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A b s t r a c t :  

We consider local polynomial regression estimation 
for finite population totals in two-stage element sam- 
pling. The estimators are linear combinations of es- 
t imators of cluster totals with weights that are cali- 
brated to known control totals. The estimators are 
asymptotically design-unbiased and consistent un- 
der mild assumptions. We provide a consistent es- 
t imator for the design mean squared error of the 
local polynomial regression estimators. Simulation 
results show that the estimators are more efficient 
than Horvitz-Thompson and linear regression esti- 
mators when the mean function of the superpopu- 
lation model is non-linear while being nearly as effi- 
cient when the model is linear. The estimation ap- 
proach performs well in an example using data from 
a 1995 study associated with the National Resources 
Inventory. 

1 I n t r o d u c t i o n  

To improve the efficiency of surveys, auxiliary infor- 
mation may be used in the sampling design or the 
estimation of parameters. In this paper we consider 
use of auxiliary information in estimation. 

Many kinds of estimators have been proposed for 
estimating a finite population total under a super- 
population model ~ describing the relationship be- 
tween the variable of interest and the auxiliary vari- 
ables. Often, a linear model is selected as a su- 
perpopulation model. Ratio estimators, regression 
estimators, and poststratification estimators can be 
derived from an assumed linear model. 

Estimators are sought which have good efficiency 
if the model is true, but maintain desirable proper- 
ties like asymptotic design unbiasedness and design 
consistency if the model is false. Because of con- 
cerns about the performance of the estimators under 
model misspecification, some researchers have con- 
sidered nonparametric models for 4. Dorflnan (1992) 

and Chambers, Dorfman, and Wehrly (1993) devel- 
oped model-based nonparametric estimators using 
this approach. Breidt and Opsomer (2000) proposed 
a type of model-assisted nonparametric regression 
estimator for the finite population total, based on lo- 
cal polynomial smoothing. The local polynomial re- 
gression estimator has the form of the generalized re- 
gression estimator, but is based on a nonparametric 
superpopulation model applicable to a much larger 
class of functions. 

The local polynomial regression estimator intro- 
duced in Breidt and Opsomer (2000) applies only to 
direct element sampling designs with auxiliary infor- 
mation available for all elements of the population. 
In many large-scale sample surveys, however, more 
complex survey designs such as multistage sampling 
designs or multiphase sampling designs with var- 
ious types of auxiliary information are commonly 
used. In this paper, we consider the extension of 
local polynomial regression estimation to two-stage 
sampling, in which a probability sample of clusters 
is selected, and then subsamples of elements within 
each selected cluster are obtained. 

Often, two-stage sampling is used because an ad- 
equate frame of elements is not available, but a list- 
ing of clusters is available. In this case, it is not 
likely that detailed auxiliary information would be 
available for all population elements. Therefore, we 
consider local polynomial regression estimation in 
two-stage element sampling with auxiliary informa- 
tion available for all clusters. Results for single-stage 
cluster sampling, in which each sampled cluster is 
completely enumerated, are obtained as a special 
c a s e .  

Ill Section 2 we propose the local polynomial re- 
gression estimator in two-stage element sampling. 
Desirable design properties of the estimator are de- 
scribed in Section 3. Section 3.1 shows that the esti- 
mator is a linear combination of estimators of cluster 
totals with weights that are calibrated to known con- 
trol totals. Section 3.2 provides asymptotic design 
unbiasedness and consistency of the estimator, an 
approximation to the estimator's mean squared er- 
ror, and a consistent estimator of the mean squared 
error. Section 4 gives simulation results for the esti- 
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mator,  comparing its performance with that  of the 
Horvi tz-Thompson and the linear regression estima- 
tors. We apply the estimator to data  from a 1995 
study of erosion, using National Resources Inventory 
(NRI) data  as frame materials, in Section 5. 

Local Polynomial Regression Esti- 
mator 

Consider a finite population o f  elements U = 
{ 1 , . . . , k , . . . , N }  parti t ioned into M clusters, 
U 1 , . . . , U i , . .  ,UM. The population of clusters is 
denoted C - { 1 , . . . , i , . . . , M } .  The number of ele- 
ments in the ith cluster Ui is denoted Ni. We have 
U - U iecUi  and N - ~-~iec Ni .  For all clusters 
i E C, an auxiliary vector xi  - ( x l i , . . . , x ~ i ) '  is 
available. For the sake of simplicity we assume that  
G -  1; that  is, the xi are scalars. 

At stage one, a probability sample s of clusters is 
drawn from C according to a fixed size design pz('), 
where pr(s)  is the probability of drawing the sample 
s from C. Let m be the size of s. The cluster in- 
clusion probabilities 7 r i -  Pr {i E s} - ~-2~:ie~P~(S) 
and 7rij - Pr { i , j  C s} - Y2~:i,je~ p~(s) are assumed 
to be strictly positive. 

For every cluster i E s, a probability sample si 
of elements is drawn from Ui according to a fixed 
size design pi( ' )  with inclusion probabilities 7rkl i and 
7rklli. That  is, pi(s i )  is the probability of draw- 
ing si from Ui given that  the ith cluster is chosen 
at stage one. The size of si is denoted hi. As- 
sume that  7rkl i -  Pr {k C sils  ~ i} - ~-~.~.ke~, pi(s i )  
and 7rklli - P r{k ,  l e s i } s ~ i }  - 2 ~ , . k , t e ~ , p i ( s i )  
are strictly positive. As is customary for two-stage 
sampling, we assume invariance and independence of 
the second-stage design. Invar iance  of the second- 
stage design means that  for every i, and for every 
s ~ i, p i ( . I s ) -  pi( ' ) .  That  is, the same within- 
cluster design is used whenever the ith cluster is se- 
lected, regardless of what other clusters are selected. 
Independence  of the second-stage design means that  
subsampling in a given cluster is independent of sub- 
sampling in any other cluster. 

The whole sample of elements and its size are 
Uie~si and Y2'-i¢~ hi, respectively. The study vari- 
able yk is observed for k E UiEsSi. The parameter 
to estimate is the population total ty - }-~keg yk - 
~ i e c  ti, where ti - ~-2kev~ Yk is the ith cluster to- 
tal. 

Let [i - i if i C s and Ii - 0 otherwise. Note 
that  Ep [I~] - E1 [Eii[Ii]] - EI []i] -- 7ri, where Ep [.] 
denotes expectation with respect to the sampling de- 
sign, Er[.] denotes expectation with respect to stage 
one, and E~[.] denotes conditional expectation with 

respect to stage two given s. Also, V,(.) and V,,(.)  
denote variances with respect to stage one and two, 
respectively• Using this notation, an est imator  t of 
t is said to be design-unbiased if Ep [t] - t. 

The Horvitz-Thompson (1952) est imator of ty in 
two-stage element sampling is given by 

where 

~ Y -  E ~i = E ~i]i, (1) 
7ri 7ri iEs iEC 

t ~ i _ E  yk 
kEsi 7rkli 

is the Horvi tz-Thompson estimator of ti with respect 
to stage two. Since ti is design-unbiased for ti, the 
Horvitz-Thompson estimator ty is design-unbiased 
for ty. Note that  ty does not depend on the xi.  
The variance of the Horvi tz-Thompson est imator  ty 
under the sampling design can be written as the SUl]'I 
of tWO components, 

- . . . .  + - ( 2 )  
7ri 7rj 7ri i,jEC 

where 

Vi - -  V i i ( i i  ) 

-= E (Trkll i --7rkliTrlli) Yk Yl 
k,lEU, 7rkli 7rlli 

is the variance of ii with respect to stage two. Note 
that  Vi is non-random due to invariance. Note also 
that  the result for single-stage cluster sampling, in 
which all elements in each selected cluster are ob- 
served, is obtained if we set ti = ti and ~ = 0 for 
all i E C. 

The local polynomial regression est imator  is mo- 
tivated by modeling the M points (xi,  ti) as a real- 
ization from an infinite superpopulat ion model ( in 
which 

ti = #(xi) -t- ei, 

where the ci are independent random variables with 
mean zero and variance u(x~), # ( x )  is a smooth func- 
tion of x, and u(x)  is smooth and strictly positive. 

Let K denote the kernel function and hM denote 
the bandwidth.  Let t c  = [ti]iec be the vector of t i ' s  
in the population of clusters. Define the M x (q + 1) 
matr ix  

X c i  w I 
1 X l  - Xi  . . .  ( x l  - ~ i )  q 
• . 

1 z ~ - ~ i  "'" ( x ~ - ~ i ) q  

x j  - x i  . . .  ( x j  - x i ) q  ] j ~ c ,  = [ 1  
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and define the M x M matrix 3 Main  R e s u l t s  

W c i  - diag -£--£K hM jEC 

Let er represent the rth column of the identity ma- 
trix. The local polynomial regression estimator of 
p ( x i ) ,  based on the entire finite population of clus- 
ters, is then given by 

i I i 
' ( X c i W c i X c i )  -1  Fti --  e 1 X c i W c i t c  -- W c i t c ,  

(a) 
! 

which is well-defined as long a s  X c i W c i X c i  is in- 
vertible. 

If these pi 's were known, then a design-unbiased 
estimator of ty would be the generalized difference 
estimator 

ty -- E #i + E ti 2 #i  (4) 
7I" i 

iEC iEs 

(Sgrndal, Swensson, and Wretman, 1992, p. 222). 
The design variance of the estimator, 

i ,j E C 7r i 7rj 

depends on residuals from the nonparametric regres- 
sion and hence is expected to be smaller than (2). 

In the present context, the population estimator 
>i cannot be calculated because only the yk in Uie~si 
are known. Therefore, we will replace each #i by a 
sample-based consistent estimator. Let i~ = [~i]iEs 
be the vector of ti 's obtained in the sample of clus- 
ters. Define the m x (q + 1) matrix 

[ 1 . .  

and define the m x m matrix 

W ~ i  - diag ~ 1 
[ rrj h v  hM jCs 

A design-based sample estimator of #i is then given 
by 

~i  --  elt ( X l s i W s i X s i )  - l  x t s i  w s i t s  -- Wts i is ,  ( 6 )  

as long as X '  ~iW~iX,i  is invertible. Breidt and Op- 
somer (2000) discuss finite sample adjustments to 
this estimator that guarantee its existence for any 
sample s C C , as long as (3) is well-defined. Substi- 
tuting i~ and p~ respectively for t~ and #~ in (4), we 
have the local polynomial regression estimator for 
the population total of y, 

- + (r)  
7ri 

iEC iEs 

The estimator for single-stage cluster sampling is ob- 
tained if we set ii - ti for all i E (7. 

3.1 Weighting and Calibration 

Note fl'om (7) that 

= - - +  1 -  ~ w~j 
7r i 7r j 

iEs 

= - - +  1--  ' ei t'i rr i -~j w s J 
• je  

- } 2  (8) 
iCs 

Thus, t~ is a linear combination of t~i's in s, with 
weights wi~ that are the sampling weights of clusters, 
suitably modified to reflect the auxiliary information 
[xi]iec. Because the weights are independent of yk's, 
they can be applied to any study variable of inter- 
est. In particular, they give perfect estimates when 
applied to the auxiliary variables. It is straightfor- 
ward to verify that for the local polynomial regres- 
sion weights ~;i.~, 

g g 
E CdisXi --  E Xi 
iEs iEC 

for g = 0 , 1 , . . . , q .  That  is, the weights are ex- 
actly calibrated to the q + 1 known control totals 
N,  t x , . . . , t x , .  If #(xi) is exactly a qth degree poly- 
nomial, then the unconditional expectation (with re- 
spect to design and model) of t y -  ty is exactly zero. 

3.2 Asymptot ic  Design Properties 

In this section we state without proof some theorems 
concerning asymptotic design properties of the local 
polynomial regression estimator. Proofs will be pro- 
vided elsewhere. We begin with some assumptions. 
Let the first-stage sample rate m M  -1 -+ 7r C (0, 1), 
the bandwidth hM --~ 0 and M h L  --~ oo as the pop- 
ulation number of clusters M + oo. The assump- 
tions on #(-), ~(.), and the kernel K are the usual 
ones in local polynomial kernel smoothing (Wand 
and Jones, 1994, Chapter 5). For cluster inclusion 
probabilities rri and rrij at stage one, we assume 
that for all M, miniec rri _> A > 0, m i n i , j e c  rrij >_ 
IX* > 0, and limsuPM_+~ m maxi , jEC:i#j  Ircij -- 
iriTrjl < 00,  with additional assumptions on higher- 
order inclusion probabilities. We also assume that 
limsuPM-+oo M - i  ~ i c c  Ex~[(ii - ti) 4] < oo and 

limsuPM_+o o M -1 ~ i e c  Ex,[l)/2] < cx~. These as- 
sumptions are reasonable for many two-stage ele- 
ment sampling designs. 
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In general, the local polynomial regression esti- 
mator  tu is not design unbiased because the / ; i ' s  are 
nonlinear functions of unbiased estimators. How- 
ever, tu is asymptotically design unbiased and design 
consistent. 

T h e o r e m  1 In two-stage element sampling under 
the above assumptions, the local polynomial regres- 
sion estimator 

i E C  

is asymptotically design unbiased (ADU) in the 
sense that 

M-~oo M -- 0 with ~-probability one, 

and is design consistent in the sense that 

lim Ep ~ ] --  0 with ~-probabilitg o n e  
M - +  oo 

for all 7] > O. 

Under the same conditions as in Theorem 1, we 
obtain the asymptotic mean squared error of the lo- 
cal polynomial regression estimator ty in two-stage 
element sampling. The asymptotic mean squared er- 
ror consists of first and second stage variance compo- 
nents. The first stage variance component is equiva- 
lent to the variance of the generalized difference esti- 
mator,  while the second stage variance is unaffected 
by the regression estimation. 

T h e o r e m  2 In two-stage element sampling under 
the above assumptions, 

7rij 7r i Tr j 

; . ~ 2  i , j  e C 7r i 7rj 

7Tt IVz" 

+ ~  . 7ri 

The next result shows that  the asymptotic mean 
squared error can be estimated consistently under 
mild assumptions. 

T h e o r e m  3 In two-stage element sampling under 
the above assumptions, 

lira mEp V ( M - l t y )  - AMS'E(M-I[,y) - 0 ,  
h 4 --+ oo 

where 

?(M-  if'y) 
1 

= M ~  ~ (i~ - ~ ) ( i j  - ~ )  ~ ;  - ~ ~ ±j i,j e c 7ri Trj 7rij 

1 £ +~E~-, 
7ri 

i E c  

and 

Vi -- E 7rklli- 7rkliTrlli Yk Yt 
k,tes, rrklli 7rkli 7rlli 

A M S E ( M - l t y )  

1 
= M ~  ~ (t~ - ~ ) ( t ~  - ~ j )  ~ j  - ~ J  

i ,j E C 7ri Trj 

l i~c id 
+ -f f~ ~ri "E 

Therefore, ~r(M_l{y) is asymptotically design unbi- 
ased and design consistent for AMSE(M-I {v ) .  

Analogous results for the parametric (linear) re- 
gression estimator are given in Result 8.4.1 of 
S/irndal, Swensson, and Wretman (1992). 

4 S i m u l a t i o n  S t u d i e s  

We performed some simulation experiments in or- 
der to compare the performance of the local polyno- 
mial regression estimator in two-stage element sam- 
pling with the Horvitz-Thompson estimator in equa- 
tion (1) and the linear regression estimator (S/irndal, 
Swensson, and Wretman, 1992, p. 309). 

We consider four mean functions for the cluster 
totals: 

linear: 
quadratic: 

bump'  

jump" 

p2(x) = 1 + 2 ( x - 0 . 5 )  2 , 
p3(x) = 1 + 2 ( x -  0.5) 

+ ~×p(-200(~ - 0.5)~), 
p4(x) = {1 + 2 ( x -  0.5)I{x<0.65}} 

+0.65I{x>0.65}, 

with x E [0, 1]. For Pl, the linear regression es- 
t imator is expected to perform best because the 
model is correctly specified. The quadratic function 
is smooth but far from linear, bump is smooth and 
nearly linear, and jump is not smooth. 

The population consists of M = 1000 clusters. 
The xi are generated as independent and identically 
distributed (iid) uniform(0,1)random variables. For 
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Population c, h HT R EG 
21.6G 0.91- 

linear 

quadra, tic 

bump 

jump 

0.1 
0.1 
0.4 
0.4 

0.10 
0.25 
0.10 
0.25 

0.1 0.10 
0.1 0.25 
0.4 0.10 
0.4 0.25 
0.1 0.10 
0.1 0.25 
0.4 0.10 
0.4 0.25 
0.1 0.10 
0.1 0.25 
O.4 0.10 
0.4 0.25 

22.36 
2.27 
2.34 
2.06 
2.09 
0.99 
1.02 

22.63 
9.20 
2.44 
2.38 

. , .  

3.53 

0.94 
0.91 
0.94 
2.16 
2.19 
1.01 
1.04 
5.3i 
2.16 
1.13 
1.10 
2.6s 

2.81 2.14 
1.11 1.04 
1.10 1.03 

Table 1" Ratio of' design MSE of Horvitz-Thompson 
(HT) and linear regression (REG) estimators to local 
linear regression (LPR1) estimator. 

each combination of mean function, standard devia- 
tion and bandwidth, 100 replicate two-stage element 
samples fl'om the four fixed populations are selected 
and then the estimators are calculated. 

Table 1 shows the ratios of design mean squared 
errors (MSEs)o f  the Horvitz-Thompson (HT) and 
the linear regression (REG) estimators to that  of the 
local linear regression (LPR1) estimator. In all pop- 
ulations, the LPR1 estimator performs better than 
the HT estimator. The LPR1 estimator loses a small 
amount in efficiency over the REG estimator for the 
linear population, but is better for other popula- 
tions. At small values of G, the LPR1 estimator 
is much better than the other estimators. We also 
considered the case with h = 0.5 to see how the 
performance of the LPR1 estimator changes with in- 
creasing bandwidth, but do not display those reports 
here. For all bandwidths, the LPR1 estimator is bet- 
ter than the REG estimator for all but the linear 
population. As the bandwidth becomes large, the 
performance of the LPR1 estimator becomes similar 
to that  of the REG estimator. 

each generated value ~, and each study variable (j = 
1, 2, 3, 4), N, element values are generated as 

t~j(:z'i) cjk t {cjk } iid N(0, cr 2) YJ~ -- Ni Ni 1/2 

where k C U i. Two values for the standard deviation 
of the errors are used: a = 0.1 and 0.4. At stage 
one, a sample of clusters is first generated by simple 
random sampling with sample size m = 100 and then 
samples of elements within each selected cluster at 
stage two are generated by simple random sampling 
using sample size t~i. 

We have considered three cases with different 
second-stage sampling rates: constant cluster size 
Ni - 100 with n; = 10, constant cluster size 
Ni = 100 with r~i = 100, and random cluster size Ni 
distributed as Poisson(3)+ 1 with rz; = L0.5N{J ~ 1. 
where La] denotes the integer part of a. As the 
second-stage sampling rate increases, the local lin- 
ear regression estimator gains more improvement in 
efficiency over the other estimators. Here, we only 
report on the experiment with the random cluster 
sizes. Sucll clusters of moderate and variable size 
might be ellcoulttered ill a household survey. 

The Et)alle(,hnikov kernel. 

E ( t ) -  3 
~(1 - t2)I{i,.l<~}, 

and two bal~dwidth values (h = 0.1 and 0.25) are 
used for tlle local linear regression estimator. For 

E x a m p l e :  N a t i o n a l  R e s o u r c e s  In- 
v e n t o r y  d a t a  

In this section, we apply local polynomial regres- 
sion estimation to data from the 1995 National Re- 
sources Inventory Erosion Update Study (see Breidt 
and Fuller, 1999). The National Resources Inven- 
tory (NRI) is a stratified two-stage area sample of 
agricultural lands in the United States conducted by 
the Natural Resources Conservation Service of the 
U.S. Department of Agriculture. The 1995 Erosion 
Update Study was a smaller-scale study using NRI 
information as frame material. 

In the 1995 study, first-stage sampling strata 
were 14 states in the Midwest and Great Plains re- 
gions and primary sampling units (PSUs) were coun- 
ties within states. A categorical variable was used 
for within-county stratification in second-stage sam- 
piing. Second-stage sampling units (SSUs) were NRI 
segments of land, 160 acres in size. The auxiliary 
variable for each county was "ri, a size measure of 
land with erosion potential. The variables of inter- 
est were two kinds of erosion measurements, roughly 
characterized as wind erosion (WEQ) and water ero- 
sion (USLE). At stage one, a sample of 213 counties 
was selected by stratified sampling from the popula- 
tion of 1357 counties with probability proportional 
to :ci. At stage two, samples of NRI segments within 
the selected counties were chosen by stratified un- 
equal probability sampling. In total, 1900 segments 
were selected. 
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Figure 1' Plots of the relationship between square root of size measure (z~ 12) and estimated county total 
([i) in selected counties at stage one for wind erosion (WEQ) and water erosion (USLE). Linear regression 
(REG1, REG2, REG3) and local linear regression (LPR1 with h -  3) fits are added in the plots. 
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WEQ USLE 

HT 443.6 551.5 
(49.4) (31.8) 

REG1 r,(x) ~ 1 485.9 544.4 
(92.1) (29.3) 

REG2 p(x) o< x 

REG3 ~(x) e( x 2' 

448.7 540.2 
(52.7) (27.1) 
4212.5 537.8 
(5o.7) (26.5) 

LPR1 h = l  

LPR1 h = 3  

LPR1 h=5 

434.1 529.0 
(47.5) (24.4) 
427.4 532.3 
(48.9) (25.3) 
430.5 541.2 
(48.7) (27.6) 

Table 2: Horvitz-Thompson (HT), linear regression 
(REG1, REG2, REG3), and local linear regression 
(LPR1 with h = 1, 3, 5) estimates for wind erosion 
(WEQ) and water erosion (USLE) totals in millions 
of tons/acre/year.  The numbers in parentheses are 
estimated standard errors. 

The Horvitz-Thompson (HT), linear regression 
(REG), and local linear regression (LPR1) estimates 
for WEQ and USLE totals and the corresponding 
variance estimates were calculated. We used the 

1/2 instead of x~ square root of the size measure x~ 
to reduce the sparseness of points in the regressor 
space. We calculated REG estimates with three dif- 
ferent variances of the errors (~(x) e< 1, x, and x2), 
denoted by REG1, REG2, and REG3 respectively. 
This was done because the data displayed large 
amounts of heteroskedasticity (See Figure 1), affect- 
ing the parametric fit. Three bandwidths (h = 1, 3, 
5) were used for LPR1 (the smallest possible band- 
width to the nearest tenth for these data was h = 1). 

Figure 1 shows the relationship between square 

root of size measure (xi ) and estimated county to- 
tal (ti) in counties selected at stage one for WEQ 
and USLE. Linear regression with three different er- 
ror variances (REG1, REG2, REG3) and local linear 
regression with bandwidth h = 3 (LPRI(h  = 3)) fits 
are added in the plots. In REG estimates, REG3, 
the best performing among them, has the smallest 
slope for both WEQ and USLE. The behavior of 
LPR1 is quite different from that  of REG estimates 
in the sparse part of x~. 

Figure 2 shows the linear regression with the vari- 
ance of the errors proportional to x 2 (REG3) and lo- 
cal linear regression with three different bandwidths: 
LPRI(h  = 1), LPRI (h  = 3), and L P R I ( h  = 5). 

Table 2 shows HT, REG and LPR1 estimates of 
WEQ and USLE totals and estimated standard er- 
rors. Using the estimated standard error as a guide, 
LPR1 with h = 1 performs best among all estimates 
and REG3 (REG with the variance of the errors 
proportional to x 2) is best among REG estimates. 
Overall, LPR1 estimates except of the largest band- 
width are better than HT and REG estimates on 
the basis of estimated standard errors for both WEQ 
and USLE. In WEQ, the estimated standard error of 
REG is unexpectedly large, compared to that  of HT. 
This seems to be due to the presence of a few strata 
with zero estimated variance for the HT estimator. 
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