a measure of size e~h. Each random 

group has N~hPSU's and ~Nsh =Nh" Within 
g 

each random group, one PSU is independently 
N gh 

selected with probability eih / E e jh • 
j = l  

Sitter (1990) proposed a bootstrap procedure, 
similar to the mirror-match procedure to estimate 

this variance. In this method, G(I,h,nh)uses a 

bootstrap frame developed from the sample, and 

bootstrap measures of size to select the independent 
bootstrap samples (e.g., if a selected PSU has 

weight w i t h e n  w i bootstrap-PSUs (i*) are 

generated just like the original PSU, each with 

measure of size 1 / w  i , e i ). The bootstrap-PSUs are 

then randomly placed into n h groups. Each group 

has N gh bootstrap-PSUs. Within each bootstrap 

random group, one bootstrap-PSU is independently 

selected with probability eih ! ejh In this 
j = l  

• • 

procedure, where possible, n h and N sh are chosen 

so that the bootstrap variance estimator equals the 
unbiased estimator in Cochran (1977). 
3.3 Ex. 3 - Randomized  Systematic  PPS Sample  

When PSUs are placed in a specific order before 
sample selection, there is no unbiased variance 
estimator for systematic PPS samples. One can not 
apply the methodology described above to generate 
a bootstrap variance estimator. (A partial solution 
to the classical systematic sample problem is found 
in Kaufman, 1998). However, Kaufman (1999) 
modified the classical systematic PPS sampling 
procedure (Wolter, 1985) so that it resembled the 
Rao, Hartley Cochran sampling procedure. An 
argument similar to Cochran (1977) for this 
procedure can be made to produce an unbiased 
variance estimator, taking expectations across all 
possible orderings. This unbiased variance 

estimator can be used to determine n h for an 

unbiased bootstrap variance estimator using a 

bootstrap-PSU (i*) frame. Kaufman calls this type 
of sample, a randomized systematic PPS sample. 
One drawback with this procedure is that some 
PSUs can be selected multiple times. 

A randomized systematic sample can be chosen 
in the following way: 1) Order the frame in the 
desired way for a regular systematic selection. 2) 
Partition the frame into nh groups (partition 

groups), so each group's total measures of size are 
equal. 3) Consecutively pair the partition groups to 
form pseudo-strata. 4) Some PSUs may span 
multiple pseudo-strata. A PSU spanning multiple 
pseudo-strata must have its respective measures of 
size proportionally allocated into two pseudo-PSUs, 
so that the psuedo-PSUs are totally within the 
respective pseudo-strata. PSUs that span groups 
within a pseudo-stratum need not be split. 5) The 
PSUs and psuedo-PSUs within each pseudo-stratum 
are placed in a random order. Finally, a classical 
systematic PPS sample is selected within strata. 

The randomized systematic sample, as with the 
classical systematic sample implicitly stratifies the 
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frame according to the original ordering in 1) 
above. The randomized systematic sample does not 
control as well as the classical systematic sample, 
but the control is still strong. For any contiguous 
group of frame PSUs, the classical systematic 
procedure will be within one PSU of the expected 
sample size for that group, while the randomized 
systematic sampling will be within two PSUs. 

For the randomized systematic sample, Kaufman 
observes that the unbiased sample variance 
estimator can be written as a scaling factor times 
the B HR variance estimator. The scaling factor is 
always greater than zero, but can be either less than 
or greater than 1. Therefore, depending on the 
magnitude of the scaling factor, BHR can be either 
an extremely large under or over estimate. The 
simulation results (Kaufman, 1999) show this. 
3.4 Summary 

These examples demonstrate the versatility of the 
bootstrap with multiple designs. Replicate weights 
similar to BHR replicate weights can be generated, 
so standard software packages can be used. 
Additionally, by more correctly measuring the 
variance, the bootstrap can have lower mean square 
error (MSE) than the B HR, even when applying a 
simple FPC. See Kaufman (1999). 

The technique used in these examples is to 

develop G(I,h ,n  h) and to use a known unbiased 

variance estimator to determine an appropriate 

n h so that E* v (7~h * ) = V(/~h). 

For an arbitrary sample design, the bootstrap 

technique is" design G ( I , , A h ) ,  so first-order 

expectations are preserved for all A h , where A h is 

an appropriate parameter space. A ho ~ A h is then 

determined so that E'v*  (7~h*)= V(7" h) (i.e., second- 

order expectations are preserved). The choice of 

G ( I , ,  A h ) and A h can be flexible. 

4.0 The NAEP Design 
The State National Assessment of Educational 

Progress (state NEAP) measures the cognitive 
proficiency, in subjects such as reading and science, 
of our students in 4 tn and 8 th grades. This is done 

through a two-stage sample design of schools ( I ~1~ ) nh 

and students within each selected school i ( I  ~2~ ). 
m i  

Schools are chosen first with a systematic PPS 
selection process using students as the measure of 
size. Students are selected using a systematic equal 
probability procedure within each selected school. 

Variances assume a super-population model 
(i.e., no FPC used). The current replication methods 
apply no FPC at the school level, and implicitly 

apply one at the student level (i.e., the super- 
population model is: a finite number of students go 
to each of an infinite number of schools). 

Chromy (1998) stated "We view the structure of 
schools and their communities as fundamental 
contributors to the characteristics of students and 
the performance measures of the student population 
rather than viewing all states' students as arising 
from a single process and then simply being 
partitioned in some arbitrary manner among the 
schools in a state." He recommends a more 
appropriate model would to be assume that an 
infinite number of students go through a finite 
number of schools. This means an FPC should be 
applied at the school level, but not at the student 
level. This is the opposite of the current method. 

Replication methodologies usually assume 
sampling is done with-replacement, so no FPCs are 
applied. This is true for the first stage of selection. 
At subsequent stages of selection, FPCs are 
implicitly applied. Chromy's recommendation 
could be implemented by explicitly applying a first 
stage FPC and subtracting out the implicitly applied 
second stage FPC. The disadvantage here is the 
periodic negative variance. 
5.0 A Bootstrap Solution 

An alternative methodology is to use the 

bootstrap. In the single stage examples above n h is 

chosen, so that G(I,h ,n  h) will produce an unbiased 

variance estimate. In a two-stage sample, where n h 

first stage and m i second stage units are selected, 

one can develop t/h from an appropriate 

G1 (I ~' nh ) and m i. from an 
n h , 

*li* , , appropriateG 2(I (1) ,mr ~ I (~) • m ,  n~, nh) to produce 
i 

an unbiased variance estimate (See Sitter (1992)). 
For the NAEP problem, there is enough 

flexibility in determining n h and m r , so that the 

variance estimator reflects without replacement 
sampling at the first stage and with replacement 
sampling at the second stage. 
5.1 The Two-Stage Sample Design 
A proper simulation requires some modifications 

to the NAEP sample design. Specifically, NAEP 
uses a systematic PPS selection procedure to select 
the schools. Since the school frame is placed in a 
non-random order before selection, no unbiased 
variance estimator exists. To get around this 
problem, we will use the randomized systematic 
PPS selection procedure proposed by Kaufman. 

Likewise, a second modification is that the 
second stage selection will be done with a SRS 
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without replacement selection, instead of a 
systematic equal probability selection. 

Since a simulation study requires knowledge of 
the entire population and we don't know this for the 
entire student population, a different population is 
required. Instead, the NCES frame of school 
districts and the schools in these districts will be 
used as first and second stage units respectively. 

See section 7.0 for the implications of these 
simplifying assumptions to the NAEP design. 

Our sample design is: A stratified randomized 
systematic PPS sample of school districts will 
comprise the first stage sample. The measure of 
size will be number of schools in the district. The 
second stage sample will be a SRS w/o replacement 
sample of schools within each selected district. The 
desired variance reflects w/o replacement sampling 
at the first stage sample and reflects with- 
replacement sampling at the second stage. 
5 .2  T h e  E s t i m a t e  o f  I n t e r e s t  

r/h f/h ^ 

Let f = ~ ,Y_., w ~ "  i = ~ ,  ~., T~ = ~., :Fh, where 
hell i=1 hell i=1 hell 

w i i s  the sampling weight associated with the 

ith school district (i.e., 1/p~, pi being the selection 

probability for i ); and t; i is an unbiased estimator 
Ill i 

of the school total for i .  I); = ~ M iY i j  ] m i , where 
j = l  

M i is  the number of schools in district i ,  y~j is the 

variable of interest for school j in district i ,  and 

m i is number of schools selected in district i .  

5 .3  E s t i m a t i n g  v(7:) 

__ nh 
LetT~ =L/Z w i M i  : L / X h "  

i=1 
Using a Taylor series approximation, 

nh m i 
-- 2V(?i )  / X 2 with ?i : E Yij ] m i  . V(Th) = Z w 2 M i  h,  

i=l j=l 

From Cochran (1977) theorem l l .2 ,  it follows 
that an unbiased estimator, within the Taylor Series 

approximation, for V (7 ~) is v(7 ~) = 

~_, Xh  V l (Th)+~. ,P iV2wor(  ) ] X  h 
h e  H i=1  

/ // o r  v(7") = ~. V 1 ( ~  ) -'1- Z iV2wor (~;'i ) ( a )  

h e  H i=1  

Vl (7~h) is an unbiased variance estimator of the first 

stage sample evaluated at 7~h. See Kaufman (1999) 

for v 1 ( T  h ) . T h includes all second-stage units. 

V2wor (7: i) is the unbiased estimate of the second 

stage variance of 7~i . V2wor (7~i) = 

2 2 2 
W 2 M  i (1 - f2i  )s2i / m i ,  where f2i  -- mi / M i and S2i 

mi 
= ~-~ (Yij -- ?i )2 / (mi  _ 1). 

j = l  

A bootstrap variance estimator is generated by: 

1 Using I b - G(I n h )  and n h from Kaufman 
• nh tlh ' 

(1999), we have B sets of I b. 's, as well as 
nh 

B sets of bootstrap-district ( i*) weights, web, 

providing an unbiased v 1 ( T  h ) .  The 

b 'h replicate weight, Wib = ~ w c , where 
i*ESib 

S ib is the set of i* selected in the b th replicate 

which were generated from i .  
As in Sitter's and Kaufman's procedures, a 

solution for rt h may not exist. This can occur 

in strata where nh is small and nh =1 is not 

small enough to sufficiently increase the 
bootstrap variance. A solution is to combine 
strata, indexed by C ,  and sort the combined 
stratum by original stratum first. This increased 
n c in the combined stratum should now allow 

a solution for n c . 

. Given n h and I b. from step 1 define 
rl h 

Ib *1 * =G (I m i. i ~ I  b * m** i* m. ' ,; , nh ) as follows" 

For i* ~ I b. , independently select m.*. schools 
/1 h 1 

with-replacement from the mi o originally 

sampled in district i which generated i*. The 
conditional bootstrap replicate weight for the 

j,h school i s w j = K j M ~ . / m ; . ,  where K j i s  

the number of times the j,h school is selected. 

. For the b'h district bootstrap sample in step 
1 I b b * ,;, select I for each i 6 I b to ge t a se t  ' ' m; ,,; ' a 

of conditional school bootstrap weights given 

the i*' * = * * s, wi . jb  K ~ b M  i. / m ~ .  and a set of 

. 

overall replicate weights, w~j b = ~ w c wi . jb  . 
i* eSib 

Repeat step 3Bt imes  for each district 

bootstrap sample, producing B sets of W0b S. 

Using the B sets of replicate weights in step 

4, compute B estimates 7~b *. The simple 

variance of these B estimates is the bootstrap 

variance, v* (7 ~* ),  where V* (7 ~* ) = E* v* (/~*) . 

If m i. = ( m  i - 1)wi , / (1 -  f2 i  ) is an integer then 

183 



. . . . .  2 2 ( m i _ l ) / m  2 i m i .  E1 V2 (T  ) = Z E1 Wc M i iS2i 
hE H i 1 

, 

* * 2 [mi]  / = ~_~ ~ El ( (1 - f2 i )wi ,  MZs2i 
hE H i=1 

rl h / ~ ~ \ 

: Z Z [(1-i~,)w, Mis~,/mi) 
hE H i=1 

"~ (L)  (b) = E E PiV2wor 
hE H i=I 

Also, V~* E 2 (7 ~ ) = 2 V~* 7~i = 2 v~ (7~h), (C) 
hE H i=1 he H 

from Kaufman (1999). 
, , • • • 

Since V* (7 ~*) = V~*E 2 (7 ~ )+ E 1V 2 (7 ~ ),  it now 

follows using (b) and (c) that V* (7 ~*) with n h and 

mhdefined above is an unbiased estimator for 

V(7 ~) , within the Taylor Series approximation. 

If mr, is not an integer then it needs to be 
, 

bracketed between the integer less than m i. (m L ) 

and the integer greater than m c ( m  v ), where m L 

is selected with probability m I~ ( m v  - mi, ) / m i. and 

m v otherwise. 
Our goal is to reflect the second stage variance as 

thought the sampling was done with replacement. 
In this situation, the variance estimate is: 

E Vl (~ i rh )n t "  E i V 2 w r ( T i ) ,  (d) 
hE H i=l  

m i t2 t2 2 
Vzw r = w 2 M 2  i szi / m i and Szi = Z (yo  - yi ) / mi " 

j = l  

Following steps 1-5 with m c - m i w i . ,  it follows 

that V* (7 ~*) equals the result in (d). 

6.0 Simulations 
Using the sample design described above (i.e., 

the first stage strata are states with districts ordered 
before sample selection by urbanicity and measure 
of size), the districts are allocated to produce state 
estimates. For each of the 500 simulation samples, 
estimates are produced by region, state, and 
urbanicity. The region and state estimates are 
number of students, number of teachers and the 
student teacher ratio. The urbanicity estimates will 
additionally include number of schools, students 
per school and teachers per school. Reducing 
simulation time, only one region will be simulated. 

Within the k th simulation, two samples are 

selected. 7~k and 7%2k are the respective estimates 

computed from these samples. 7~k is based on 

schools selected SRS without replacement, while 

7~2k is based on schools selected with replacement 

SRS. 7~2k is used to produce an unbiased estimate of 

the desired variance, which is used to measure the 
performance of the bootstrap variance. 

The relative error ( R E  ) of the bootstrap standard 
error is used to measure efficiency. R E =  

I 4 v * / v  2 -11 .100 ,  where v* is the average of the 

bootstrap variance estimates and v 2 is an unbiased 

estimate of the desired variance (i.e., 

1 /499Z (7~2k - T2 )2 ). 
k 

The relative difference (RD) is used to measure 
how much larger the with-replacement standard 
error is compared to the without replacement 

/ 

standard error. R D  =/~/v2 / v I - 1)- 100, where v 1 is 

an unbiased estimate of the without replacement 

variance (i.e., 1 / 499Z (7~lk -- ~ ) 2 ). 
k 

7.0 Results and Conclusions 
Table 1 provides the relative errors of the 

standard error for Urbanicity estimates. 12 errors 
are less than 5% in absolute value. 6 are greater 
than or equal to 5% in absolute value. Of these 6, 2 
are greater than 10%. The relative difference 
measures how much the finite population standard 
error needs to be increased to be equal to the 
desired standard error. From table 1, all of the 
relative differences are significant, as one would 
expect from a state-based design. They range from 
3.7% to 27.6%. So, the desired standard errors are 
much larger than the finite population standard 
errors, and the bootstrap makes the appropriate 
adjustments to get to the desired standard errors. 

Table 2 provides the relative errors and 
differences for the West region. Since there is no 
variation in the school estimates, they are not 
provided in the table. For the same reason, the 
student and teacher average relative errors and 
differences are the same as the respective student 
and teacher numbers. So they are not repeated. 
Even with large relative differences from 10.7% to 
14.2%, the bootstrap standard errors are close to the 
desired standard errors with relative errors from 
-8.6% to - 1.9%. 

Table 3 provides the relative errors for the State 
estimates. To conserve space, individual state 
averages are not provided for the 13 states 
simulated. Instead, quartiles are provided along 
with the minimum and maximum for each estimate. 
The median relative errors are all very close to zero. 
The inter-quartile ranges are also small with the 
largest being 5.0%. None of the relative errors are 

184 



larger than 10% in absolute value. The state relative 
differences, in table 4, are very large. They range 
from 1.5% to 289%. Even with large relative 
differences, the bootstrap accurately estimates the 
desired standard error. 

These results clearly demonstrate that the 
proposed bootstrap variance estimator accurately 
reflects the desired standard errors. This would be 
difficult with standard BHR or jackknife variance 
estimators without some negative estimates. 

Given the simulation design is not identical to 
the actual NAEP design, there are a number of 
ways for NAEP to implement these results. The 
NAEP model assumption is that an infinite number 
of students are going through a finite number 
schools. One way of viewing this, is that as a 
function of time, the student population, in any 
specific school, is continuously changing. It now 
seems reasonable to assume that the number of 
students in that school is random, as a function of 
time. Since school enrollment is used to order the 
frame before sample selection, the school ordering 
can be considered random. As such, the randomized 
systematic selection used in the simulation could be 
a good approximation for the NAEP first stage 
selection when estimating variances. 

An alternative for the first stage is to assume the 
systematic sample variance can be approximated by 
some known finite population variance under a 
super-stratified frame assumption (i.e., two PSUs 
selected per stratum). Using the same arguments 
presented in this paper, the v(T) appropriate for the 

first-stage finite population variance assumed, can 
be used as an approximation in the first part of (d) 
to develop the bootstrap variance. 

For the second stage selection, the actual design 
uses a systematic equal probability selection, 
instead of a SRS without replacement selection. 
Since the student ordering is unlikely to be 
correlated with student assessment scores, using 
SRS in the bootstrap isn't likely to add any 
significant bias to the variance estimator. An 
alternative to this is to actually select students using 
without replacement SRS. 
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Table 1 - Relative Error (%) and Relative Distance (%) by 
Urbanicity and Estimate 

Urbanicity Estimate Relative Relative 

Urban 

Suburban 

Rural 

Error Dist. 
Students 2.1 4.8 
Schools 9.4 8.2 
Teachers 2.2 9.0 
Ave. Stud -1.9 3.7 
Ave Teach -2.8 8.4 
Stud/Teach -7.8 

3.1 Students 
6.8 
9.5 

Schools 15.0 13.4 
Teachers 2.8 11.7 
Ave. Stud -0.7 7.0 
Ave Teach -0.9 8.7 

-7.4 Stud/Teach 
Students 1.6 

23.2 
15.7 

Schools 12.3 10.2 
Teachers 1.6 15.4 
Ave. Stud -3.1 19.0 
Ave Teach -3.4 19.4 

-6.8 Stud/Teach 27.6 

Table 2 - Relative Error (%) and Relative Distance (%) by 
Re~ion and Estimate 

Region Estimate Relative Relative 
Error Distance 

West Students -3.0 10.7 
Teachers - 1.9 14.2 
Stud/Teach -8.6 12.6 

Table 3 - Quartiles of the Relative Error for States b, Estimate 
% Min 1 st Quar Med 3 rd Quar Max 

Students -3.7 -0.6 0.0 2.7 6.3 
Teachers -4.6 - 1.5 1.1 3.5 7.5 
Stud/Teach -7.7 -3.6 0.2 1.3 9.8 

Table 4 - Quartiles of the Rel. Difference for States b, Estimate 
% Min 1 st Quar Med 3 rd Quar Max 

Students 2.2 10.6 32.9 42.0 241. 
Teachers 1.5 12.5 36.4 42.3 289. 
Stud/Teach 5.9 16.9 29.1 36.8 1831 
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