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1 Introduction 

Since 1957 the National Health Interview Survey 
(NHIS) has been a large-scale governmental sur- 
vey fielded to assess the health status of the U.S. 
noninstitutionalized civilian population. This sur- 
vey, sponsored by the National Center for Health 
Statistics (NCHS), primarily collects and dissemi- 
nates self-reported categorical health statistics and 
demographic information. Historically, the focus of 
the NHIS has been to produce accurate and reli- 
able statistics at the national level. In recent times 
state public health officials and non-government re- 
search organizations have had increased interest in 
using the very rich NHIS database to study specific 
states. Because of this interest, the NHIS redesign 
for 1995-2004 used a state-level stratification to ac- 
commodate possible state-level analyses. Past NHIS 
surveys had less potential for state-level estimation 
since they had used regional stratifications which 
introduced more variability into state-level design- 
based analyses. 

The release of state-level data in public-use files 
poses a challenge to NCHS. First, it is felt that a 
state level file should be released in a way that al- 
lows reasonably efficient design-based analyses. This 
requires that NCHS release design structures having 
sufficient detail at the state level, e.g., strata, pri- 
mary sample units (PSUs), weights or related repli- 
cate weights. However, it is imperative that release 
of this design information be done in a way that is 
consistent with NCHS regulations imposed by the 
Public Health Services Act, Section 308(d), requir- 
ing that publicly released data must avoid identifi- 
cation and disclosure risk. 

The nature of the NHIS is such that  the design 
levels are geographically clustered, and thus, iden- 

tification risk increases when this information is en- 
hanced by inclusion of a state identifier. To lessen 
this potential risk, a strategy for public data release 
should at tempt  to: 

a. Reduce the released design information in a way 
that still permits accurate, stable variance esti- 
mation. 

b. Ensure that the released design is compati- 
ble with existing complex-survey software, thus 
making the NHIS data of practical inferential 
value for a diverse group of data users. 

The creation of a 2-PSUs-per-stratum, balanced re- 
peated replication (ERR) structure is a practical 
and reasonable method to address goals (a) and 
(b) above. In the next sections we discuss the cre- 
ation of this structure and a means of assessment. 

NHIS" State-Level  Sample Design 

The NHIS is intended to produce unbiased estima- 
tors at the state level, but it is not designed to 
produce reliable state estimates for all states. For 
pure design-based analytical strategies, about 10-15 
of the larger states would support a stable lineariza- 
tion or replication approach to variance estimation; 
such states are the focus of this research. Most larger 
states tend to have 65% or more of their population 
concentrated in metropolitan areas. These areas 
are typically designated as self-representing (SR), 
and the sampling is somewhat dispersed throughout 
the entire area through the selection of a moder- 
ate to large number of geographically based clusters 
of housing units. The remaining areas are parti- 
tioned into non-self-representing (NSR) strata, and 
for these strata two primary sampling units (PSUs) 
consisting of counties or aggregates of counties are 
first selected to represent the stratum. For public 
data the distinct first-stage probabilities and joint 
probabilities of selection cannot be released, and 
thus, we will treat NSR PSUs as selected 2-per stra- 
tum with replacement. This is consistent with the 
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Table 1" Minority Density Strata  

substratum 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 

% black 
interval 

[0,10) 
[0,10) 
[0,10) 
[0,10) 

[ o,3o) 
[ao,3o) 
[ao,3o) 
[lO,3O) 
[ o,3o) 

[30,60) 
[30,60) 
[30,60) 
[30,60) 
[30,60) 

[60,100] 
[60,100] 
[60,100] 
[60, 00] 
[60,100] 

New Construction 

% Hispanic 
interval 

[0,5) 

[10,30) 
[30,60) 
[60,100] 

[0,5) 
[5,10) 
[10,30) 
[30,60) 
[60,100] 

[0,5) 
[5,10) 
[10,30) 
[30,60) 
[60,100] 

[0,5) 
[5,10) 
[ o,3o) 
[30,60) 
[60,100] 

policy for nationally released data, and tends to pro- 
duce conservative variance estimators (with respect 
to the design) over the NSR strata. 

The remainder of this paper will focus on the SR 
strata  with the emphasis on strategy points (a) and 
(b) above. Some additional comments about the 
combination of SR and NSR strata  within a state 
appear at the end of section 3. 

A thorough discussion of the NHIS design struc- 
tures appears in NCHS (1999)and  NCHS (2000). 
For completeness, a brief outline of the sampling 
structure within a self-representing s t ra tum is now 
provided. 

1. An SR s t ra tum is partitioned into 1 up to 21 
minority density strata defined by the percentage 
of black and Hispanic residents at the Census-Block 
(geographical clusters of housing units) level. Ta- 
ble 1 presents the minority density strata. 

2. Within each density s t ra tum of Table 1 the 
blocks are sorted by a Census Bureau ordering. (De- 

tails are given in Bureau of Census (1977) and other 
Census documents) 

3. Within each s t ra tum a systematic sample us- 
ing a single random start is used to systematically 
select block-strings which are consecutive blocks in 
the sorted universe. Different sampling rates are tar- 
geted for the density s t rata  of Table 1, and the ini- 
tially selected block-strings are subsampled to meet 
targeted sampling rates. Next, households within 
sampled block-strings are sampled/part i t ioned to 
provide annual sample for the 10 years 1995-2004 
of the NHIS. 

4. The processes discussed in steps 2 and 3 
are quite complicated. To simplify we conceptual- 
ize these selected block-strings as independent first- 
stage sampling units within a given density s t ratum 
(cf. random order conditions on systematic sam- 
pling, e.g., Wolter (1985) Chapter 7). Furthermore, 
we assume that  the sampling and weighting is done 
is such a way that  the usual Horvitz-Thompson es- 
t imator of total for any block-string is an unbiased 
estimator. 

Construct ion of Design Informa- 
tion for State-Level  Publ ic -Use  
Variance Est imat ion 

Before a 2-PSUs-per-stratum public-use design ap- 
proximation is constructed, we must have an im- 
plementable design structure that  captures as much 
of the original sampling design as possible. This 
"best" conceptual design will be used as a baseline 
for comparisons, but generally involves information 
that  cannot be included in a public-use data re- 
lease for the confidentiality reasons reviewed in Sec- 
tion 1. Given the limitation in available universe 
information, our conceptual assumptions of step 4 
above suggest that  the "best" design will use an S 2- 
type variance estimator based upon estimated block- 
string totals. Now, since some density strata have 
only 1 selected block-string, standard methods are 
used to collapse singleton density s t rata  with others, 
e.g., collapse population density s t rata  based upon 
similar values for race/ethnic characteristics. The 
baseline conceptual design is the original design but 
supplemented with a moderate amount of collapse. 
This is demonstrated for an original SR s t ra tum in 
Table 2 by columns 1 and 2. In this s t ra tum the 
original density s t rata  3, 11, 9, 17, and 19 had just 
one unit each. As a result of this collapsing, we now 
have a design structure consistent with methods for 
producing standard linearization-based variance es- 
timators, i.e, 
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For the moderately collapsed strata, 
h -  1, 2 , . . . ,  L, we have the point estimators 

f/" -- E L = I ~ ' h ,  

1 nh 

]?hi -- Estimator of population total for density 
s t ratum h based on data from block-string i, 

nh the number of block-strings, 

and we have a variance estimator of the form 

L nh 
? ( Y ) -  Eh----1 n h ( J h - - 1 ) E l - - 1  (~/hi - - Y h ) 2  

The above method is deficient for public release 
since the design structure uses the original (or 
masked) s t ra tum and block-string labels which may 
result in possible identification risk. Furthermore, 
for most density strata nh ~ 2, a structure not com- 
patible with a 2-PSU-per-Stratum design used with 
customary BRR variance estimators. 

To meet objectives and (a) and (b) we will refine 
the initial design structure above to obtain 

1. A 2-pseudo-PSU-per-Stratum structure to be 
used with standard BRR software. 

2. A large or moderate number of degrees of free- 
dom ~ (:g:PSUs- =//:Strata) computed accord- 
ing to an approximate design (under roughly 
equal pseudo-PSU sizes) to ensure reasonable 
variance estimator stability. 

3. A reduced risk of identifying the geographical 
locations of original sampled block-strings. 

To achieve this we will use the techniques of col- 
lapse, partition and mixing of density strata. First, 
we use the techniques of s t ra tum collapse, and stra- 
tum partition to form roughly equal sized (with re- 
spect to the number of block-strings) pseudo-strata. 
Second, we mix the block-strings of the pseudo- 
strata to form pseudo-PSUs. 

For the current application suppose that we target 
a pseudo-PSU to be an aggregate of about k original 
block-strings. Then the process of s t ratum collapse 
and partition uses the following steps. 

C.1 Collapse the smaller density strata with "simi- 
lar" strata to yield roughly equal sized, say 2k, 
block-strings per pseudo-stratum. 

C.2 Randomly partition large density strata or large 
collapsed strata of [C.1] into several pseudo- 
strata. Specifically, suppose that an original 
density s t ra tum h is assigned to a s t ra tum that 

Table 2" 
Strata 

Collapsing and Partitioning of Density 

Original 
Density 
Strata a 

1 
21 

2,3 
6,11 

7 

8,9 
14 

16,17 
18,19 

Original 
nh 

16 
4 

3,1 
3,1 

2 

2,1 
2 

3,1 
2,1 

N e w  

pseudo 
Density 
Stratum 

l a  

lb 

2a  

2a 
2a 

New 
nh 

10 b 
10 

10 

3a 12 
3a 
3a 
3a 

a: density s t ra tum in italics has just 1 unit and is collapsed. 
b: 8 units from s t ra tum 1 and 2 units from s t ra tum 21 are 
placed in la.  

will be partitioned into m pseudo-strata. Then 
using a method that achieves approximate bal- 
ance, randomly assign nh /m  strings to each new 
pseudo-stratum. 

Table 2 illustrates the above steps C.1 and C.2. 
As an example, we see original strata 1 and 21 are 
collapsed and contain 20 block-strings. This col- 
lapsed s tratum is targeted to be partitioned into two 
pseudo-strata. We randomly take 2 units from den- 
sity s tratum 21 and 8 units from density s t ratum 
1 and place them into a pseudo-stratum l a. The 
balance is placed in pseudo-stratum lb. 

Note that in this example, the 4 new pseudo-strata 
are of roughly the same size, i.e., they have approxi- 
mately the same number of block-strings and can be 
thought of as having low, moderate or high concen- 
trations of blacks or Hispanics. 

Next, a mixing of block-strings is performed to 
form 2 pseudo-PSUs in each pseudo-density stratum. 

M.1 If original density s t ra tum g is in the new 
pseudo-stratum and ng is even, then randomly 
assign ng/2 string-units to pseudo-PSU 1 and 
the balance to pseudo-PSU 2. 

M.2 If some of the original density strata have n a 
odd, then use a randomization which assigns 
on the average ng/2 block-string units to both 
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pseudo-PSUs 1 and 2 and also achieves approx- 
imate total pseudo-PSU balance. This balance 
may be achieved, for example, if one uses ran- 
dom and systematic assignments with random 
starts. 

Table 3 demonstrates the mixing procedure as 
performed on the pseudo-strata of Table 2. Note 
that the original density strata components are now 
spread over 2 pseudo-PSUs and each pseudo-PSU 
covers multiple original strata. Such a design 
reduction should lessen identification risk. For 
additional discussion of the use of s t ra tum mixing 
to reduce identification risk see Eltinge (1999). 
Now, a variance estimator for a pseudo-stratum 
total is 

(~'Zpseudo-PSU1-- ~Spseudo-PSU 2) 2 

If all the original ng a r e  even integers within 
a given pseudo-stratum, then the difference 

(¢p,~do-PSUJ -- Cp,e,,Uo-PSU2) has a mean equal to 
zero. Thus in this case, stratum mixing does not in- 
duce any additional variance estimator bias. This is 
in contrast with customary stratum collapse which 
tends to produce positively biased variance estima- 
tors. 

An examination of Table 3 shows that the variance 
for pseudo strata la, and lb should have mixing-bias 
equal to zero, but pseudo-strata 2a and 3a may have 
small positive-bias components. In these latter cases 
the step C.1 a t tempt  to force a similarity among the 
grouped units should help to reduce collapsing bias. 
We anticipate that in most cases we can treat the 
variance estimator defined by this outlined strategy 
as having a small relative bias. The main drawback 
of this variance estimator is it loses degrees of free- 
dom as compared to the original design. 

Comment on NSR strata: If NSR strata exist, 
then the original two sampled PSUs can remain 
unmodified. If the new SR pseudo s t ra tum weighted 
totals are of the same order of magnitude as the 
NSR strata, then the all the pseudo-PSUs will tend 
to have about the same magnitude in numbers of 
households and total weight as do the NSR PSUs. 
This characteristic makes the distinguishability be- 
tween SR and NSR areas (frequently having metro 
and non-metro correspondence) more difficult. For 
some states this may help to reduce further the 
identifiability of the original selected sample units. 

In practice the numbers of units to collapse should 
be chosen on a state-by-state basis. 

Table 3" Mixing of Block-Strings to Form Pseudo- 
PSUs 

block- 
string 

6 
7 
8 
9 
10 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 

37 
38 
39 
40 
41 
42 

original 
density-stratum 

1 
1 
1 
1 

21 

1 
1 
1 
1 

21 

2 
3 
6 
11 
7 

8 
14 
16 
16 
18 
19 

8 
9 
14 
16 
17 
18 

pseudo 
stratum 

la  
la  
la 
la  
la 

la  
la  
la  
la  
la 

2a 
2a 
2a 
2a 
2a 

2a 
2a 
2a 
2a 
2a 

3a 
3a 
3a 
3a 
3a 
3a 

3a 
3a 
3a 
3a 
3a 
3a 

pseudo 
PSU 
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Table 4: Standard error ratios 

variable / subdomains 

Number of persons diagnosed 
with hypertension 

Adults 
Black Adults 
Black Female Adults 

Number of persons 
who have had an 
HIV test 

Adults 
Black Adults 
Black Female Adults 

Mean BMI 
( Body Mass Index ) 
(Weight in kg)/(Height in meters) 2 

Adults 
Black Adults 
Black Female Adults 
Black 18-45 Adults 

¢ ~ R R  
VO D 

0.96 
1.24 
1.09 

0.98 
0.58 
0.31 

0.98 
1.13 
1.30 

0.97 

1.05 
1.33 

1.20 

1.04 
1.29 

1.24 

1.00 
1.11 
1.16 
1.10 

Applicat ions  to NHIS  Data  

To demonstrate the ideas above we will use the NHIS 
one-sample-adult-per-family subsample taken from 
a self-representing area of one state. For state-level 
variance estimation we consider three options 

OD Original design with moderate collapse 
^ 

("best")" VOD with 196 df 

FC Full collapse of all SR density s t rata  within the 
entire state: IYFc with 225 df 

BRR Balanced repeated replication estimator: 
IYBRR with 25 df 

This was based upon a 2-pseudo-PSUs-per-pseudo- 
stratum with the following characteristics: 

i. Poststratification adjustments were carried out 
separately for each replicate sample using coarse 
Current Population Survey age-race-sex state 
controls. 

ii. Fay adjustment  with perturbat ion 70% were 
used (Fay (1984) and Judkins (1990)). 

The variance estimator IYgc pools all block-strings 
into one large collapsed SR stratum. Removal of 
original s t rata  may help avoid identification, but 
block-strings remain intact. Furthermore, if the 
state has a small NSR component, the size differen- 
tial between SR and NSR units remains; and so iden- 
tification risks may still remain. In addition, IYFc 
may suffer from significant collapse-bias. The pro- 

^ 

posed estimator VBRR is structured to avoid identi- 
fication risk, but at the expense of a loss of degrees 
of freedom. 

Some comparisons of these variance estimators for 
population totals and means are presented in Ta- 
ble 4. There are several caveats to consider when 
making comparisons among these three estimators. 

The variance estimator f/rOD is computed with 
the poststratified weight treated as a sampling 
weight. Anecdotal comments from data  users 
suggest that  most users use fundamental  sam- 
pling design structures but with a final sam- 
pling weight that  incorporates all the weighting 
adjustments.  

ii. From our limited study, it appears that  postrat- 
ification will have substantially more impact at 
the state level than has typically been observed 
for national level estimation. Roughly speak- 
ing, at the state level there are sharp distinc- 
tions between samples and age-race-ethnicity- 
sex control totals. While distinctions are still 
present at the national levels, they appear to 
be smoothed out, due to effects of larger sam- 
ple sizes. 

iii. The nominal degrees of freedom terms are 
computed for a characteristic that  is spread 
somewhat uniformly over the state. The black 
domains presented in Table 4 will not satisfy 
this uniformity condition and may have fewer 
degrees of freedom than nominal amount.  

Comments on Table 4: Our study is quite limited, 
but the following observations are of interest. The 

^ 

estimator VFC appears to suffer from bias due to 
collapsing of strata.  Its magnitude is consistently 
larger than that  of (/OD. For all three estimators, the 
standard errors appear to be of the same magnitude 
on the adult domain which covers the full state. This 
may be evidence that  the goal (a) is being met for 
domains covering the state. 
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For the black domains the actual sample size was 
about 180 persons, but the measured prevalence 
rates were at least 30% of the black population. 
Such characteristics will meet the NCHS publication 
standard that  an est imator 's  coefficient of variation 
must not exceed 30%, and any estimator satisfying 
this requirement should be in scope of evaluation. 
In this situation the observed relation between ~/OD 
and IYBnn did not show a consistent trend. A likely 
explanation is that  black subpopulation is geograph- 
ically concentrated and stability of the variance es- 
t imator is overestimated by the nominal 25 degrees 
of freedom. 

Table 5: 95% Confidence Intervals for BMI 

? f~ se(yz) df lower upper 

OD 27.24 0.355 196 26.54 27.94 
B R R  27.24 0.403 25 26.41 28.07 

sentation of this paper, but they are omitted here 
due to lack of space. Instead, Table 5 presents an ex- 
ample of a 95% confidence interval for a mean body 
mass index (BMI) for black adults. 

R e d u c t i o n  of D e g r e e s  of freedom" 
Pract i ca l  Effects  on Inference  

For our example the proposed variance estimator for 
reducing identification risk has only 25 nominal de- 
grees of freedom as compared to the original design's 
nominal 196 degrees of freedom. One way in which 
to assess the practical impact of a reduction in de- 
grees of freedom is to compare confidence intervals 
for a given population mean. For example, Table 5 
presents nominal 95% confidence intervals for the 
mean body mass index (BMI) for the black adult 
population in the self-representing area of our speci- 
fied state. These confidence intervals used the same 
customary sample ratio fi, but used the variance esti- 

^ ^ 

mators VOD and VBRn, respectively. More generally, 
one can use p-value curves to assess the practical 
impact of distinctions between variance estimation 
methods. 

To develop this idea consider a typical 2-sided 
hypothesis test: 
H o : #  = #0 vs H1 : #  :~ #0 
If the sample sizes are large, the analyst frequently 
assumes that  the test statistic 
[(#o) - (a-,0) has its p-value computed by ,~(Z) 

fg(#o) -- P[ Itd[ > [t(~o)l [(#o)] where 

t d is distributed as a central t random variable 
with d degrees of freedom. 

A plot of ~5(#0) against #0 gives the resulting p- 
value curve. In addition, projection of p-value curve 
onto horizontal axis at a specified i5(#0) = a /2  gives 
a test-inversion (1 - a) 100% confidence interval. 

Such a graphical display links statistical prop- 
erties (width of confidence interval, slope of p- 
value curves) with practical significance (distinctions 
among competing #o values of substantive interest). 
Some p-value curves were displayed during the pre- 

6 S u m m a r y  

State-level NHIS analyses require special techniques 
to avoid micro-level geographical identification of 
the primary sample. This paper has proposed and 
evaluated an NHIS public-use approximate design 
for variance estimation. The key features are: 

1. Self-representing areas are collapsed and parti- 
tioned. 

2. A 2-pseudo-PSUs-per-pseudo-Stratum design 
that  can use standard BRR methods is targeted 
for construction. 

3. S t ra tum mixing is implemented to reduce dis- 
closure and identification risks. 
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