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1. Introduction 

Parameters of interest that are estimated in survey 
sampling are simple or complex. Simple parameters such 
as totals, ratios, and proportions are used mostly for 
descriptive purposes. Complex parameters are used to 
obtain a better understanding of the relationships that 
hold within the population of interest: examples of such 
parameters include regression vectors, logistic regression 
vectors, and parameters of log linear models. The 
estimators of simple parameters are straightforward to 
obtain. However, the estimation of complex parameters 
requires a suitable modification to the generalized linear 
model approach described by Nelder and Wedderburn 
(1972). This modification transforms their theory 
developed in the context of infinite populations to finite 
populations. Linear or nonlinear parameters of interest, 
such as population means, ratios and linear or logistic 
regression coefficients can be expressed as solutions to 
suitable "census" estimating equations (Binder, 1983, 
Godambe and Thompson, 1986). Parameter estimates are 
obtained by solving sample estimating equations which 
involve the design weights as well as estimation weights 
based on auxiliary information. Using Binder's (1983) 
Taylor linearization method, we obtain standard errors of 
parameter estimates involving design and estimation 
weights, such as those resulting from post-stratification or 
regression adjustments. The resulting standard errors 
incorporate the estimation weights as well as synthetic 
residuals obtained by regressing the components of the 
estimating functions on the auxiliary variables. For 
stratified random sampling and stratified multistage 
sampling we also obtain standard errors by linearizing a 
jackknife variance estimator. Finally, analogues to C.R. 
Rao's score tests that take account of survey design 
features are developed. 

Section 2 provides the population estimating 
equations for obtaining the parameter of interest, and 
gives some examples of how this approach generates 
commonly known parameters in survey sampling. Section 
3 presents the procedure for estimating the parameters of 
interest via the estimating equation approach, while 
Section 4 offers two alternatives for estimating the 
variance of the resulting estimators. In Section 5, we 

display how these results can be applied to a number of 
post-stratified estimators. Section 6 develops analogues 
of C.R. Rao's score tests that take account of survey 
design features. Finally, a computer implementation of 
the proposed method is given in Section 7. 

2. Census Parameters 

We suppose that the finite population U is of size N, 
and that for each unit k we have data (yk,x r)where the 
x , ' s  are P-dimensional explanatory variables and the 
yk's are response variables. Assume for a given x, that the 
y-value is generated by a random process with mean 
E(y~)=g~=~t(xk,O ), where 0 is a P-vector of 
parameters. 

Denote the "working" variance of Yk by 
V(Yk) = V0k =°2 V0 (gk) for k e U. A census parameter 
O N is defined by the solution to the population estimating 
equations 

S(O) =~c~ uk(O) =0, (2.1) 

where ~u  denotes the summation over the finite 
population U and the p-th element of uk(0 )is 

%(0)= o%) v0, ' (2.2) 

where p=( /  ..... P). 
The estimating equation approach can be used to 

generate most of the commonly used census parameters 
O N , e.g., mean, ratio of two totals, and linear or logistic 
regression coefficients. 

The model for generating the mean of a variable y is 
given by E(yk) =gk = 6, V(y~:) =o 2, and Cov(Yk,y~)=0 
for k ~ =  1,...,N. Using (2.1) and (2.2), this model leads 
to u k (0) = Yx-- O, S(0) = Zu (Yl, - O) and 
O N - N - 1 ~ U y k - Y ,  the mean o fy .  The model for 
generating a ratio of two totals i s  given by 
E(y~)=g=Oxk, V(yk)=cfl Xk, and Cov(yk,yo)=O for 
k,Q. This leads to uk(O ) =yk-Oxt,  
S(0) =E u (yk-Oxk), a n d  ON=~uyk/~uX k , the ratio 
of totals of y and x. The model for generating the 
parameters of a linear regression ofy  on x is given by 
E(yk) = x~O , V(yk) = ~  and Cov(yk, yo) =O k~Q. In this 

T T 
case u k (0) =xk(yk-x k 0), S(O ) = F.kxk(yk-x k 0), and 
the . census narameter vector is given by 

-I  
0u= ( ~ v  x kx~)  ~ c l  xkyk. The model for generating 
the parameters of a logistic regression is given by 
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E(yk) : gk, where Yk is a dichotomous random variable 
taking 0 and 1 values, and 

exp(0rx ) -1 As a working model exp(0 x  [l+ ] 
for the variance, we take the standard binomial form with 
V0k=gk(1-1a  k) , SO that uk(0 ) = x k ( y k - g k )  and 
S(O) = F .vx  ~ (Yk -xk r0)" The parameter 0 N is implicitly 
defined by S (0) ; 0. 

3. Parameter Estimation 

Auxiliary data is commonly used at the estimation 
stage to improve the precision of sample estimates or to 
benchmark to known population totals. These methods, 
known as calibration methods, obtain final or calibration 
weights, ki, by minimizing a distance measure from the 
design weights, w i, subject to the restriction that 
~-'s WiZi = ~'U Z i where Zs denotes the summation over a 
sample of units, z; is some auxiliary data vector known 
for all populations units, or for all sampled units and the 
population total Z = ~ u Z i  is known. The resulting 
calibration weight can be expressed as the product of the 
design weight, w,., and estimation weight, a/, obtained 
from the calibration procedure, i.e. ~ / -  w i a  i. Note that 
if the population totals are estimated using the calibration 
weights, one will benchmark to the known population 
totals, Z. 

Generalized Regression (GREG) is the most 
commonly used calibration procedure. The GREG 
estimator of the total Y = ~--'uYi is given by I7" a : ~s w i Y i  
and the GREG estimation weight is given by 

a i = l +  Zf  ( E s  w i z i z T / q i ) - l ( z - Z ) / q i  (3.1)  

where Z = ~ s w i z i  and the q i ' s  are specified constants. 
The estimator of the population estimating function 
S ( 0 )  = ~ u  u i (0)  is given by S(0) = EsWi Ui(0) .  The 
estimator, 0, of the census parameter 0 u is obtained by 
solving S(0) : ~ wi u i(0) : 0. For simple cases such as 
totals or means, the solution to the estimating equations 
has a closed form and the calculation of 0 is therefore 
straightforward. For more complex cases, such as 
logistic regression, it may be necessary to solve the 
sample estimating equations iteratively; for example, the 
r-th step of the Newton-Raphson algorithm is given by 

6 r = 0r_ 1 + J - l ( 0 r _ l )  L~(0r_l) , 

where 0r-1 is the value of 0 obtained at the ( r -  1 )-th 
iteration, J(fir-1) = -0S(0) /00r  evaluated at 0r_ 1 and 
S(0r_ 1 ) is S(0) evaluated at t)r_ 1 . Iterating the Newton- 
Raphson algorithm to convergence produces the estimate 
6. 

4. Variance Estimation 

We next provide two procedures for estimating 

variances of the estimated parameters that result from the 
sample estimating equations. One method uses the Taylor 
linearization approach and the other is based on the 
jackknife method. Note that the Taylor linearization 
approach is applicable to general designs, while the 
jackknife is restricted to particular sample designs. Since 
both approaches are easily amenable to programming, 
they could be part of the building blocks necessary for 
computing variance estimates of complex parameter 
estimates in a system, such as the Generalized Estimation 
System (GES) recently developed at Statistics Canada. 

4.1 Taylor Linearization 

We assume that (i) S(0)  is asymptotically normal 
with mean S(0)and covariance matrix V(S(0)); (ii) a 
consistent estimator of V(S(0)) is given by I~'(S(0)). A 
consistent estimator of the variance of 0 is then given by 

1,3"(6) = J - ' (6 )  V(g(O)) j - l ( ~ )  (4.1) 

where J (t~) is 
Ou (o) J(O) = -aS(O) = _ E s  We ~ / -  

O0 r O0 r 

evaluated at 0 -  8 and I2(~(8)),,is,an estimator of 
I)(S(0)) (Binder, 1983). Since S ( 0 )  is the GREG 
estimator of the total S ( 0 ) - Z u U ; ( 0  ), the variance 
estimator I)(~(8)) is readily obtained from the GREG 
results for a total, as shown below. 

Using operator notation, let v (Y i )  denote the 
eslhna~oflhecovafiart~lml~ofthebasic eslJmator I?= ]~s wi Yi 
where Yi = (Yi~, ..., Yw) T. Then an estimator of the 
covariance matrix of the GREG estimator I~ G : ~ f f l iy i is 
given by 

V(}rG)  : v ( a i e i ) ,  (4.2) 

w h e r e  e i = (eil , ...,e;p) r with % ( p = I  .... P) denoting the 
residual obtained by regressing the p-th component Yi. on 

. . . .  ^ r  r 

the auxdlary variables z i" That IS, eip = Yip - Bp z i where 

(~w~z~ r/ \-t' p = Zi qi] I~-'sWiZiYip/qi) '  

and the q;'s are specified constants motivated by a 
"working" model. The use of die i in (4.2) instead of e i 
can be justified along the lines of S~irndal, Swensson and 
Wretman (1989). 

Returning to the covariance matrix of ,~(0), it 
readily follows from (4.2) that an estimator of the 
covariance matrix of S(0)  is given by 

V(,~(O)) = v(aie;) (4.3) 

* * .. * )r with * * (0). The residuals, where e i = (ei  1, ", eip eip - eip 
el* p (8) ,  are obtained by regressing the p-th component, 
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Uip (~)), of u i( 6 ) on the auxiliary variables, Z i . That is, 

* B~(6 eip(o ) =uip(o ) - ) r z i ,  p =  1 .... , P  (4.4) 

where 

/~p(0) : ( ~ s  WiZiz iT/qi ) - l (~s  wi Zi Uip(O)/qi)" 

It is clear from (4.4) that calibration estimation may not 
lead to gains in efficiency if the model residuals U/p (~) 
are unrelated to z,.. Substituting (4.3) into (4.1) we get V ( 0 ) 
as 

V(t~) : v ( j - l ( t ~ )  aie:) (4.5) 

in operator notation. 
We now spell out the general formula (4.5) for two 

commonly used designs: stratified random sampling and 
stratified multistage sampling. 

4.1.2 Stratified Random Samolin~ 

Stratified random sampling is commonly used in 
establishment surveys based on list flames; for example, 
in business surveys at Statistics Canada. Suppose n h 
units are selected by simple random sampling from N h 
units in the h-th stratum, h = 1 ..... L independently across 
strata. We denote the basic weight attached to the i-th 
sample unit in the h-th stratum as Whi = N h /nh, i=l ..... nh; 
h=l  ..... L, and the calibration weights as ffJhi=whiahi, 
where ahi is given by (3.1) with the subscr~t i changed 
to hi. The estimated covariance matrix of Y = ~2 s Whi Yhi 
is given by 

nh_ l ~-,i 

× (WhiYhi_~h) (WhiYhi _y~)r 

- v (Yh~) ,  (4.6) 

where fh=nh/Nh and .~h=(1/nh)F,i Whi Yhi" It now 
follows from (4.5) and (4.6) that 

V(())=v(J-'({))ahie*hi ), (4.7) 
, 

where eh; p is given by (4.4) by changing the subscript i 
to hi. 

4.1.3 Stratified Multistage S amp!ing 

Stratified multistage sampling is commonly used in 
large socio-economic surveys; for example, in the 
Canadian Labour Force Survey. We focus on designs 
with large number of strata, L, and relatively few primary 
sampling units (clusters), nh(~2 ), sampled within each 
stratum h (h=l . . . . .  L). We assume that subsampling 
within sampled clusters i (=1 .. . . .  nh) is performed to 

ensure unbiased estimation of cluster totals. Let mh; be 
the number of ultimate units sampled from the (hi)-th 
sample cluster. The design weights Whik attached to the 
sample units (hik) are calibrated to satisfy 
~sl~hikZhik = ~ U Z h i k  , t he  known totals of auxiliary 
variables z. The resulting calibration weights are 
1,~'hi k = Whikah ik ,  where ahi k is given by (3.1) with the 
subscript i changed to hik. 

For variance estimation, the clusters are assumed to 
be sampledwith replacement. The estimated covariance 
matrix of Y : ~s WhikYhi  k is then given by 

n h 
I~(~= ~ h  ( n h _ l ) Z i  (Yhi-.~h)(Yhi-.Yh) T 

= V (Yhi') (4.8) 

wherey~/ :  ~__,k(nhWhik)Yhik and .Vh : (1/nh) ~-'iYhi" Note 
that V(Y) depends only on the cluster totals Yhi. The 
estimator (4.8) generally leads to overestimation, but the 
relative bias is likely to be small if the first-stage 
sampling fractions are small. 

It readily follows from (4.5) and (4.8) that 

I~(O) : v(J-l(~))¢i) ,  (4.9) 

~ ~ T ~ ~ * * 

where ehi : (ehil,...,ehiP) , ehi p = Y~k (n h Whik ) ehikp , and ehikp 
is given by (4.4) by changing the subscript i to hik. 

4.2 Jackknife Linearization 

As noted earlier, the Taylor linearization approach is 
applicable to general designs, whereas the jackknife 
method is restricted to particular designs. We now 
present the jackknife approach for the two commonly 
used designs considered in subsections 4.1.2 and 4.1.3. 

4.2.1 Stratified Random Sampling 

To obtain a variance estimator of 0, one can also use 
resampling techniques such as the jackknife or bootstrap 
variance estimators. We present a jackknife variance 
estimator and derive a linearization type variance 
estimator by approximating the jackknife variance 
estimator, assuming stratified random sampling. To 
calculate the jackknife variance estimator for 0, we first 
define the jackknife weights when thej-th sample unit in 
the g-th stratum is deleted as Whi, .) = 0 if (hi)=(gj); = 
ng/(ng- 1) wg i if h -g, i Cj; = whi i~h , g .  

The sample estimating equations when the (gj)-th 
unit is deleted are then given by 

S~)(O) = ~ s  ff~hi~) Uhi(O) (4.10) 

where v~h;(w. ~ are the jackknife adjusted calibration 
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weights. These weights are obtained in the same way as 
the original calibration weights, #hi, except that the 
jackknife weights are used instead of the design weights, 
wh,. , in the calculation of the estimation weights ahi. 

^ 

Now to obtain the solution, 0~.), from (4.10), one 
can use the Newton Raphson algorithm with (4.10) and 
iterate until convergence, or one can use the one-step 
jackknife (Lipsitz, Dear and Zhao, 1994). The one-step 
jackknife simply uses the full sample estimate, 0, as the 
starting point and performs only one step of the Newton- 
Raphson algorithm with the calibration weights replaced 
by the jackknife adjusted calibration weights, wh;~). 
That is, 

- ' ^  
J~.)(O) S~.)(6) (4.11 ) 

where J~)(0) and S~.)(t~) are obtained from J(0) and 
S(0) with V~hi replaced by ~i(~.). A jackknife estimator 
of the covariance matrix of 0 is given by 

l)j(~) : ~ g  (1 _fg)/ ng-1)ng 

× 
(4.12) 

To obtain a linearization variance estimator, we note 
that J~.)(0)-I =J(t~)-I and S(0)=0 and hence from (4.11), 

0~.)- 0 = J-1 (0)[,~.)(t~)- ,~(I~)]. (4.13) 

It now follows from (4.12) and (4.13) that 

~d (6) = j-1 (0)( Eg (1-f~)[(ng-1)/ng]~_,j 
X. [L~(g].)(0)-S(0)] [L~(g].)(0)-L~(0)] T) J- 1(6) 

= J-l(0)[,~rj [ ~.~(6)] J-l(0), (4.14) 

A F A  A 1 

where Vj[S(O)J is the jackknife estimator of 
"~(0) = F's whi u hi(O). Again, noting that S(0) is simply a 
GREG estimator, we can approximate l)j[~(~)J by the 
linearized jackknife variance estimator given by 

I~"jL (S(0) ) :  v(ahie;i ), (4.15) 
, 

where the p-th component of e hi is 
e£i p = u hip(O) -/~p(0)rZhiand 

J~p(6) : (~sWhiZhiZhT.) -1 ~sWhiZhi u hip(O). 

This result can be obtained by applying techniques in 
Yung and Rao (1996) who considered the GREG 
estimator, f'c, in a stratified multistage framework. Note 
that the linearized jackknife variance estimator uses 

, 

estimation weighted residuals a h i e h i .  It now follows 

from (4.14) and (4.15) that l)'j(t~) can be approximated 
by the linearized jackknife given by 

~/JL (6) = J-l(0) v(ahiehi ) J-l(6) 

= V (J-l(0)ahie;i ) . (4.16) 

The estimator (4.16) is identical to the estimator (4.7) 
obtained using the Taylor method. 

4.2.2 Stratified Multistage Sampling 

The jackknife weights Whik(g[) when the (g/)-th sample 
cluster is deleted are given by whi, .): 0 if (h i) : (g/') ; 
=ng/(ng-1) wgil ¢ if h:g,  i¢j; :Whi ~ i~h*g. We calculate 
0(~.), as in Section 4.2.1, using the one-step Newton- 
Raphson algorithm. A jackknife estimator of the 
covariance matrix of 8 is given by 

~]j(6) = E g  ng-1 E j  (~.)_~) (~.)_~)T. (4.17) 
n g 

Now, following along the lines of Section 4.2.1, we get a 
jackknife linearization estimator l)jz(0 ) from (4.17). It is 
identical to the Taylor linearization estimator (4.9). 

5. Some Applications 

The preceding results provide us with a relatively 
easy procedure for computing variance estimators of 
complex parameters, that incorporate auxiliary data in 
their weights. In this section, we confine ourselves to 
poststratification, a commonly used calibration method. 
The post-stratified weight is a particular type of the 
GREG calibration weight. Let the population U consist 
of Q post-strata Uq ,ff : 1 ,..., Q.  Denote the auxiliary data 
as z i=(Sil,...,SiQ)" where 8iq=lif (i) CUq and 0 
otherwise. The estimation weight, ai, reduces to 
a i = F_,q 8iqN q/A?qwhere Nq is the known population 
count for the q-th post-strata and Nq = F, sWiSiq is an 
estimator of Nq. The post-stratified estimator of the total 

Y is ~rPS= Z s  l~iYi = E q  (Nq/iVq)frq, where 
Yq = ]~_,sWi~)iqY i is an estimator of the q-th poststratum 
total Yq. 

5.1 Post-stratified Mean 

The sample estimating equation for the mean, 0, is 
S(O) = ~sff~i (yi-0), with the solution 

= ~,sl~iYi/~_,sff~ i = (1/N)~ s ff2iy i since ~s~i=N by the 
benchmarking property of the calibration weights. 
Further, ei* = Yi - F,q ~)iq ;q and J(t?)=N, where 

= I~q //Vq is the estimator of the q-th poststratum mean 
Yq - Y /Nq.  The linearization variance estimator is given 
by P(83 -- v (N -l aiei* ) which agrees with a well-known 
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variance estimator for the post-stratified estimator (Rao, 
1985). 

5.2 Ratio of Post-stratified Totals 
The ratio of two post-stratified estimators is obtained 

by solving the sample estimating equation 
S(0) - F_, s w i ( Y i - 0  xi)  ~ =0. The solution to this estimating 

^ ^ ^ 

equation is given by 0 = Yes / Xps where Xps is the post- 
stratified estimator of the total X. Further, 
Ci* = Yi - ~q ~iq -- ^ (Xi - ~-'q 6iq Xq and J(0)  = ^ where 
yq. : Xq / ]Qq. YWqh? ) Xps' - ^ linearization variance estimator is 

" - 1  * 

given by V(0) = v (Xps  a i e i ). 

5.3 Post-Stratified Linear Regression 

The sample estimating equations for the linear 
regression parameters are given by 

T 
S(O) = ~ s  WiXi(Yi - x i  O ) = ~ s  Wi b t i (0 )=0 ,  

with the solution 

O = ( Z s  W i X i X ? ) - l Z s  WiXiYi" 

Further, ei; ~blip(O)-~q~; b~'--q,~ and J(O)=~sWiXi XT, 
where u~o=l~2swi6ioui ,~(~|~a.  The linearization 

v .,- -^  a ~ I ^ * estimator is gwen by V(O) : v ( J -  (O)a i e i ). 

5.4 Post-Stratified Logistic Regression 

The sample estimating equations are given by 
S ( 0 )  = ~s ]¢~ixi(Yi - gi ) : EsUi(O)  = O, w h e r e 
gi(0) = exp(x i rO) / (1  +exp (xiTO)) Further 

eif = Uip(O) - ~q~iq blqp 
^ ,~  T ,., ^ 

and J(O) = ~sWiXiXi  [I.ti(1 - ~ i ) ] ,  where 12il = ~l.i(0 ). ,e~.~ 
linearization estimator is given by I)'(0) - v {J- l (8)a i  . 

6. Quasi-Score Tests 

We now turn to the problem of testing null 
hypotheses of the form H0:02 = where 

T TT 0 = ( 0 1 ,  02) with 02 020' vector. being a R x 1 One 
approach is to base the test of H0^ on the corresponding 
Wald Statistic, using 0 and V (0) given by (4.5), but 
Wald tests have the following drawbacks" (i) The full 
model has to be fitted to get 0; (ii) Wald tests are not 
invariant to reparameterizations. C.R. Rao's (1947) score 
tests are free of both limitations and permit extensions to 
complex problems. We need only fit the simpler null 
model, which is a considerable advantage if the full 
model contains a large number of parameters as will be 
the case, for example, with a factorial structure of 
explanatory variables containing a large number of 

interactions. Bera and Bilias (1998) provide an excellent 
account of Rao's score test and its extensions in the 
context of econometric modelling. 

Rao, Scott and Skinner (1998) extended Rao' s score 
test to survey data by developing quasi-score tests that 
take account of survey design features. However, they 
did not fully investigate the effects of calibration. In this 
section, we give a brief account of quasi-score tests when 
calibration weights, ~., are used. Let 

(0) =(~.71(0) T L~2(0) T)T be' the partition of S(0) 
corresponding to the partition ot~ r0  ,where 

t (0) = ~sWi Uti(O)' t=l,2" Also, let 8 :t/0 ~c0 r be 
the solution of ,~l(0*):0 ,where0*=~01~,'001 . The 
analogue of Rao's score test, which we call the quasi- 
score test, is based on the statistic 

QN R -- sT[  P(L~2) ] -1S  2 (6.1) 

where $2 :'~2(~) and I2($2) is a consistent estimator of 

Following Rao, Scott and Skinner (1998), we can 
write 

82 "~ ~s  ]'~i u2.1i(0*), 

where u2r~; (0")= u2i(O*)-I2~I[[  ~ u~i (0') and 
I* :  I (0") : E [J(0*)] is partitioned as 

I* I*] i ,  = 1,1 1,2. 

LI2, I22] 

SinceS 2 is approximated by an estimated total, it follows 
that S 2 is asymptotically a R-variate normal with mean 0 
and covariance matrix V(~{2) under H 0. Therefore, the 

2 quasi-score statistic QS R is asymptotically a ZR variable 
under H 0. Following (4.3) and (4.4), a Taylor 
linearization estimator of V(,{2) is given by 
I5"(S~) = v(a.e*~ 1i)' where e 2 1" is a R-vector with elements 

. Z l ~ , Z .  " 7 "  ,~, . l 

e2.1i q : u2.~i q (0)^ - Bqzz ,  Bq .  is obtained from /~o(0) by 
changing Uip(O ) to u 2 liq(O) and u2.1iq(O ) is tlae q-th 
element of u2.1i(0 ) . 

For stratified random sampling and stratified 
multistage sampling, we can also use a jackknife 
estimator, I3"j(S2), or a jackknife linearization estimator 
of V(S2). Following Rao, Scott and Skinner (1998) and 
the approach presented in subsections 4.2.2 and 4.3.2, it 
can be shown that the jackknife linearization estimator 
I)jL(S'2) is identical to I)(S2). Details are omitted for 
simplicity. 

7. Computer Implementation 

It is common practice for Statistical agencies to use 
auxiliary data in estimation procedures for a variety of 
sampling designs. In the mid-eighties, the need for 
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automated estimation systems incorporating the use of 
auxiliary data was recognized. In response to this need, 
several estimation software packages were developed; for 
example, LINWEIGHT (Bethlehem and Keller, 1987), 
PC-CARP (Shnell, Kennedy, Sullivan, Park and Fuller, 
1988), SUDAAN (Shah, Lavange, Barnwell, Killinger, 
Wheeless, 1989), WESVAR (Brick and Morganstein, 
1996), CLAN (Anderson and Nordberg, 2000), 
BASCULA (Nieuwenbreck and Hofman, 2000) and GES 
(Hidiroglou,. Estevao and Arcaro, 2000). All of these 
packages offer point and variance estimation for 
commonly used parameters such as totals, means and 
ratios, with some packages offering more than others. 
Differences between the packages include: (i) availability 
of analytic features such as linear regression, logistic 
regression and two-way table analysis; (ii) the methods of 
variance estimation (Taylor, jackknife or other replication 
methods). While the above packages estimate commonly 
used parameters, none of them seem to have the 
flexibility to handle arbitrary parameters of interest. On 
the other hand, the methods presented in this paper pave 
the way to automatically obtaining estimators and their 
corresponding standard errors through estimating 
equations. We now illustrate how the proposed methods 
can be implemented using Statistics Canada's 
Generalized Estimation System (GES). 

Statistics Canada's GES system provides a modem 
framework for estimation and variance estimation. The 
framework adopted for building GES is based on the use 
of auxiliary information and of the calibration procedure 
of Deville and Sirndal (1992). It is built around four key 
elements: (i) the sampling plan; (ii) the population 
parameters to be estimated; (iii) the use of auxiliary 
information, and (iv) the domains of interest. Several 
sampling designs incorporating with or without 
replacement sampling and probability proportional to size 
sampling are available. GES computes estimates, 
incorporating auxiliary data, of totals, means, and ratios 
with associated standard errors computed by Taylor 
linearization or jackknife procedures. The auxiliary 
information can cut across design strata, or be included 
within them. This allows the computation of most of the 
commonly used estimators in survey sampling, including 
separate and combined ratio or regression estimators (or 
intermediate combinations), poststratified estimators 
(separate, combined, or mixed) and others such as the 
raking ratio estimator. Estimates and their associated 
measures of reliability are computed for user-specified 
domains of interest. Further details of the methodology 
used in GES are given in Estevao, Hidiroglou and 
Sirndal (1995). 

GES was built as an integrated package and offers 
flexibility in terms of domain estimation and use of 
auxiliary data. However, it computes a limited number of 
estimates: means, totals, and ratios. The inclusion of 

additional parameters into GES is not straightforward as 
the existing software must be modified to incorporate new 
estimators within GES. This means that developers have 
to understand the architecture of GES, determine where 
the additional estimators fit in, program them, debug and 
document the resulting code. 

A more flexible approach to implement new 
estimators into GES is to build the required software 
outside of GES and use existing components of GES 
where possible. For example, GES could be used to 
compute the estimation weights, ai, the residuals, ei, and 
the resulting standard errors within the existing variance 
estimation procedures in GES. We briefly describe the 
steps for integrating additional software with the existing 
components of GES. 

, 

Given the design weights, W i, and the auxiliary 
data, Z i ,  GES can be used to compute the 
estimation weights ai, given by (3.1), and the 
resulting calibration weights, v~; - wia i. 
An additional program is necessary to compute 
the estimator, 0, of the parameter of interest, 
0U, using the estimating equation approach. 
The parameter of interest is defined by Census 
estimating equations of the form of (2.1). 
These estimating equations are completely 
specified by the u ;(0) terms which are defined 
by 

,. 

. 

u;,,(o) : (a , too ) {Or,- l~;)/Vo;). 

Thus, given the model mean and the model 
variance, the u i(0 ) terms can be derived. 
Given the u g(0) terms, the calibration weights, 
~,., and the necessary data, we can then define 
the sample estimating equations as 
,~(0) - ~ wi u/(0). Finally, the program needs 
to apply the Newton-Raphson algorithm to 
solve the sample estimating equations to obtain 
t~. As a byproduct to the Newton-Raphson 

method, the J(0) matrix is also obtained. Note 
that for estimating equations with closed form 
solutions, the Newton-Raphson algorithm will 
converge to the correct solution in one 
iteration. Thus, for these estimating equations 
it is not necessary to explicitly define the 
closed form solutions, only the corresponding u i(0) 
terms. 
Next, given 8, the ui(0) terms evaluated at 8 
and the necessary data, GES can be used to 
compute the residuals, e i given by (4.4). 
Finally, a program is needed to calculate the 

, 

synthetic residuals Ti - J - l ( O ) a i e i .  GES can 
then be used to apply the appropriate variance 
operator to these synthetic residuals; that is, 
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use I)(t]) : v (7i) to get the 
Taylor linearization estimate 
(or the jackknife linearization 
estimate where applicable) of 
I5(8). 

The jackknife estimators can also be 
implemented through the one-step jackknife, 
but details of the steps involved are not spelled 
out here. 
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