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Overview 
Non-parametric regression based on a simple kernel 

estimator is reviewed, and applied to get T,p, a non- 

parametric regression based estimator of totals in finite 
populations. Expressions for the asymptotic bias and 

variance of T,,p are given, and implications drawn. For 

example, there is a difference between the ideal 

bandwidth for constructing Tnp and that required by 

standard non-parametric regression. An important fact 

is that var( Tnp ) approximates the variance of a class of 

best linear unbiased (BLU) parametric estimators of 
total (those based on 'columnar models') under ideal 
sample conditions ('weighted balance'). We can 
usefully combine non-parametric and parametric 
approaches in a composite estimator, the non- 

parametric calibration estimator f'cal" Its bias 

properties are noted. A simulation study on a messy 
data set (the classic Beef Population), suggests that 

Teal has an advantage over other estimators. We also 

note an anomalous property of the well-known GREG 
estimator. Conclusions are drawn, other relevant work 
described, and suggestions made for further work. 

Non-parametric Regression 
Non-parametric regression has its origins in data 

exploration. Given a data set s - {x,, Yi }, i = 1, 2, ..., 
n -  a "cloud of p o i n t s " - w e  want, without detailed 
data modelling, to get an idea of the relation of y to x, 
"beneath the cloud of points". Basically, we want to 
draw a line in the x - y  plane through the cloud that 
shows the essential features of y 's  dependency on x. 
[Note: throughout this paper, y and x both will be 
understood to be scalars.] 

To do this, we suppose the expectation of Y is a smooth 
function of x, that is, we suppose 

Y = m(x)  + cy (x)e ,  
where e is white noise, and m0 is 
(continuously differentiable of order at least 2.) 

smooth 

To construct our line, we take a time, uniform grid of 
1 "  

points r - lxj I spanning s, and estimate 

m(x j ) ,  j ~ r 

by ~ ( x j )  - ~i~s w Uyi, where ~i~s w~ - 1, 

and w O. is larger, the closer xi is to xj. 

Connecting the values m ( x j  ) in order of increasing 

xj gives a "smooth" line that can give us a good idea 

of the relationship ofy on x. 

There are a variety of ways to form the weights w/j. 

We here focus on what is probably the simplest way, 
leading to so-called kernel regression smoothing. Let 

K ( u )  be a symmetric (about 0) density function, a so- 

called "kernel" function, preferably with f'mite support. 
Examples are the uniform density 

K ( u )  - 0 . 5 I { - 1  _< u _< 1}, the bi-square 

15 )2 K(u)---i--~0--b/2 I{--1 <U <1}, andthe 

3 2 1}. Epanichnikov K ( u ) - - ~ O - u  ) / { - 1  _< u <_ 

(The simulation work discussed below uses the bi- 
square.) Whatever our choice of basic kernel, we can 

get a family of densities from K ( u )  by scale 

transformation" K b (u) = b -1K(u / b) . The scale 

parameter b is commonly referred to as the 
"bandwidth". Often in the literature the bandwidth is 
symbolized by h, rather than b. Since, in the sampling 
context, h is often used to refer to strata in stratified 
sampling, we here prefer b. The kernel based weights 
are taken as 

w O. - -Kb(X i - -XJ ) / i~esKb(X i - -X j ) .  Note that these 

weights satisfy the above conditions: they add to 1, and 
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they are larger, the closer x i is to the "target" x j .  In 

addition, kernel weights are non-negative. The amount 
of smoothing depends on the size of b. The smaller b 
is, the more wiggly the resulting graph. Proper choice 
of bandwidth is a major issue. 

How close is tn(Xy)tO 

theory is well established. 

m(xj) ? The following 

Suppose the x's in s are realizations of independent 

random variables each with density ds(x  ) . Then it 

can be shown (Hfirdle, 1991) that 

E(rh(xj ) -  m(xj )),~ c, ds (xj ) ' 

and 

var(rh(xj )) ~ c 2 

where n is the number of units in s 

c~ - (1/ 2)[. u2K(u)du , 
C 2 -- IK2 (u)du, and 

and ~(xj)-m"(xj)d,(xj)+2m'(xj)d:(xj). From 

this one can draw that the best bandwidth (giving the 

minimal mean square error) is b -  k ( x j ) n  -1/5 , with 

C2(y2(Xj ) / 1/5 
k ( x j ) -  4C~ds(xj~[3(xj) /ds(x9)  ~ . This 

means, for example, that, the number of points in s 
needs to increase 32-fold, other things being equal, 
merely to halve the optimal bandwidth. This formula 
by itself does not allow us to determine the best 
bandwidth, since it depends on unknown quantities. 

Estimation of totals in finite populations 

We now change context a bit. We consider a finite 
population P of size N. Values of the variable x are 
known for the units of the population, and s is an 
ignorable sample of size n from P, for which y values 
are known. ("Ignorable" means that, given information 
on x, knowledge of how the sample was taken provides 
no additional information about y.) 

Suppose we want to estimate the total 

T = Zp Y~ = Z, Y~ + Z~ Y~. Since y values are 

available to us on s, the problem is essentially to get a 
reasonable estimate on r, where r = P -  s is the 

"remainder" of the population, outside s. That is, we 
want the second sum in T above. 

A natural idea is to use non-parametric regression to get 
/ \ 

estimates r~(xj ), for j ~ r and add these up, to get an 

estimate of T r - ~ r Y j . .  (Note that r is no longer 

necessarily a nice even gridwork of x's. To save 
notation in what follows we will consistently use "f '  to 
refer to units in the sample s, and ')"' for values in r, i.e. 
for units just not in sample.) This gives us the non- 
parametric (kernel) estimator of total 

where w i - Zj~e-.~ wo. . 
We can make some simple observations: 

A 

1) T,,,p is linear in the Y' s. 

2) The estimator is data intensive both in that it 
requires us to know the values of x for all the units i the 
population, and requires intensive calculation. The 
former is the more serious restriction these days. 

3) If we compare ~,p to T= =ZsYi / r t i , thec lass ic  

design-based expansion estimator, where the 7 t i ' s  are 

inclusion probabilities in a randomization based 

sample, we can see that the wi + l ' s  replace the g ~ 's, in 

the following sense: 

If the sampling design is well constructed, ~:i 

represents the a priori effective number of population 

units that are near the ith unit. The w i +1 give the de 
facto number of such points for the particular sample in 
hand, using x as the measure of nearness. Thus use of 
inclusion probabilities in non-parametric based 
estimation of totals is gratuitous. 

We gain further clarity from the following theorem. 

Theorem Suppose Y~ = m(x~ ) + ~ (x~ )e~ , i = 
1,...,N, with ei~(0,1 ) independent. Suppose a 
sample s of size n is taken, and let d,(x), 

de_, (x) represent the density of sample and 

non-sample x's respectively. Set 
[3 (x) - m"(x)d~ (x)+ 2m'(x)d; (x). 

Then 

E(f'.p - T [ Xv  ) -  
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c, b Z(N - n)I [3 (x)d, (x)-' de_ s (x)dx 
+ Op ((N - rt)b 3 + (N -.. nl,-l/2bl/~ ) 

and 

(N - n) 2 F/-1 I(3 " 2(x)ds (x) -1 [dp_ s (x)]2 d~ 

+ c 2 (N - n)n-'b-~Ic~ ~-(x)d2' (x)dp_s (x)dx 
+ (N - n )  2 n-'b 2c2Ic * (x)d, (x)dx 

+ (N - n)I(~ 2 (x)dp_s (X)dX 

+Op((N-n)2n- 'b 3 +(N-n)2n-3/~b-'/2), 

where c * (x)= 

{ -2  d"(x)de-~(x)+d;(x)2 )} (x)-'dp , ds(X)  +d; s(X d, _(x). 

O b s e r v a t i o n s :  
/ \ 

(i) The conditional relative bias EITnp-T) /T  = 
Op(b 2 + n-1/2b 1/2 )--> O, if b ---) 0 .  

(ii) The expression for the variance has a bandwidth 
independent term, which dominates. Thus the variance 

/ \ 

is Op((N-n)  2/n), for b-+O, nb-+oo. In this 

respect it is typical of variances of estimators of total in 
general. 

(iii) Suppose b = Cn ~ . Then ~; < - 1 / 4  implies that 
the bias relative to the standard deviation 

E(Tnp - T [ XI~ )/varl/2 (Tnp - T ] Yp )---> O in 

probability. This result is desirable from the point of 
view of constructing confidence intervals based on 
estimates of variance, and suggests that for given 
sample size n, the bandwidth should be narrower than 
would optimally be the case for standard non- 
parametric regression described in the previous section. 

(iv) The order of the bias is minimal when b = Cn -1/3 
(However, we need to be a bit cautious in relying on 
the order properties. For example, let N - n  = 358, n = 
52; then the "order of variance" is 

3 5 8 / ~ 5 - 2 -  49.6,  and the "order ofbias" is 

358/522/3 = 25.7,  not seriously lower. This 
suggests we need to look at explicit expressions.) 
(v) Low sample density can be a problem for bias, 

especially where m(x) is steep since the integrand 

~3 (x)d-j' (x) - m"(x)+ 2m'(x)d" (x)/ d, (x) . 

(vi) In the variance, low sample density can also be a 

problem, paricularly where cy 2 (X) is large 

(vii) Suppose X >> n , s o  that de_, ( x ) ~  dp (x) 
and suppose the sample is selected so that 

d~ (x)-cr (x)dp (x)/ Icy (x)dp (x)dx . (1) 

Then the lead term of the variance becomes 

(N2 / n){~c (x)dp (x~tx} 2 
This establishes an important connection to estimation 
of totals based on parametric regression models. To see 
this we remind ourselves of a result of R. RoyaU. 

Theorem (Royall 1992). Suppose 

y - XI3 + e ,  (2) 

v a r ( e ) -  V ,  with V - diag~ 2(X 1 ),...,O" 2(X N)}, 
and both V I  N and V1/21N E ~ [ ( X ) .  That is, both 

the vector of variances and of standard deviations are in 
the column space of X -  we can refer to such models as 
columnar models. Then the best linear unbiased 

estimator is of the form 7 ~ s L u - I ' X [ ~ ,  with 

(X, Vs  x,)x [~, - "V~-IY~, and satisfies 

varM[7~BLcr _T]>n_ l ( l ,  71/21 )2 , 
- -  N N --1NVIN 

= X2n-i(N-l~ecY (xi))2 -Zpcr2(x , )  

( N  2/n){Icy (x)de (x)dx} 2 . 

This is the same expression as for T,,p noted in 

(vii) above. 
The bound is achieved if and only if we have 

weighted balance with respect to the standard 
deviations, which is to say 

1 ¢  v s '  _ N . 
1 i7_1/2 X s 1' i 

? n ~ INV1/21N 

Furthermore, 7~sLu remains unbiased if the truth is that 

1 , 1/2 I'ZN 
y = Z? + e ,  so long as - -  1, V ]  Z ,  = , V~/21 " 

n 1N N 
This just says that for each column vector z in Z, 

Zs (x,l 'z, 
= We refer specifically to 

n EpG(XI)" 
CY (X)- weighted balance or just "r~ (x)-balance ." In 

the present context, with x taken as a scalar, X is an 
elementary polynomial model in x, and Z might be a 
complex polynomial model, more closely 
approximating the underlying truth of the relation 
between Y and x. 
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1"\ 
A common way to get cy ~x)-balance is by a two step 

process: (a) do ppcr (x) sampling many times from the 

population to get several ppcr (x) samples; (b) choose 

the sample among these most closely matching the 
balance conditions. This works because in design- 

expectation, such sampling gives a cy(x)-balanced 

sample. (See Valliant, Dorfman, and Royall (2000) for 
a detailed account.) Now the condition (1) above can 
be shown to be a smooth, stochastic approximation to 

conditions for samples arising out of ppcy(x) 
sampling, including samples having cy @)-balance° 

Thus we have the following comparison: 

Estimator based on parametric (columnar) model gives 
exact unbiasedness and minimal variance, for a 
particular sample--a weighted balanced sample. 

Estimator based on non-parametric model gives 
approximate unbiasedness (with degree of unbiasedness 
dependent on bandwidth), with no condition on 
balance, and gives approximate minimal variance, 
under approximate weighted balance. 

Can we combine best of both.? We might use a 
parametric model meeting conditions (columnar 
model), but then adjust estimate using non-parametric 
regression to protect against bias if the sample does not 
meet the weighted balance condition. 

The non-parametric regression calibration estimator 
Basic idea: Suppose the parametric working model (2) 

is used to construct TBLcr, and the truth is 

Y = m(x) + cy (x)e. 

Then the bias of f~BLU is 

I z, ,  

where the deviations ~ (x j ) -  x'jE(~)-m(xj)~ 

Sample residuals r i - Y i - X ; ~  are unbiased tbr 

-~)(x,) and we can estimate the non-sample 

deviations non-parametrically by -g (x j  )= ~i wijri , 

to yield the estimator f 'cai-TsLu+~,e_,g(xj).  
This is the non-parametric regression calibration 
estimator first described in (Chambers, Dorfman, 
Wehrly 1993). 

Bias of f'ca! 
Suppose the working model is a (pth order)polynomial 
model in a single variable, then we have the following 

asymptotic expression for the bias of/~col" 

c~bZ ( N  - n)I ~ * (x)d, (x)-' de_, (x)dx 
+ Op ( (N-  n)b 3 + ( N -  n)n-'/Zb'/2 ), where 

* ( x ) = ~ ( x ) - ~ t ( x )  and 
I=1 

~, (x ) :  l(l -1)x'-2d, (x)+ 21x'-'d; (x), l = 1,...,p 
The lead term reduces to zero if re(x) is actually a pth 
order polynomial. This suggests that if the working 
model is nearly correct, then wider bandwidths can be 

A A 

used with Tcat than with Tnp, with a possible reduction 

in variance. 

Simulation Study 
We investigate the behavior of several estimators of 
total on (a mildly trimmed version of) the Beef 
Population (Chambers and Dunstan 1986). We have N 
= 410. The auxiliary variable x = herd size, and the 
variable of interest y = beef income. The population is 
quite messy, but some detailed examination under 
transformations suggests that a good model for the 
population is given by 

E(YIx)  = exp(1.74 + 5.33 log log x), 
var(Y I x) = 1.4 exp(1.51 + 5.3 3 log log x). 

Sampling was carried out ppx 3/4, with the sample size 
taken as n = 52. In addition to non-parametric 
regression estimation, the following two parametric 
models were used for inference: 

Yi =12£ q-~ X3/4" q-fi[ X3/2 Jr" X~/4U" i (3) 

Yi =ca + ~ X i + X[/4g.i, (4) 

as well as non-parametric calibration estimators based 
on these. Note that (3) is a columnar model, (4) is not. 
Also, for comparison, Generalized Regression 
Estimators (OREG) were calculated using linear and 
quadratic models that, like (3) and (4), assumed 

var(Y/[ x,)= x3i/2cr 2. The GREG is of the form 

-1 
T L  U ,rc i Icy _ _~ + ~ r r ,  i r,. 

A 

with f'Ltr %-2 = l'X[~ %-2, 
,Tt S ,Tt 
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where [~ -1~ (X;Vs-IXs) -1x'  - -1 -2 = sV~ Ys, with 

~r _ Vd iag{~ , , . . . , r c  w } (Sarndal, Swenson, Wretman 

1992, etns. 12.2.1 and 12.2.2). 

A thousand samples were generated. Empirical Bias, 
standard error, and root mean square error for the 
several estimators.. Non-parametric estimation and 
calibration was done on the log(log(x)) scale. Using a 
constant bandwidth for all estimates of the components 

m ( x j )  makes more sense on this scale. (However, we 

do not use a strictly constant bandwidth; in cases 

where a target xj has less than a set minimal number of 
sample x's within the bandwidth interval, the interval is 
enlarged to guarantee the minimum. This idea goes 
back to Cleveland (1979).) We note the degree of 
flexibility the calibration estimator affords: we can 
construct the parametric component on one scale, and 
make the non=parametric adjustment on another. 

TheTable attached to the end of this paper gives results 
of the simulation. Some observations: 
[The italicized Roman numerals in the Table indicate 
the first row of results (possibly the only row) 
corresponding to the particular observation.] 

(i) The BLU estimator based on the columnar model 
does well, with low bias and variance [row 1 ]. 

(ii) The calibration estimator based on the columnar' 
model does slightly better than the BLUE at 
high bandwidth [last several rows of table]. In 
general this estimator appears robust to changes 
in bandwidth. 

(iii) The non-parametric kernel estimator is weak for 
this population, and sensitive to bandwidth 
selection- large b yield extreme biases 

(iv) (a)The variance of the np estimator is U-shaped on 
b; (b, c) for the calibration estimators, variance 
steadily decreases with b 

(v) The BLU estimator based on the linear model with 
"correct" weights (which is not recommended, 
not being columnar) has low variance, but large 
bias, yielding large rinse [row2] 

(vi) The calibration estimator based on the linear 
model is better than the corresponding BLU 
over a wide range of bandwidths, and can be 
considerably better [cf. b = 0.18, ...,0.48]. At 
large b, however, we get large bias, leading to 
very bad rmse. 

(vii) Biases of (a) np and (b, c) calibration estimators 
are opposite in sign 

(viii) the GREG based on the quadratic model and 
"correct" variances does well, but the GREG 
based on the linear model with "correct" 
weights has a huge bias, and consequent high 
r inse .  (The explanation is as follows: the 
population is concave. Fitting a straight line 
with severe downweighting on the right creates 
many large negative residuals for large x. If 
one were to sum the residuals using the same 
weights as those used in the regression, the 
result would be zero. But the adjustment is 
done using only the inverse ~ - weights, which, 
relatively speaking, gives large weight to the 
large x residuals. Hence an extreme negative 
adjustment.) 

(ix) Straight BLU estimation using the same models 
and effective weights as were used for the 
GREG is included for comparison (i.e. this is 
GREG minus the residual adjustment term.) 
We note that the adjustment improves 
estimation in the case of the near columnar 
model, but makes it severely worse in the case 
of the linear model. 

Conclusion: A Sampling "Meta-Strategy" 
The following seems to be a reasonable 
sampling strategy: 

overall 

(i) The most straightforward approach is to use a BLU 
estimator based on an appropriate columnar 
model, having selected a corresponding 
weighted balanced sample. 

(ii) Failing a weighted balanced sample (and possibly 
even if one has it) use a non-parametric 
calibration estimator based on the appropriate 
columnar model, using moderate to large 
bandwidth. 

(iii) In the rare case where modelling is hopeless, use 
straight non-parametric regression estimator. 

Related Work 
The following is intended to give an idea of what work 
has been done related to the application of non- 
parametric regression to sampling, but is not intended 
to be comprehensive. 

Recent books on non-parametric regression are Wand, 
and Jones (1995) and Fan and Gibjels (1996). 

Kuo (1988) applied non-parametric regression to 
sample data to estimate the finite population 
distribution function. Dorfman and Hall (1993) and 
Kuk (1993) developed further methods and theory for 
this. 
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Dorfman (1992; 1994) applied non-parametric 
regression to sample data to estimate the finite 
population total. The calibration paper of Chambers, 
Dorfman, and Wehrly (1993) was meant to 
comprehend estimation of any f'mite population 
"parameter". Chambers (1996) describes using 
nonparametric regression calibration successfully on 
multi-variate data, in combination with ridge regression 
methods. Breidt and Opsomer (2000a, 2000b) focus on 
estimating totals using local linear regression and a 
twicing procedure which parallels the GREG. 

Non-parametric regression for purposes of data 
exploration and analysis has been carried out by Smith 
and Njenga (1992), Korn and Graubard (1998, 1999), 
Scott and Whitaker (1996), Bellhouse and Stafford 
(2000), Chambers, Dorfman, and Sverchkov (2000). 

Further Research 
The most obvious omisssion from the present study is 
the use of local linear regression (Cleveland 1979; Fan, 
1992; Ruppert and Wand, 1994). The expression for 
the asymptotic bias of this version of a non-parametric 
regression estimator of total will not include division by 
the sample density, and so the bias of a local linear 
regression based estimator should be less sensitive to 
sparse x regions in the sample data (J. Opsomer, 
personal communciation). It can be shown that the local 
linear estimator of total shares the property of the 
calibration estimator of having zero bias, if the model 
used for local linear regression is the correct one. We 
would expect it to perform in intermediate fashion 
between the kernel based estimator, and the calibration 
estimator, if the model used is at all close to the truth. 
The calibration estimator itself could use local 
regression to make the non-parametric adjustment. 

Except in the situation of non-ignorable sampling, 
where not all the information about y is contained in the 
auxiliary variable, the weights used in non-parametric 
regression effectively supercede the inclusion 
probability weights customarily associated with survey 
sampling. As a rule, incorporation of both non- 
parametric and sampling into the process seems 
tautological, and likely to lead to inefficiencies. 
However, Breidt and Opsomer (2000a) report a loss of 
efficiency using pure model-based nonparametric 
regression, relative to a twiced design-based local 
regression estimator. Probably additional comparative 
study is in order. One point to note is that different 
non-parametric regression estimators are likely to be 
their best under different bandwidths. In particular, 
estimators using twicing (as in the calibration version, 

or the GREG version of Opsomer and Breidt) tend to 
do better at larger bandwidths than their un-twiced kin 
(cf. Chambers, Dorfman, and Sverchkov 2000). 

A "pure twicing" non-parametric estimator, using non- 
parametric regression weights both for the original fit, 
and for the residual adjustment, would be worthy of 
investigation. 

Dorfman (1994) suggests a variance estiamtion 
procedure for the nonparametric estimate of total, but 
further work is in order. 

The calibration estimator seemed fairly immune to 
variations in bandwidth in the present simulation study. 
Chambers, Dorfman, and Wehrly (1993) suggest a 
method for choosing bandwidth in the calibration case. 
Nonetheless, probably the most pressing need is for 
some automatic way of selecting bandwidth in the case 
of non-parametric regression for estimating totals. 

Any opinions expressed in this paper are those of the 
author and do not constitute policy of the Bureau of 
Labor Statistics. 

REFERENCES 

Bellhouse, D.R. and Stafford, J.E. (2000), Local 
Polynomial Regression in Complex Surveys, in 
Analysis of Survey Data, edited by C. Skinner and R.L. 
Chambers, Chichester: John Wiley (to appear). 

Breidt, F.J. and Opsomer, J.D. (2000a), Local 
Polynomial Regression Estimators in Survey Sampling, 
Annals of Statistics, to appear 

Breidt, F.J. and Opsomer, J.D. (2000b), Local 
Polynomial Regression Estimation for Complex 
Surveys, This Proceedings of the Section on Survey 
Research Methods, American Statistical Association 

Chambers, R. L (1996), Robust Case-Weighting for 
Multipurpose Establishment Surveys, Journal of 
Official Statistics 12, 3-32 

Chambers, R. L., Dorfman, A. H., and Hall, P. (1992), 
Properties of Estimators of the Finite Distribution 
Function, Biometrika 79, 577-582. 

Chambers, R. L., Dorfman, A. H., and Sverchkov, M 
(2000), Nonparametric regression with Complex 
Survey Data, in Analysis of Survey Data, edited by C. 
Skinner and R.L. Chambers, Chichester: John Wiley (to 
appear). 

52 



Chambers, R. L., Dorfman, A. H. &Wehrly, T. E. 
(1993), Bias Robust Estimation in Finite Populations 
using Nonparametric Calibration, J. Am Statist. 
Assoc. 88, 268-277. 

Cleveland, W.S. (1979), Robust Locally Weighted 
Regression and Smoothing Scatterplots, Journal of the 
American Statistical Association 74, 268-277 

Cochran, W. G. (1977), Sampling Techniques(3rd ed.), 
Chichester: John Wiley. 

Dorfman, A. H. (1992), Nonparametric Regression for 
Estimating Totals in Finite Populations, Proceedings of 
the Section on Survey Research Methods, American 
Statistical Association, 622-625. 

Dorfman, A. H. (1994), Open Questions in the 
Application of Smoothing Methods to Finite Population 
Inference, Computationally Intensive Statistical 
Methods, Proceedings of the 26 ~ Symposium on the 
Interface, 201-204 

Dorfman, A. H. and Hall, P. (1992) Estimators of the 
finite population distribution function using 
nonparametric regression, Annals of Statistics, 21, 
1452-1475. 

Fan (1992), Design-adaptive Nonparmatric Regression, 
Journal of the American Statistical Association, 87, 
998-1004. 

Fan and Gibjels (1996), Local Polynomial Modelling 
and Its Applications, London: Chapman& Hall. 

Hardle, W. (1991), Smoothing Techniques, London: 
Springer-Verlag. 

Hardle, W., Hall, P. and Marron, J. S. (1992), 
Regression Smoothing Parameters that are not far from 
their Minimum, J. Am Statist. Assoc. 87, 227-233. 

Korn, E.L. and Graubard, B.I. (1998), Scatterplots with 
Survey Data, The American Statistician, 52, 58-69 

Korn, E.L. and Graubard, B.I. (1999), Analysis of 
Health Surveys, New York: Wiley 

Kuk, A. (1993) A Kemel Method for Estimating Finite 
Population Distribution Functions using Auxiliary 
Information, Biometrika, 80, 385-392. 

Kuo, L. (1988), Classical and Prediction Approaches to 
Estimating Distribution Functions from Survey Data, 
Proceedings of the Section on Survey Research 
Methods, Amercian Statistical Association, 280-285. 

Nadaraya, E. A. (1964), On estimating regression, 
Theory of Prob. and Applic. 9, 141-142. 

Royall, R. M., and Cumberland, W. G. (1981), An 
empirical study of the ratio estimator and estimators of 
its variance, J. Am Statist. Assoc. 76, 66-77. 

Royall, R. M. and Herson, J. (1973) Robust Estimation 
in Finite Populations I, J. Am Statist. Assoc. 68, 880- 
893. 

Ruppert, D. and Wand, M. P. (1993) Multivariate 
Locally Weighted Least Squares Regression, Preprint. 

Sarndal, C-E, Swenson, B., and Wretman, J. (1992), 
Model Assisted Survey Sampling, New York: Springer- 
Verlag 

Scott, D.W. and Whittaker, G. (1996), Multivariate 
Applications of the ASH in Regression, 
Communications in Statistics - Theory and Methods, 
25, 2521-2530 

Smith, T. M. F. and Njenga, E. (1992), Robust Model- 
based Methods for Analytic Surveys, Survey 
Methodology 18, 187-208. 

Valliant, R., Dorfman, A.H., and Royall, R.M. (2000), 
Finite Population Sampling and Inference, A 
Prediction Approach, New York: John Wiley 

Wand, M.P. and Jones, M.C. 
Smoothing, London: Chapman & Hall. 

(1995), Kernel 

Watson, G. S. (1964), Smooth regression analysis, 
Sankhya, Ser. A, 26, 359-372. 

53 



that 
x.~S+ x~.S (x ~.s) 
x (x"') 
x+ x ~ (x z~s) [GREG] 

x (xZ~'I[GREG] 
x +  x ~ (x ~.~') 
x (x ~~') 
non-parametric 

np cal 'n x (x ~~) 

np cal 'n x~S+ x ~~ (x ~~) 

b 
~,~"."~ i~.:'.:~ ~~~".~ 

• "..:t.::-:.'.;~.~,.~ ~2; , , '  ~4.." .~ ~..* .~:.... 

0.03 
0.06 
0.09 
0.12 
0.18 
0.24 
0.36 
0.03 
0.06 
0.09 
0.12 
0.18 
0.24 
0.36 
0.42 
0.48 
0.54 
0.60 
0.66 
0.72 
0.80 
0.88 
0.03 
0.06 
0.09 
0.12 
0.18 
0.24 
0.36 
0.42 
0.48 
0.54 
0.60 
0.66 
0.72 
0.80 
0.88 

(vii-a) 

(vii-b) 

(vii-c) 

Bias 
-183027 

-4117643 
252562 

-7436504 
751825 
-63837 
734920 
861868 

1282969 
1942576 
3883900 
6490121 

13656985 
358482 
129230 
-66546 

-249492 
-498893 
-664681 
-759459 
-854932 

-1122390 
-1607828 
-2343974 
-3344623 
-4550190 
-6340820 
-8169475 

-74928 
-181656 
-220582 
-238532 
-236860 
-257958 
-230507 
-191383 
-152914 
-100115 

-50589 
-21832 
-15570 
-35979 
-78734 

(iv-a) 

(iv-b) 

(iv-c) 

s tddeviat ion 
4748211 
4569491 
4929784 
4498170 
5275263 
5307424 
5776354 
5549170 
5378162 
5241891 
5155032 
5227771 
5861154 
5736777 
5498354 
5303162 
5126170 
4935485 
4854144 
4884844 
4918558 
4924266 
4898834 
4841147 
4750129 
4650414 
4547456 
449848O 
5685966 
5472476 
5296469 
5142265 
4975430 
4886428 
4810480 
4780368 
4746429 
4717857 
4695083 
4670770 
4647513 
4628345 
4624092 

(i) 
(v) 

(viii) 

(ix) 

(iii) 

(vi) 

(ii) 

rmse 
4749364 
6149337 
4933788 
8689930 
5325957 
5305154 
5820052 
5612959 
5526456 
5587803 
6452322 
8332102 
4860417 
5745103 
5497123 
5300928 
5129677 
4958180 
4897035 
4941115 
4989883 
5048158 
5153609 
5376568 
5807552 
6504533 
7801582 
9325042 
5683616 
5472755 
5298414 
5145225 
4978580 
4890792 
4813596 
4781809 
4746519 
4716561 
4693008 
4668485 
4645215 
4626171 
4622450 

54 


