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Summary .  The sample distribution is the distribution 
of the response variable for units included in the 
sample. This distribution is different from the 
population distribution if the sample selection 
probabilities depend on the values of the response 
variable even after conditioning on the model 
concomitant variables. In this article we study the use 
of the sample distribution for the prediction of finite 
population totals under single-stage sampling. 

It is assumed that the population response variable 
values (the y-values) are random realizations from 
some distribution that conditions on known values of 
concomitant variables (the x-values). The problem 
considered is the prediction of the population total Y of 
the response variable values based on the sample y- 
values, the sampling weights for units in the sample 
and the population values of the x-values. The use of 
the sample distribution permits the conditioning on all 
these values and the prediction of Y is equivalent 
therefore to the prediction of the y-values for units 
outside the sample. 

The prediction of the non-sampled y-values is 
achieved by approximating the conditional expectation 
of the y-values (given the x-values) for units outside 
the sample as a function of the conditional sample 
expectation (the expectation under the sample 
distribution) and the sampling weights. Several 
predictors obtained by application of this approach are 
considered and compared to other known methods. 

1. RELATIONSHIPS BETWEEN THE POPULATION 
DISTRIBUTION, THE SAMPLE DISTRIBUTION AND 
THE SAMPLE-COMPLEMENT DISTRIBUTION. 

1.1 The sample distribution 

Suppose that the population values 

[y, X ] = { (yl, x l ) ..... (Y N, X N ) } are random 

realizations with conditional probability density 

function (pdf) fp (y/Ix~), which may be either discrete 

or continuous. We consider single stage sampling with 
inclusion probabilities rci - Pr(i 6 s) = g(y, X, Z) for 

some function g, where Z denotes the population values 
of design variables (considered as random) used for 
the sampling process. Let I / - 1  if i 6 s  and 1 ; - 0 ,  

otherwise. The conditional marginal sample pdf is 

defined as, 

c/of 

fs(Yilxi ) = f(Yi[xi, I i = 1) 

_ _ Pr ( I i  : l iy i ,xi)fp(YilXi) (1 .1)  

Pr(1; : llx;) 

with the second equality obtained by application of 

Bayes theorem. Note that Pr(Ii - l l y i , x~)  is generally 

not the same as the sample inclusion probability a';. It 

follows from (1.1) that the population and sample pdfs 

are different, unless Pr(l, - liY, , X  i ) - -  Pr(I, = i i x i  ) for 

all y; ,  in which case the sampling process can be 

ignored for inference that conditions on the x's. 
In what follows we regard the probabilities 7cg as 

random realizations of the random variable g(Y, x, Z). 
Let w i - 1/Jr; define the sampling weight of unit i. The 

following relationships hold for general pairs of vector 
random variables ( u i , v i ) ,  where Ep and E, denote 

expectations under the population and sample pdfs 
respectively. (As a special case, u, = y;, V i - -  X i ) .  

E p ( ~ i i u i ' v i ) f p ( u i i v i )  (1 .2)  

f , (u , iv / ) -  E ,, (rci iv i ) 

E'(w'iu" v')f '(uiiv') (1.3) 
fp(UiiVi)- E,. (w;iv,) 

Es(wiuiivi) (1.4) 
Ep(UilVi)-- gs(WilVi ) 

It follows from (1.4) that 

1 ; b) E p ( U i ) -  E ' ( w i u i ) "  
a) es (w, Iv,) = E,, (,r, Iv,) e ,  (w,) 

1 
c) E, (w;) = ~ (1.5) 

Ep(~i) 

The proof of these relationships can be found in 
Pfeffermann and Sverchkov (1999, hereafter PS.) For 
further discussion of the notion of the sample 
distribution with illustrations see Pfeffermann et al. 
(1998). 
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1.2 The sample-complement distribution 

Similarly to (1.1), we define the conditional pdf for 
units outside the sample as 

d4 
f , .(y, l x , ) -  fp(y,]x,,I,-o) 

_- P r ( l i  - O [ Y i , x i ) f p  (Yi[Xi)  (1.6)  

Pr(Ii = Olx/) 

The following relationships for general pairs of vector 
random variables (u i , v / ) follow from (1.2)-(1.5) and 

the equality, Pr(li  = 0 ] U i , V i ) = l -  E p ( ~  i l U i , V i ) .  

Ep [ ( 1 -  ]~'i ) [u i ,  v i ] f  p (U i lV  i ) L(u,lv,)- 
Ep [(1- Zti )]v i ] 

Ep[(1-rci)lui,vi] Ep[]Ti]Vi] 

= Ep[(1 - ]z" i ) Iv / ]  Ep[;7~i[n i , v i ] f s  (u/Iv/) 

1 
-1  

E p [ n i [ u i , v i ]  

1 
-1  

Ep[rCilvi] 

f s ( U i ] V i )  • 

(1.7) 

E'[(wi - 1 ) ] u i ' v i ] f ' ( u i ] v i )  (1.8) 
f~  (u'  Ivz) - E,[(w~-1)Iv i ] 

(follows by application of (1.5a) to the last expression 

in (1.7)). Also, by the first equality in (1.7) and (1.8) 

Ep[ (1 -n i )u i l v i ]  
Ec(ui lv i )  - 

Ep[ (1 -n i ) l v i ]  

Es[(W i - 1)UiIVi ] 

Es[(W i - 1 ) ] v i i  " 
(1.9) 

Remark 1. In practical applications the sampling 
fraction is ordinarily small and the sample selection 
probabilities are then likewise small for at least most of 
the population units. If rc i < 8 ,  

E l , [ ( 1 - n  i ) ]u i ,  v i ]fp (u/Iv / ) f, ( . , ]v,)-  
Ep [(1- rci)lvi ] 

{[ v; )- ]In;, v, }¢(u,lv, ) 
: fp (u : lv i )  + ep[(1-~:)]v:] 
= fp (u i l v i ) (1  + A) 

( l . ~ 0 )  

where -5  < A < 8 / ( 1 - 8 ) ,  showing that for 8 
sufficiently small the difference between the 
population and the sample pdfs is accordingly small. 

2. PREDICTION OF FINITE POPULATION TOTALS 
UNDER INFORMATIVE SAMPLING 

Let Y - ~ / U l y  / define the population total. The 

problem considered is how to predict Y using the 
sample data and population values of concomitant 
variables x (when available). Denote the design 
information available for the prediction process by 

Ds={ (Y i , r c i ) : i es , ( x i ,  I i ) : i e p }  and let Y=Y(Ds) 

define the predictor. The MSE of Y" given D s with 

respect to the population pdf is, 

MSE(~') = E p [ ( Y -  Y)2]D s ] 

= ep  { i f  - ep(rlD,)]2[Ds } + v,)(v I Ds) 

= [I 7 - Ee(VlVs)] 2 + vp(rlD,), (2.1) 

since [I~ - Ep (Y[ D s)] is fixed given D s . It follows that 

MSE(~) is minimized when r; = Ep(~D s ). Now, 

Ep(Y[D s )= Ep( ~., yilDs )= E Ep(YilDs ) 
ie p iE p 

= ~.,Ep(Yi[Ds,I i =1)+ ~,Ep(yjlOs,I j =0) 
ie s j~ s ! 

= Z Yi + Z Ec(yj]D~ ) = Z Yi + Z Ec(yjlx j ) (2.2) 
i~ s j~ s iE s j~ s 

where in the last equality we assume that yj for j ff s 

and {(yi, rcg) : i 6 s} are independent given x j. The 

prediction problem reduces therefore to the prediction 

of E C ( y j l x j ) .  In section 3 we consider semi- 

parametric estimation of the expectations E~ ( y j l x j )  

and hence of Y. 

3. SEMI-PARAMETRIC PREDICTION OF FINITE 
POPULATION TOTALS 

Suppose that the sample-complement model takes the 
form 

yj  - C ~ ( x / ) + e j ,  E, . (c j [x~)=0 ,  

E, . (£ ;~[x j ) -o 'Zv (x j ) ,  j ~ s  (3.1) 

where C: (x) is a known (possibly nonlinear) function 

of x that depends on an unknown vector parameter/3,  

and v(x) is known but o-: unknown. 

Remark 2. In actual applications the form of the 
model can be identified by a two-step procedure. First, 

w i -1  by 
estimate E,(wi]xi )  and r i = Es[ (wi - l ) l x i  ] 
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regressing w~ against x; using the sample data. 

w i - 1 and Denote the resulting estimate by ri = ~ s ( w i [ x i ) _  1 

let y7 = riYi. Second, analyze the relationship between 

y~ with xi for identifying the form of C~(xi) 

utilizing the equality E~ (yi Ixi ) - E, (q yi[x; ) 

(equation 1.9). A similar procedure can be used for 
identifying the function v(x~) based on the empirical 

residuals ~i = Yi - Es ( t ' iY i ]x i  ) • 

For given forms of the functions C/~ (x;) and v(x~), 

the vector fl satisfies, 

fl = arg min E c [X j fi V(Xj) 

= arg min E s j Es(wjlxj)-I v(xj) 

Hence, if w ( x ) - E , ( w l x  ) can be identified and 

estimated properly, the vector/3 can be estimated as 

f l i  V(Xi) (3.3) 

where ri =(wi -1) / (Es(wi ]x i ) - l ) .  The predictor of the 
population total takes the form 

= 2Yi + X C~1 (xj). (3.4) 
ies j~s 

On the other hand, it follows from (3.1) that 

Thus, application of (1.9) to the right hand side of (3.5) 
but without the conditioning on x implies that, 

fi = arg min/~ EcI[YJ - Cfl(xj)]2v(xj) / 

= argmin Es/ I /~  Es(wj )-lwj-1 I[yj-C~(xj)]2 

and ,/3 can be estimated as, 

[Yi - C/~(xi)] 2 
/32 = arg min ~ (w i - l) 

fl i~s V(Xi) 
since E,.(wi)= cons tan t .  The predictor of Y is now 

(3.6) 

(3.7) 

Y2 = ~.Yi + ~. C/)2(xj). (3.8) i~s j~s 
Remark 3. The prominent advantage of the use of the 

^ ^ 

predictor Y2 over the use of the predictor Y l is that it 
does not require the identification and estimation of the 

expectation w ( x ) - E , ( w l x  ). On the other hand, in 

situations where the expectation w(x) can be 

estimated properly, the predictor ~ is expected to be 

more accurate since the weights 

r,. = ( %  - 1)/(E, (% Ixi ) - 1) are less variable than the 

weights (w i -1) .  

This follows from the fact that the weights r i only 

account for the net effect of the sampling process on 

the target conditional distribution f c  ( y i [ x ~ ) ,  whereas 

the weights (w;-1)  account for the effects of the 

sampling process on the joint distribution f, .  ( y i , x  i) . 

In particular, when w; is a deterministic function of 

x i such that w i = w ( x i ) ,  the sampling process is 

ignorable and f,. (yilx,) - f ,  (yilx~). In this case the 

estimator /~ coincides with the optimal Generalized 

Least Square (GLS) estimator of fl since r i = 1 and the 

model (3.1) holds for the sample data. 

The estimates /~ and /)2, and hence the predictors 

and ~)2 coincide when the wi are independent of x i 

since in this case w(xi) = cons tan t .  

The use of the predictors Y1 and Y2 requires the 

identification of the sample-complement model. Next 
we develop another predictor that only requires the 
identification of the sample model. The approach 
leading to this predictor is a 'sample-complement 
analogue' of the "bias correction method" proposed in 
Chambers, Dorfman and Sverchkov (2001). The 
proposed predictor bases on the following relationship, 

X Ec(Yjlx j) = 
j~s 

= x e ~ ( y j l x j ) + ( N _ n  ) 1 ZEc/[yj_E,%lxj llx,) 

= E E , ( Y j [ X j ) + ( N _ n )  1 Ns N --17 NsZ Ec[Yj - Es(Yj]Xj)] ' (3.9) 

where in the last row we replaced the mean of the 

conditional expectations E c { [ y  j - <(y lx >llx,/ by 

the mean of the unconditional expectations 

E, . [y j  - E ~ ( y j l x j ) ] .  By (1.9), 
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%.-I  1 Ec[y j -E , (y j ] x j ) ]=  E, E , (w i ) - I  [yj-E,(yj[xj)] , 

so that the sample-complement mean in the last row of 
(3.9) can be estimated by 

I~c = ]-- Wi - ] [Yi - Es(Y i [X i  )] " Ws = ~,ies Wi / n . 
ni  -~s- I  

The proposed predictor takes therefore the form 

= : #s(yjlxj)+(N-n)t#c 
ies j~s 

with #s(yj lxj)  estimated from the sample data. 

The use of ~)3 only requires the identification and 

estimation of the sample regression Es(YjlXj), which 

can be carried out using conventional regression 
techniques. Moreover, under general conditions this 
predictor is 'design consistent' even if the expectation 

Es(Yj]xj) is misspecified. Many analysts view the 

design consistency property as an essential requirement 
from any predictor, see the discussions in Hansen et al. 
(1983) and Sarndal (1980). For sampling designs such 

that ZsWi  = N  for all s, or if one estimates 

Es(wi )=N/n ,  Y3 has the form of the Generalized 

Regression estimator (GREG), Sarndal (1980). 

(3.10) 

4. EXAMPLES 

4.1 Prediction with no concomitant variables 

Let x; = 1 for all i. Then, 

9= ~.Yi + ~, Ec(Yj) 
ies j~s 

= ~' Yi + ( N -  # s ( W j ) -  l y j . ( 4 . 1 )  

Estimating the two unknown expectations in the second 
row of (4.1) by the respective sample means yields, 

1 wi 1 
YEI ~, Yi + (N n) Z . . . .  Y i  

ies n iesW s - 1 

= ~_~ Yi + (N - n )  
ie.,. ~_~,~, (w i - l) • (wi - l)yi " (4.2) 

In (4.2) ~_.,~,(wi-1)y~ is the Horvitz-Thompson 

estimator of ~ i~  yj " The multiplier (N-n)  is a 
,Y,,~, (w,-1) 

"Hajek type correction" for controlling the variability 
of the sampling weights. For sampling designs such that 

~i~,w; = N  for all s, or if one estimates 
^ 

E , ( w i ) = N / n ,  the predictor YEl reduces to the 
^ 

standard Horvitz-Thompson estimator YH-T = Z wiY i • 

ie s 

Remark 4. The predictor YEI can be obtained as a 

special case of the Cosmetic predictors proposed by 
Brewer (1999). It should be emphasized, however, that 
the development of these predictors and the derivation 
of their prediction MSE assumes explicitly 
noninformative sampling. In particular, if the 
population model is the linear regression model with an 
intercept and constant variances and the sampling 

design is such that ~_.,i~ wi = N  for all s, the 

recommended cosmetic predictor coincides with the 
optimal predictor under the population model. 

Rather than only predicting the sample-complement 

total Yc = ~_~j~, Y j and using the predictor Yen, one 

could predict all the population y-values by estimating 
their expectations under the population model. By (1.4), 
Ep(Yi)=Es(wiYi) /Es(wi)  and estimating again the 

sample expectations by the corresponding sample 
means yields the familiar Hajek estimator, 

Yl-lajek = EkN1E" p (Yk ) =NE's ~, (Wi ) ~-,ies Wi ies 

(4.3) 
The predictors in (4.2) and (4.3) are the same, and they 
coincide with the Horvitz-Thompson estimator for 
sampling designs such that ~ w i  = N.  Notice, on 

the other hand, that by considering the estimation of Y 
as a prediction problem, one has to predict (N-n) values 

under the approach leading to the use of YE] and N 
^ 

values under the approach leading to YHajek" For n/N 

sufficiently large, one can expect the predictor YE] to 

be superior (see Section 5). 

4.2 Prediction with concomitant variables 

Let the population model be, 

y~ - H~(x~)+e  i, Ep(e~[x~)-0, 

Ep(e~ l x , ) - v ( x , ) ,  Ep(eiejlxi, x j ) = O  for i ,  j (4.4) 

and suppose that the sample inclusion probabilities can 
be modeled as, 

~i  = Kx[Y ig(x i )+Si ] ,  Ep(d~lx,,Yi)-O (4.5) 

where H p(x),  v(x) and g(x) are positive functions 

and K is a normalizing constant. (Below we consider 
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the special case of 'regression through the origin'.) 

~(x i) = Ep (:rt'il x i) = KHfl(x i)g(xi) . 
m 

Under (4.4), 

Hence, by (1.9) and (4.5), 

i I - ~ ( X i )  yi]Xi 

= Epll-~(xi)-Kcig(xi)-KSil-~z(xi) Yilxi) 

= Ep(yi lxi ) _ Kg(x i)v(xi) 
1-~ (x i )  

(4.6) 

The last expression in (4.6) shows that E~(YilXi) 

< Ep(YilXi)--Hfl(xi) which is clear since for the 

inclusion probabilities defined by (4.5), the sample- 
complement tends to include the units with the smaller 
y- values. Note, however, that as K --> 0, 

( n~ N ---> 0 ), Ep (y~ ]x~ ) -  E~ (y~ ]x~ ) --> O. 

As a special case of (4.4), suppose that there is a 
single auxiliary variable x and that H~ ( x ) -  xfl and 

v(x)=0"Zx. As well known, for noninformative 

sampling and with unknown 13, the optimal predictor of 
Y, (minimizing Ep[(f'-y)Z]Ds] is in this case the 

familiar Ratio estimator Y'R N X -  = - - y  with p and 
x 

denoting the respective sample means and X defining 
the population mean; see, e.g., Royall (1970). 

Let in (4.5) g ( x ) - I  for all x so that 

n(y i + 6 i ) 

£ N  (Y i  "~- 6 i  ) 
, which for sufficiently large N and 

under some regularity conditions can be approximated 

n(Yi + ¢~i ) IzXi 
a s  7/"  i = - -  , i m p l y i n g  t h a t  E p  (5rr i Ix i ) - __  . 

NflX N X 

By (4.6) Ec(YjlXj)=xjfl-0.2xi/[fl(f-l-X-xj)] 

where f = n / N  is the sampling fraction, so that for 

known fl and 0 "2 Y is predicted as 

^ = 0 .2 Xj 
YEII i~sYi + f l  ~. X j j ~ s - ---fl- j~s f -1 ~ _ X j 

(4.7) 

Remark 5. Under noninformative sampling and with 
fl known, the optimal predictor of Y is, 

}" = ~.ies Yi + fl~.j~s Xj and the prediction MSE is 

Ep[(Y-Y)Z[Ds] = 0.2Zj~ s xj . As easily verified, the 
^ 

prediction MSE of Y~I under the same population 

model but with the sample selection probabilities 
defined by (4.5) with g(x) - 1 is, 

MSEp(~'EI]) : 0.2~.j~ s x j  - (0.2/ f l )2~. j~s[X ~ / ( f - l - ~_  Xj)2] 

4.3 Design consistent regression predictors 

The predictor defined by (4.7) is strictly 'model 
dependent' and as illustrated by Hansen et. al (1983), 
small deviations from this model, not easily detected 
from the sample data (even under noninformative 
sampling) may yield poor predictors. Consider 
therefore the following alternative family of regression 
predictors which is based on similar principles 
underlying the use of the classical regression estimator 
in the case of noninformative sampling. 

YI,Reg = Z Yi + ~'c + Bc( Xc - Xc) (4.8) 
i~s 

where (Yc, Xc )=  ~.j~s(Yj, Xj) and ( Yc, Xc) are design 
consistent predictors of (Y,,,Xc). For a fixed 

coefficient B,,, Y1,Reg is design consistent for Y 

irrespective of the true population model. In practice, 
B~ can be replaced by a consistent estimator of the 

regression coefficient indexing the linear regression of 
y on x in the sample-complement. For example, with a 

single concomitant variable x, replace B~ by /3c where 

Bc = E c ( y j x j ) -  Ec(Yj)Ec(x j )  , (4.9) 
 clX l- 21xj) 

with E c ( f  j)  = ~-~iEs Wi - [  L " f j - y jx j ,  y j , x j , x~ .  
W S -- [ 

The replacement of B,. by /3c (and hence of YI,Reg by 
^ 

YI,aeg ) preserves the design consistency property since 

Y -  YI,Reg = (Y-  Y[,Re g) + (ec - ec)( Xc - )(c) " (4.10) 

An example for a predictor in this family is obtained by 
estimating 

^ _ ( N - n )  
Yc - ~7~  i7~, I -_ 1) ~ (wi - 1)yi (4.11) 

i ~ s  

A 

(second component of (4.2)) and similarly for Xc.  
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5. EMPIRICAL ILLUSTRATIONS 

In order to illustrate the performance of the 
predictors proposed in previous sections we use a real 
data set, collected as part of the 1988 U.S. National 
Maternal and Infant Health Survey. The survey uses a 
disproportionate stratified random sample of vital 
records with the strata defined by mother's race and 
child's birthweight, see Korn and Graubard (1995) for 
more details. For the present illustrations we 
considered the sample data as 'population' and selected 
independent samples with probabilities proportional to 
the original selection probabilities. For each sample we 
estimated the population mean of birthweight, using 
gestational age as the concomitant variable. The 
working regression model postulated for the sample- 
complement is the third order polynomial regression, 

2 3 yj = ~oXj+~ lX j+  fl2Xj + fl3Xj +ej =C~(x j )+E j  , (5.1) 

with the residuals assumed to be independent and with 
constant variances. The computation of the predictor 

defined by (3.4) requires also the identification and 

estimation of the expectation w(x)= Es(WlX) and for 

this we used the procedure described in Pfeffermann 
and Sverchkov (1999). (The latter article uses the same 
data for illustrating the performance of regression 
estimators derived from the sample distribution.) 

Table 1 shows the empirical bias and Root Mean 
Square Error (RMSE) of the various predictors as 
obtained when drawing 1000 samples of size n=1726. 
(Unconditional bias and RMSE over all samples.) The 

'population' size is N-9948. The first estimator, YRe g 
is the unweighted regression estimator (based on the 
three powers of the concomitant variable) and its 
relative large bias indicates the high degree of 
informativeness of the sample selection. The other 
predictors are defined in the previous sections. As can 
be seen, all these predictors are virtually unbiased 
although the last four predictors are statistically biased 
based on the conventional t-statistics. 

The other notable result emerging from the table is 
^ 

the very large variance of YI4-T. The predictor 
^ 

YHajek is much more stable but as suggested in Section 

^ 

4, the predictor YEI which only predicts the values for 

the sample- complement has an even smaller variance. 
The use of the concomitant variable in the last four 
predictors further reduces the variance and they all 
perform equally well in the present study. In particular, 
estimating the expectation w(x) for calculating the 

predictor ~ does not reduce the variance compared to 

the use of the predictor l~ 2 . 
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RMSE 326.7 130.2 34.1 28.5 24.0 23.9 23.7 24.5 
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