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ABSTRACT 

Noting that the full Hierarchical Bayes 
solution for logistic mixed model has 
demonstrated good frequentist properties for 
small samples, we have derived a survey 
weighted version of the associated Gibbs 
algorithm. Survey weights are incorporated in 
conditional posterior distributions to achieve 
design consistent asymptotic mean vector and 
covariance matrices. Proper inverse Wishart 
priors are used for the covariance matrices. The 
bias o f  the estimated fixed effects and 
covariance components is examined for a three 
stage cluster sample design. The method has 
been applied to the National Household Survey 
on Drug Abuse (NHSDA) to produce age 
specific small area estimates and associated 
pseudo-Bayes posterior intervals for the fifty 
states and the District of Columbia. 

1. Introduction 

Growing out of the demand for state level drug 
use, treatment, and treatment need statistics, 
SAMHSA first contracted with RTI to produce 
model based statistics combining data from the 
1991 through 1993 NHSDA surveys. For the 
analysis of 1991-1993 data, we used penalized 
quasi-likelihood (PQL) to estimate fixed and 
random effects in the logistic mixed model. 
Some limitations of the PQL approach were 
noted in the Methodology Report produced by 
Folsom and Judkins (1997). In the current 

project a hierarchical Bayes model (Malec et. al. 
1993) is used and the fixed and random effects 
are estimated by Gibbs algorithm. The details of 
theory and mathematics for applying the full 
hierarchical Bayes (FHB) model to survey data 
has been presented by Folsom et. al. (1999) The 
methodology has been tested with data from 
1994-1996 survey. The work in applying it to 
1999 data with some improvements is in 
progress. 

In the present paper, the objective is to describe 
the software. The theory will be presented in 
brief. The software consists of two procedures 
GIBBS and GSTAT. The procedure GIBBS 
simulates the posterior distributions of the fixed 
and random effects using Gibbs algorithm. The 
resulting fixed as well as random effects are 
saved for each cycle on data set. The procedure 
GSTAT estimates the prevalence rate for each 
block group for each type of individual within 
the block group, for each cycle of the simulated 
fixed and random effects. The weighted 
averages of the block group estimates provide 
county or state level estimates of prevalence 
rates. The estimates over cycles represent the 
posterior distribution of the prevalence rates; the 
mean, the variance, and the percentiles of this 
distribution can be evaluated. 

2. Theory 

The development has been restricted to binary 
outcomes with the following basic model: 

logit [ Prob (y~,j k 

is the logistic mixed model for the probability 
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that age group-a member-k of PSU-j in State- 
i has Y,,jk" 1. To specify our GIBBS algorithm 

we assume that the State and PSU level random 
effect vectors rl~ and v~j with age group specific 
elements are four variate normal with null mean 
vectors and 4x4 covariance matrices Dn and D, 
respectively. We assign an improper uniform 
prior to the age specific fixed coefficient vectors 
13~, and use proper inverse Wishart priors for Dn 
and D~. 

To keep the description of the algorithm simple, 
we present formulae for the unweighted case. 
The software is general and allows for weights. 
The weights were incorporated in the kernel 
density to provide design consistent estimates. 
The details regarding weights are not necessary 
to understand the algorithm and are omitted in 
the following sections. This software does 
implement formulae with appropriate weight 
adjustments as discussed in Folsom et. al. 
(1999). 

effects. 
Z2ijk = The vector of one zero 

indicator variables for the PSU level random 
effects. 

= The vector of state level 

random effects for the state-i. 

tie o. = The random effect for PSU-0". 

We assume that tiC , and ~2o.are identically 

distributed multivariate normal variables with 
the mean vector zero and variance covariance 

matrices W 1 =/'1-1 and W2=/"24 respectively. 

With assumptions outlined above, the joint 
likelihood of Yo*' rll~, and rl20. can be written as 

follows: 

Lo( Y, rI1,rl2,~, WI, W2) = 

I I ; 1  I~ :1  I I ~  j, [ P(Y0.,,13lrll,rl2) 

~0] 1i1 ml ) ~(r120.1W2) ] (2) 

3. Mathematical Formulae 

The basic mixed model is 

where 
P(y0.k = 1,13[rll,rl2) = 

{1 +exp(X0kl3 + Zlijkl]l i + Z2ijk]]20.)}-I 

In(P0.~)-In(1 -Po.~) - 

(1) 

P(yo.k=O,[J[rll,rl2) = 1 - P@ok- I'[3ITII'TI2 ) '  

where i = 1, 2, ..., n indexes state, j =1, 2, ..., r~ 

denotes PSUs within state-i, k=l,  2, ...,m o 

depicts responding persons. Other symbols are: 
P ok = The probability that the 

response Yok is equal to 1. 

X'0k = A row vector of observed 

predictors for the person-Ok. 
[3 = The vector of unknown fixed effect 

parameters to be estimated. 
Zn] k = The vector of one z e r o  

indicator variables for the state level random analytic 

q)(rllW ) - (2~)-p/2111,]-1/2 exp(-2rl /W-lr l )  , 

where 1~ is the determinant of the matrix W. 
The marginal likelihood function is obtained by 
integration over rll ~ and r120. 

[ e%k,13[nl,n2)  (nl,IG) 
(I)(l~2/d. I W2) ] 61] 1i61~20.. (3) 

The integral in Equation (3) does not have an 
solution. Maximum likelihood 
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estimates can be obtained through numerical 
integration. The imegral's dimension is equal to 
the number of random effects, and a practically 
useful approach is unavailable. In the next 
section we describe a Bayesian approach to the 
above problem. 

4. Bayesian Approach. 

For a Bayesian approach, we shall assume an 
improper uniform prior for the age specific fixed 
coefficient vectors 13~. For W 1 and W 2, we 

assume that the pr by Pr matrix W/-~ has a 

nonsingular Wishart distribution with degrees of 
freedom v,>pl and the expected value of v~D i 
is given by the density function 

~ v ( W ;  1, D , ,  Vr) - KIDrl -vr/2 [W/11 (vr-pr-1)/2 

exp{ -ltr(D7l w/l )}  (4) 

where the value of the constant is 

K - I _ 2 VrP r/ 2 7~P r (P r -1) / 4 1 ~ r  :1 P{(Vr+l-s)/2} 

Assuming that prior distributions of [3, W1, 

and W 2 are independent of each other, the 

posterior density function of 13, W 1 , and W 2 

conditional on the observed values of y is 

- A f 

(I)([3]~0,0J) f v ( W l  , D l) fv (W2 , D2) ~)'qli~)'q29 • 

(5) 
where 

A-1 - fZo(Y~]]l , l ' ]2 ,[  3, W 1, W 2) (I)(~[~O,/) 

f~(W~, D,) f~(W2, D2) 

8rl2 . 813 6w, 8 w  2. (6) 

The numerical evaluation of the function f in 
Equation (5) is intractable. A Monte Carlo 
approach to study the posterior distribution of 
13, vii, 112, W1, and W 2 is a viable alternative. 

5. Monte Carlo method 

The approach consists of simulating the joint 
distribution of the five variables [3, 

rll, r12, W 1 , and W 2 for given the data for 

Y, X, Z 1, and Z 2. A direct simulation of the 

joint distribution is not feasible. However, it is 
possible to generate any one of the five random 
variables conditional on knowing the other four. 
If we repeat the process of generating each five 
variables [3, I]1 , ]]2' W1, and W 2 conditional on 

the known values of the other four, then the 
Gibbs sampler method suggests the random 
distribution will converge to the joint 
distribution of the five variables. For more 
explanation of the Gibbs sampler, one may refer 
to Casella and George (1992). 

In the following sections, we shall consider the 
generation of a conditional random variable for 
each of the five variables. To generate the 
sample, we plan to use the Metropolis 
algorithm, which requires a conditional density 
function for each of the variables. From 
Equations (2) and (5), we can deduce that the 
joint distribution for all five of the variables is 
the product of the following five terms except 
for constant that does not depend on any of the 
five variables. We present the natural logarithm 
for each of the terms: 

T1 - ET=I E ; ' - i  Z_~k-51 ln{P(Yoe 13, ]]1' 112 )}~ 

(7) 

l 1 / 1 
T 2 - ={ln(IW(l)  - ~7:~ (rll,W( rl~)}, (8) 

Z 
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1 
T3 - "2"{Z;I r, ln(]W2-']) - 

• / i 

~ 7 : 1  Z ; ' : I  (TI2oW; 1"129)}, (9) 

1 
T4 - "2{(¥1-Pl  - 1) ln(I  W l[) + 

-1 w ( ' ) }  , Vlln(lD1 l) - tr(D(1 (lO) 

1 
T5 - -~ { (v2 -/)2 - 1)ln([ W2[ ) + 

v21n(lDz-l]) - tr(D;1W;1)}, (11) 

where the prior distribution for W 1 and W 2 is 

Wishart with V 1 and V 2 degrees of freedom and 

parameters D~ and D 2, respectively. 

The estimating equations for 13 are 

~ y k  (Y,jk - ~yk) xyk ~ - 0, (12) 

[V(~ )]-1 - Zjk  ~ijk(~)[(1-T~ijk(~)lXijkX'/tjk . (13) 

Because sample size for estimating ~ is large, 
we assume that the conditional distribution for 13 

is normal with mean ~ and variance equal to 

V(~). For estimating random effects rll i and 

rl2,j , we apply a similar approach and the 

resulting equations for rlli are', 

Z k  [Y/jk - ~/j'k(~li)] Xijk ~li 

+ W11 (~1i) - 0,  (14) 

[ V(~ li)] -1 : 

Zjk  "KOk(~li)[(1-'KOk(~li)]XijlgX~k + W1-1" (15) 

LC(Y]li) - Z k  7CO'k(~li)Xij'k]]li 
+ ~1, (ln[ 1 - ~:/j.k('l]li)] 

+ (T]li-~li)/ W1-1 (T]li-~Ii) , (16) 

The resulting equations for r12 q are: 

+ W ;  1 (~2ij) - 0, (17) 

[ v(%j)]  -~ : 

~ k  r~,)k(fl2q)[(1 -rcok(fl2ij)lxq~i~k + W;' .(18) 

+ ~ k  ln[1-~ijk(rlzij)] 

+ (Tl2ij-~2ij) / W; 1 (~20-~2ij) . (19) 

We assume that the conditional distribution for 
13 to be normal, because the total sample size is 
large. However, we cannot assume normality for 
r I , because the sample size for the state or PSU 
is not large. The exact conditional probability is 
given by equations (16) ans (19), and we apply 
Metropolis-Hastings algorithm to draw a 
random observation of r I . 

To derive the conditional distribution of W~ and 

W 2 , using the well known relationship between 

multi variate normal and Wishart distribution, 
we note that the distribution of 

/ 
(20) 

has a Wishart distribution with degrees of 
freedom equal to n and parameter W 1 given by 

f(S, ,  n, W l) - KI W~ I -"/2 IS, I ~-p'-I)/2 

exp{ -l tr(WllS1)} , (21) 
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hence the conditional distribution of W1-1 given S 1 

is a Wishart distribution with n +Pl + 1 degrees of 

freedom and parameter S11 . The posterior 

distribution of W1-1 is a Wishart distribution 

with parameters n+pl+V 1+1 degrees of 

freedom and parameter (S 1 + O l )  -1 . 

/ 
(22) 

Similarly, it can be shown that the posterior 

distributionofS 2 isaWL4aartdistn'butionwith [ Z ; 1  ri] 

degrees of freedom. Hence, the posterior 

distribution of  W; 1 is a Wishart distribution 

with parameters [~7=1 ri] +P2 + v2 + 1 degrees of 

freedom and parameter (S 2 +D2 )-1 . 

6. PROC GIBBS 

The objective of this method is to generate 
random values from a joint distribution function 
which may not be known but the conditional 
distributions of each set of variables given the 
other sets of variables are known. For the 
weighted data with the logistic regression 
model, we shall use equations (12) through (22). 

The steps for each iterative cycle are given 
below. Fixed effects require three steps: 

1) Estimate [~ using Equation (12). 

2) Compute variance of ~ from Equation 
(13). 

3) Generate a random[3 from a normal 

distribution with mean ~ and variance V(~). 
Each random effect requires four steps: 

4) Estimate t'1 using Equation (14) or (17). 
5) Compute variance of fl from Equation 

(15) or (18). 
6) Generate a random 11 from a normal 

distribution with mean fl and variance V(fl). 
7) Apply rejection method (Metropolis), 

with L* =Lc(rl) of Equation (16) or (19). 

After steps 4 through 7 have been performed for 
each subscript of rl. 

8) Compute S, and generate random W -1 

from a Wishart distribution. 
The steps 4 through 8 are repeated for each 
random effect. All of the above steps are 
repeated for each iterative cycle by using the 
random values generated in previous cycle. The 
computer simulation ends only when desired 
number of cycles are completed. 

7. User options and limitations in PROC GIBBS 

The current program is limited to fitting only 
logistic models to binomial outcome variables. 
The user has an option to specify different 
models for fixed effects for each level of a 
categorical level. For example, if the variable 
for age groups has four levels then user may 
specify four different model statements, one 
corresponding to each level of the age group. 

The models for random effects are limited to 
nested design structure, and the user may 
specify a random model for each of the nest 
levels. Of course, each model for random or 
fixed effects may contain any number of 
independent variables. 

The Gibbs sampling requires many cycles for 
convergence, so the user can specify the number 
of cycles before starting to save sample results. 
The user may also specify the rate at which the 
parameters are updated; for example, the user 
may update fixed effect coefficients every 
eighth cycle, may update state level random 
effect every even cycle, and PSU level random 
effect on each cycle. 
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Since, the Gibbs sampler may require many 
cycles to converge and each cycle takes many 
seconds, there is an option to save the entire 
work space and restart the iterative cycles from 
the last cycle of the previous run. 

The final output of PROC GIBBS is a random 
sample from the posterior distribution of the 
fixed effects ([3), random effects (q), and 
variance covariance matrices (W). 

7. PROC GSTAT 

The input to PROC GSTAT is the data for each 
geographical block group and the output from 
PROC GIBBS. For each random sample of 
[3, r I, and W, PROC GSTAT estimates the 
prevalence rate for each sub group of population 
(such as white males 25 to 45 year old) in each 
block group: 

Pgijkr 
exp(Xgok~,. + Z,  gok~,,~ + Z2gijkl]2ij.r ) 

1 + exp(XgOk~r + llgOknlir + 12gOkl]2ij r )' 

where/~gyk~ represents the estimated probability 

for the subgroup-g, in the block-k in the PSU- 
j of the state-i,  for the cycle-r; 
~ ,  ~]l~, and TI2v. are the simulated values for 

the cycle-r of PROC GIBBS; and 

Xgi]k, Zlgi]k, and Z2gok are the corresponding 

independent variables. For the PSU or state if 
there is no observations in the sample then 
random set of B l,r' or TI20 r are generated. 

The state level estimates are obtained by taking 
the weighted average over the block groups: 

fi = Z j  Ek  Wgijkr Pgokr. 
gir Z j  Ek  WgO.kr 

A 

The estimated P for various values of gtr 

r represents a random sample from the 
posterior distribution of the prevalence rate ~gi" 
From this sample, PROC GSTAT computes 
mean, variance, percentiles, etc. 

PROC GSTAT permits options to select various 
subsets of cycles to analyze. A user can specify 
the number of cycles to skip from sample 
results. The user may also specify the sampling 
rate and sample size, to be used in the analysis. 
This will permit user to compare statistics over 
different groups of cycles such as results from 
first thousand as compared those from the last 
thousand from a data containing 10,000 records. 

8. Magnitude of the task 

RTI's GIBBS procedure has been designed to 
handle large data sets as well as models with 
many parameters. PROC GIBBS was able to fit 
four age group specific models simultaneously, 
on 70,000 observations with 30 to 40 
independent variables in each model totaling 
over 100 fixed effects and more than 350 
random effects. PROC GIBBS completed over 
10,000 Gibbs cycles in 10 hours, using Win95 
operating system on a personal computer with 
400 MHZ Pentium II (see Table 1). We were 
unable to get BUGS or MLwiN to complete 
even a single cycle on such a large model. 

Since we used the option to update fixed 
parameter after every eighth cycle, we only 
considered every eighth cycle from the 10,000 
cycles or 1,250 cycles as representing the 
random sample from the posterior distribution 
of the parameters. For estimating the 
prevalence rates in each of the small areas, we 
considered 32 age-race-gender specific profiles 
for each of the 226,000 block groups, estimated 
the probability based on the logistic model 
based the parameters from each of the 1,250 
cycles. The frequency or the estimated 
population in each of the 32 age-race-gender 
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specific group with in a block was used as 
weight. The weighted average of the these 
estimates over the block groups within a state, 
produced a sample 1,250 observations from the 
posterior distribution of prevalence rates for the 
state. We then estimated mean, median and 
various percentiles and other properties of the 
posterior distribution. 

For large states with many observations, 
PROC GIBBS and PROC GSTAT produced 
final results that were close to the design 
weighted consistent estimates obtained from 
PROC DESCRIPT of SUDAN software. The 
initial results have been promising and we 
plan to make further improvements. 

GIBBS 
Table 1. Magnitude of tasks 

Sample size 

States 

PSUs 

No. of models 

Fixed effects 

Random effects 

Cycles 

Time in h o u r s  1 

70,000 

51 

300 

120 

1,400 

10,000 
, , ,  

10to 12 

GSTAT 

Block Groups 

Age-Race-Gender groups 

States 

Fixed effects 

Random effects 

Cycles 

No. of P-values 

Time in hours 2 

226,000 
, ,  , 

32 

51 

120 

1,400 

1,250 

9 Billion 

10to 12 

~Time is for computers with 300 MHz 
Pentium with 256M memory 

References 

Breslow, N. E. and Clayton, D. C. (1993). 
"Approximate Inference in Generalized Linear 
Mixed Models." Journal of the American 
Statistical Association, 88, 9-25. 

Folsom, R.E. and Judkins, D.R. (1997). 
Substance Abuse in States and Metropolitan 
Areas" Model Based Estimates from the 1991- 
1993 National Household Survey on Drug 
Abuse--Methodology Report. Prepared for the 
Substance Abuse and Mental Health Services 
Administration. 

Folsom, R.E., Shah, B.V., and Vaish, A. K. 
(1999). "Substance abuse in states: A 
methodological report on model based 
estimates from the 1994-1996 national 
household surveys on drug abuse," 
Proceedings of the section on survey research 
methods, American statistical Association, 
371-375. 

Malec, D., Sedransk, J., and Tompkins, L. 
(1993). "Bayesian Predictive Inference for 
Small Areas for Binary Variables in the 
National Health Interviews Survey," in Case 
Studies in Bayesian Statistics: eds. C. 
Gatsonis, J.S. Hodges, R.E. Kass, and N.D. 
Singpurualla, New York: Springer-Verlag, 
377-389. 

Casella, G., and George, E. I., (1992). 
"explaining Gibbs Sampler," The American 
Statistician 46, 167-174 

l l l  


