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1. Introduction 

In the analysis of categorical data,  if misclassifica- 
tion errors exist, then es t imated cell probabilities 
may biased and s tandard  Pearson chi-squared tests 
may have inflated true type I error rates. For some 
general background on the analysis of categorical 
da ta  subject  to misclassification, see, e.g., Mote and 
Anderson (1965), Tenenbein (1972), Hochberg and 
Tenenbein (1983)and Sel~n (1986). For specific work 
with misclassification problems in the analysis of 
stratified mult is tage sample survey data,  see, e.g., 
Rao and Thomas  (1991). 

Rao and Thomas  (1991) discussed methods to 
adjust  chi-squared test  statistics for goodness-of-fit 
with complex survey da ta  subject  to misclassifica- 
tion errors. They  assumed tha t  the misclassification 
probabilities are equal across all units in a given pop- 
ulation. 

This paper  considers extensions of the Rao and 
Thomas  (1991) method to tests of homogeneity, fol- 
lowing Scott and Rao (1981). In addition, this pa- 
per examines cases in which misclassification prob- 
abilities may be heterogeneous within populations. 
For the lat ter  case, we use es t imated power curves 
to examine the extent  to which heterogeneous mis- 
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classification probabilities may have a serious impact  
on inference. The proposed methods are applied to 
da ta  from the Dual Frame National  Health Inter- 
view Survey (NHIS) / Random-Digit-Dial ing (RDD) 
Methodology and Field Test Project.  

2. Notation 

Suppose tha t  there are two independent  popula- 
tions and tha t  two independent samples of sizes 7Zl 

and n2, respectively are taken from these popula- 
tions. In addition, suppose tha t  there is a cate- 
gorical variable with J mutual ly  exclusive and ex- 
haustive classes. Define 7ci+ = (7cil, 7c~2, . . . , 7cij) '  

and pi+ = ( p i l , p i 2 , .  • . , p i J ) !  t o  be the vectors of J 
true and observed proportions, respectively, corre- 
sponding to the J classes for populations i = 1, 2. 
The hypothesis of homogeneity of the two popula- 
tions is H0 : 7q = 7r2 = 7r0, against H a  : 7c1 ¢ 7r2, 

where 7ri are vectors with the first ( J -  1) elements 
of 7ri+, i = 1,2; and 7c0 is an unknown vector. In 
addition, define Z to be an observed class, Y the 
true class, X a predictor, S a populat ion label. Let 
P ( Z  = k l Y  = j ,  X = x ,  S = i) equal the probabili ty 
tha t  a unit reports membership in class k conditional 
upon Y = j ,  X = x, and S = i. For convenience, we 
use the notat ion P ( Z  = k l Y  = j ,  X = x ,  S = i) and 
P ~ ( Z =  k l Y = j ,  X = x  ) interchangeably. 

When misclassification errors exist, it can be im- 
por tant  to determine the extent  to which misclassi- 
fication probabilities are homogeneous within spec- 
ified groups. For this paper, we will say tha t  mis- 
classification probabilities are homogeneous within 
a population i if, for a given vector of explanatory 
variables x ,  P i ( Z  = k l Y  = j , X  = x )  does not de- 
pend on x. 

When misclassification probabilities are homoge- 
neous, customary design based est imators  of the pro- 
portions of reported classifications will converge to 

pi+ - A ' ~ i +  (1) 

,? 



where Ai = [ai,jk] is a J x J matrix with ( j ,k) th  
element ai,jk. The ( j ,k ) th  element of matrix Ai is 
the probability, denoted Pi(Z = klY = j), of a unit 
being classified into the kth class when its true class 
is j. 

Suppose now that  there are categorical explana- 
tory variables and that  the intersection of all of the 
explanatory variable categories partitions the popu- 
lation i into C groups. Then, for group c and popu- 
lation i, 

Pis+ = A'icTris+ (2) 

where pis+ is a vector of proportions of observed 
classification rates for group c in population i, 7ri5+ 
a vector of true proportions and Ai5 is the associ- 
ated misclassification matrix. More specifically, de- 
fine Aic = [aic,jk] to be a J x J matrix with (j, k)th 
element ais,jk, where aic,jk = Pic(Z = klY = j) for 
group c and population i. The vector pic+ is defined 
as 

P i c + -  (Mic)- l (  E I t l , ' " ,  E It j ) '  
tEUic tEUic 

where Ui5 is the subpopulation of persons in group 
c and population i, Mi5 is the size of Ui5 and Itj is 
a dummy variable that  equals one if a person gives 
answer j and zero otherwise. Similarly, the vector 
7rio+ is 

7 r i o + -  (Mic)-I(  E (~t l , ' " ,  E (~tJ)! 
t E U.~c t E u.~c 

0 E s t i m a t i o n  o f  C e l l  P r o b a b i l i t i e s  

w i t h  H e t e r o g e n e o u s  M i s c l a s s i f i c a -  

t i o n  R a t e s  

3.1 P o i n t  E s t i m a t i o n  

For population i, we assume the following design 
condition, quoted with minor modifications from 
Shao (1996, pp. 205-206). 

(D.1)  The sampling method follows a stratified 
multistage sampling design. The population 
has been stratified into L strata with Nh clus- 
ters in the hth stratum. For the hth stra- 
tum, nh _> 2 clusters are selected indepen- 
dently across the strata. These first-stage clus- 
ters are selected with unequal pre-draw prob- 
abilities, Phi, and with replacement. Within 
the ith first-stage cluster in the hth stratum, 
nhi  ~_ 1 ultimate units are sampled with se- 
lection probabilities Phij from Nhi units, j -- 
1 , ' ' ' , n h i ,  i -- 1 , ' ' ' , n h ,  h = 1 , . . . , L .  The to- 
tal number of ultimate units in the population 
is N - EhL1 ~-]~i~1 Nhi and in the sample is 

n -- E L  1Einhl ?Zhi. 

For convenience, we will replace the triple sub- 
script (hij) with the single subscript t in the follow- 
ing expressions if it is not necessary to specify strata, 
clusters and ultimate units. Under the design (D.1), 
let wt be a unit-level survey weight. Then we have 
standard estimators of I~ic and Pic, 

where 5tj equals one if a person's true category is j 
and zero otherwise. By this definition, the combined 
vector of observed proportions for population i is 

C 
- ( 3 )  

5=1 

where Ri5 - M(1Mi5  and Mi is the number of 
units in population i. When Ail . . . . .  Aic - 
Ai, expression (3) is equal to ' A iTri+ where 7ri+ - 
Mi -1 (~-~teu; 5 t l , ' " ,  ~t~u~ 5t j ) '  and Ui is the popu- 
lation i. 

Assume now that  all Ai5 are all nonsingular ma- 
trices and that  are not all equal. Let Bic = (A~5) -1. 
Then from expressions (2) and (3) 

C 
7ri+ -- E RicBispis+ (4) 

5--1 

and Bic - [bic,jk]. When all Aic are equal, ex- 
pression (4) simplifies to 7ri+ = (A~)-lpi+ where 

Pi+ -- M ( 1  ( E t E u i  I t l ,  " " ", E t E u i  f t J ) / .  

l-~ic - ]~/Ii- l ~/[ic (5) 

where 1~i - ~ t e s ,  wt and si is the set of sample units 

in population i; /t~/i~ - ~tEs.iWt and sic. the set of 
sample units in group c within population i; and 

= M '(E , E (6) 
tE sic tE s,i,~ 

Thus from expressions (5) and (6), 

1-~isPis-t---~l(-1( E w t f t l , ' ' ' ,  E Wri t  J ) ' - - e i c ,  (7) 
tE si~ tE s.i~ 

say. In addition, from expression (4) we have 

C 
- ( 8 )  

c--1 

.. _ ~ C  Bicj eic and the j t h  element of #i+ equals 7rij ~.=1 • 
where B i s j . -  (b i s , j l , ' ' ' ,  bit,j j )  is the j t h  row of J x 
J matrix Bis. 
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3.2  V a r i a n c e  E s t i m a t i o n  

Assume tha t  the matrices Aic and thus Bic are 
^/ ! 

known. Define a CJ x 1 vector ~i. = ( e ~ l , " ' ,  eic).  
Note tha t  ~i. is a cus tomary  vector of sample ratios. 
Consequently, we can use s tandard  methods (as in, 
e.g., Shao, 1996) to compute  a design-based estima- 
tor of the variance of the approximate  distr ibution 
of ei., I? (ei.), say. 

Also, note tha t  expression (8) can be wri t ten as 

# i +  - B i . . . ~ i .  (9) 

where Bi... is a J x CJ matr ix  with j t h  row equal 
to a 1 x CJ vector B i . j . -  (B i l j . , ' " ,  Bicj.). Thus, 
an es t imator  of the variance of the approximate  dis- 
t r ibut ion of #i+ is 

(10) 

with j t h  diagonal element V(#iy)-Bi.j.V(~i.)B~.j.. 

0 Logistic Regress ion-Based Estima- 
tion of Misclassification Matrices 

To es t imate  aic,jk, the logistic regression method can 
be considered. A simple logistic regression model is, 

gi(x, Dj) -/3o +/31Dj +/~x (11) 

where (/30, ~1, ~ )  is a fixed vector of coefficients, x is 
a vector of demographic or other auxiliary variables 
and gi(x, Dj)=ln[Pi(Z=klY=j,X=x)/{1-Pi(Z= 
k[Y = j , X  = x)}]. In addition, Dj is an indicator 
variable indicating true category membership,  and 
equals one when a unit 's  true category is j and 0 
otherwise. For the following the true s tatus Dj will 
be assumed known from response to a second inter- 
views. 

When  all x are categorical variables and they par- 
t i t ion each populat ion into C groups, model (11) in- 
dicates tha t  the probabil i ty of misclassification ai~,jk 
of a unit  tha t  t ruly belongs to class j can be esti- 
mated  by 

P  (z-klv-j,x-x) 
= [1 + exp{ li(x, Dj)}]-lexp{ i(x, Dj)}, 

where {]i(x, Dj) - flo + ~IDj + ~x a n d  (/~0,~)1,/~) 
is a consistent es t imator  of the vector (/3o,/31,/3). 
Note tha t  within group c and populat ion i, all units 
in the sample have the same vector x. Thus, an 
es t imator  of Aic is given by Aic - [aic,jk] where 

- k i t - j ,  X - x ) .  
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0 Effect of Heterogeneous  Misclassi- 
fication Probabil it ies  

When one considers heterogeneity of misclassifica- 
tion probabilities, the variances of adjusted estima- 
tors of cell proportions may be inflated due to the 
variability of Aic within populat ion i. If the bias of 
a biased test from incorrectly assuming their homo- 
geneity is small relative to the amount  of inflation in 
the point es t imator  variance tha t  arise from account- 
ing for heterogeneous misclassification probabilities, 
then one arguably might prefer the slightly biased 
test for some alternative hypothesis values. In this 
section, we will examine powers from unbiased and 
biased tests tha t  do and do not account of hetero- 
geneity of Ai~. 

We will use the following condition which is 
quoted from Shao (1996, pp. 210-211). 

(D.2)  There is no survey weight tha t  disproportion- 
ately large. Tha t  is 

I n a x h , i , j  { N -  l (TthiWhijTZ) } - -  0(1) .  

Under design (D.1), condition (D.2) and addi- 
tional regularity conditions, ei. in (7) is a consistent 

1/2 
est imator  of Ri~. = M[-1Mic; and n i (#i - 7ri) con- 
verges in distr ibution to a N j - l ( 0 ,  V~i) distr ibution 
where 7ri and ~i are vectors with the first ( J -  1) 
elements of 7ri+ and ~ri+ in expressions (4) and (9), 
respectively. For a Wald- type test, we will add the 
following condition. 

(D.3)  The matr ix  ni{~(#i)} is a consistent estima- 
tor of V~i where V(#i) is the upper ( J -  1) x 
( J -  1 ) s u b m a t r i x  of V ( # i + ) i n  (10). 

Then under design (D.1), conditions (D.2) and 
(D.3), and additional regulari ty conditions, the 
Wald test statistics for homogeneity, H0 " 7 r l -  ~r2- 
7i'0, 

Xh2 e - -  (TZl'l -- ~2)'l~r--1 (TZI'1 -- ~2) ,  (12) 

where I) = I ? ( # 1 ) +  1)(#2), is asymptot ical ly  dis- 
t r ibuted as X}-I ,  a chi-square random variable on 
( J -  1) degrees of freedom under H0 : 7rl = 7r2 = 7r0 
for sufficiently large ni, i = 1, 2. 

For any nonzero D~ = 7rl - 7r2, the test  statis- 
tic X ~  is distr ibuted asymptot ical ly  as X~_I(A), 
a chi-square random variable on ( J -  1) degrees 
of freedom with noncentral i ty parameter  A, where 
A - D'~V-1D~/2 and V - V ( # I ) +  V(#2). Thus 
the power of the Wald test in (12) is 

1 -  13h~ - P (xL > X3_l, lD ) 

. " 6  - 



where W J - 1  is distributed as X~- 1 ('~) and Xj-I,~2 is 

the upper c~th quantile of X~-I. When H0 " 7 r l -  
7r2 = 7r0 is true, the Wald test in (12) achieves the 
nominal type I error rate c~. 

Now assume Ail . . . . .  Aic  = Ai and assume that  
Ai are known. Then for known Ai, the estimator of 
7ri+ is 

#i*+ = (Ali)-lPi+ (13) 

where/5i+ are observed probabilities. Its variance is 
estimated by 

l f (~ [+)  -- (A~) - l l / ( i o i + ) A i  -1 

Prom a sample obtained by design (D.1), 15i+ - 
Mi-l(~-~.tes ~ W r i t 1 , ' " ,  ~-~-t~s.~ writ j ) '  for i th popula- 
tion, i = 1, 2. As with ~i.,/~i+ is a vector of sample 
ratios and I)(/Si+) is obtained by the same methods 
as l)(~i.). Then the Wald test statistic for homo- 
geneity, H0" 7r1-7r2-T r0, is 

X 2 o  - -  (~T~ -- 7 r ~ ) t ( ~ r * ) - l ( T Z r ~  - -  7el'~), ( 1 4 )  

where 1)* - I)(~r{)+ V({r~); {r* is a vector with the 

first ( J -  1) elements of }ri*+; and I)(~{) is a upper 

( J -  1) x ( J -  1) submatrix of l)(~r*+). The power 
of the Wald test in (14) is 

1 -- /~ho 2 [D=) - P r ( X ~ o  > X j - I , ~  

• * I D a )  -- P r ( W j _ I  > X j - I ,a  

• 2 where W j _  1 is distributed as Xj_I(/~*); /~* - -  ( D r -  
B)'(V*)-I(DTr - B)/2;  V* = V(~r{)+ V(~r~); t3 = 
bl - b2; and bi = E(~r} ~) - 7ri. 

When misclassification probabilities are heteroge- 
• ^* the neous, bi is not zero Due to this bias in 7ri, 

power 1 -  ~ho under H0 : 7rl = 7r2 = 7r0 may be dif- 
ferent from the nominal type I error rate c~ and the 
Wald test statistic in (14) gives a biased test. 

6.  A p p l i c a t i o n  t o  H e a l t h  S u r v e y  D a t a  

6.1 D u a l  F r a m e  N H I S / R D D  D a t a  

The National Health Interview Survey (NHIS) is a 

national level face-to-face survey carried out in all 
50 states. For some applications, sample sizes were 
considered insufficient to evaluate state level esti- 
mates. The purpose of the Dual Frame NHIS/RDD 
Methodology and Field Test was to evaluate the 
feasibility of supplementing NHIS face-to-face in- 
terviews with RDD telephone interviews (Biemer, 
1997). This study was conducted in two states, here 
labeled States A and B. These states were selected 

Table 1" Explanatory indicator variables for the lo- 
gistic regression model• 

Variable Group Indicated 
(Baseline Gender) (Female respondent) 
Male Male respondent 
(Baseline Mode) (NHIS) 
RDD RDD 
Fire2 Second Interview of G 1=Yes 
Fire2 _I'¢DD Fire2 x RDD 
(Baseline Age) (Agee [18, 39]) 
Age40 Age >_ 40 
Age40_Fire2 Age40 × Fire2 

Table 2: Logistic regression coefficient point esti- 
mates, s tandard errors, approximate 95% confidence 
intervals and p-values for H0 "/3i - 0 .  

Predictor ~i se(~i ) (~iL,~iU ) 
Constant -4.0272 0.3062 (-4.6278,-3.4266) 
Male 0.4805 0.1812 (0.1251,0.8359) 
RDD -0.5973 0.2796 (-1.1457,-0.0488) 
Fire2 5.8095 0.3328 (5.1568,6.4622) 
Fire2_RDD 1.4697 0.3843 (0.7159,2.2235) 
Age40 1.5805 0.3137 (0.9654,2.1957) 
Age40_Fire2 -1.6857 0.3676 (-2.4066,-0.9648) 

for the study due to their relatively large NHIS sam- 
ple sizes (Biemer, 1997). In NHIS data, the initial 
interview was conducted face-to-face and the rein- 
terview was conducted by telephone. For the RDD 
data, both interviews were conducted over the tele- 
phone. 

From the questionnaire used for NHIS and RDD, 
we selected question G1, "Are any firearms now kept 
in or around your home?", with possible responses 
"yes" or "no". The hypothesis in which we are in- 
terested is / 7o :  P(G1 = YeslState A ) -  P(G1 = 
YeslState B) = 0. We combined NHIS and RDD 
data; and for purposes of this analysis we considered 
the second interviews to give the true responses. 

6.2 Effect  of  H e t e r o g e n e o u s  Misc lass i f ica -  
t i on  P r o b a b i l i t i e s  

To examine whether there are any auxiliary variables 
associated with probability of saying "yes" on ques- 
tion G1 on the second interview, we est imated the 
coefficients for the logistic regression model in (11). 
Some potentially important  explanatory variables 
are a person's state of residence, gender, age and first 
interview modes; specific explanatory indicator vari- 
ables are reported in Table 6.1. Exploratory analysis 
led to the final model coefficient estimates reported 
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Table 3: Estimates of cell proportions and their vari- 
ances under heterogeneous misclassification proba- 
bilities. 

Table 4: Estimates of cell proportions and their vari- 
ances under homogeneous misclassification probabil- 
ities. 

Data Point State A State B 
Estimate 

NHIS #i 0.50604215 0.27126436 
V(#i) 0.00218004 0.0004723 

Combined #i 0.46793823 0.27091443 
l) (~r i )  0.00071217 0.00026642 

Data Point State A State B 
Estimate 

NHIS #[ 0.48371183 0.28573574 
I)(#*) 0.00080075 0.00038814 

Combined #[ 0.45726409 0.27793431 
V (-h-~) 0.00034553 0.00023340 

in Table 6.1. Based on Table (6.1), we constructed 
eight groups of respondents based on the combina- 
tion of binary classification by gender, mode and 
Age40. For each group, estimates fi-ic are obtained 
for both States A and B, i - 1, 2, c -  1 , . . . , 8 ,  for 
the combined data. For the NHIS and RDD data, 
there are only four groups within each state, that  
is, c -  1 , . - . ,  4. We considered the estimates A/c in 
the evaluation of test powers. The estimator of vari- 
ance of ~., I)(~i.), was obtained by the linearization 
method (StataCorp, 1997, Reference P-Z, p. 418). 

^ 

Table 3 shows point estimates of #i and V(#i) for 
the NHIS and combined data, respectively. 

For homogeneous misclassification probabilities, 
each ai,jk in matr ix Ai is estimated by 

Cti,j k -- ]~/Ii~ 1 ~ Wt ~tj 
tEs.~j 

where hlij - 2tEs.ijWt and sij is the set of sample 
units in class j and population i. We consider these 
estimates -4i as known. The variance of/5i is esti- 
mated by the linearization method. Table 4 reports 
point estimates of ~ri and l)(#i) for the NHIS and 
combined data, respectively. The bias of ~r~ - #~ is 

B - bl - b2 = {E(#~) - E(#~)} - (~rl - 7r2) 

and is estimated by 

- _ - _ 

since #i is an unbiased estimator of 7ri. These es- 
t imated biases are used to evaluate the power of a 
test based on an incorrect assumption of homoge- 
neous misclassification probabilities when it is not 
true. Figure 1 shows powers from tests adjusted with 
homogeneous (dotted line) and with heterogeneous 
(solid line) misclassification probabilities. The up- 
per panel shows powers from the NHIS data  and the 
lower panel shows powers from the combined NHIS 
and RDD data. Both plots display a similar pattern. 
In both graph, the test based on assuming Aic = Ai 

appears to have a positive bias, and the type I error 
rate is inflated accordingly. On the other hand, the 
inflation of variance due to accounting for hetero- 
geneity of misclassification probabilities is nontriv- 
ial relative to the biasedness caused by incorrectly 
assuming their equality. The loss of power due to ac- 
counting for heterogeneous misclassification proba- 
bilities appears to be more severe for the NHIS data. 
Thus, the loss of power at tr ibutable to adjustments 
for heterogeneity is of serious concern. 

For the RDD data the difference between the two 
power curves is relatively small when it is compared 
to the NHIS and combined data, even though there 
is some positive biasedness exhibited when homo- 
geneity is assumed. 
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Figure 1" Power of a Wald test statistic with one degree of freedom for the NHIS data (upper panel) and the 
combined RDD and NHIS data (lower panel), allowing for possibly unequal misclassification probabilities. 
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