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Abstract: We consider two populations, each of
which contains at least one object. On each ob-
ject there are several traits measured. We obtain a
simple nonparametric measure of concordance to as-
sess the degree of positive relationship between the
two populations, and in this measure the different
traits can be weighted. We consider two cases, one
in which each population has one object and the
other case in which each population includes more
than one object. Using the one to one correspond-
ing common variables, our formula gives a similarity
measure which ranges between 0 and 1 with increas-
ing similarity from 0 to 1. We perform a simula-
tion to assess the sensitivity of the measure to the
changes in the weights. When the respective vari-
ables are widely spread out, the score obtained from
the transformed values appears to be the better mea-
surement.

1. Introduction

Statisticians routinely calculate the correlation be-
tween two groups when the measurements are sim-
ilar, both contimious and discrete variables (e.g.,
weight and sex). Pearson (1896) presented mathe-
matical formula of correlation estimation and many
papers have been published since then on the same
topic (Falk and Well 1997, Zhenng and Matis 1994,
Rodgers and Nicewander 1988, Nelson 1998). When
the variables are mixed and there is no common
distribution, the calculation of correlation between
two groups is not possible. Others use the ranks of
the variables instead when the variables do not have
common distribution (Steel and Torrie 1960, Good-
man and Kruskal 1954 1963 1972, Kendall 1949b).
But the ranking can be done for the same type of
variables; therefore, the mixed variables can not be
ranked.

No method is available to obtain relation between
two groups with mixed variables. We present a
simple method to calculate similarity between two
groups when each group includes mixed variables
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and when one variable in that group matches to an-
other variable in the second group. Our method can
be used only when such one to one matching is pos-
sible for the variables in the groups and when the
each variable can be properly quantified to a posi-
tive number.

This method is useful to many areas. For exam-
ple, one may compare two persons when they have
common mixed variables such as weight, height, age,
sex, race, education, and income. Similarly we may
compare two companies of different sizes and prod-
ucts, two countries of different population and cul-
ture, and two hurricanes of different forces and di-
rections. It may also be applicable to form strata in
sample surveys, combining similar subunits. When
there are more traits, the measure of similarity is
more reliable. The proper quantification of common
variables is very important factor for the measure-
ment.

Let X1,..., X, be the mixed variables of size n
from one group. Two variables, X; and X for i # j,
in the same group are entirely different types. Some
of the variables may be correlated as discussed in
the conclusion. Similarly Yi,...,Y, are the mixed
variables of size n in the other group. Again any two
variables, Y; and Yj for ¢ # j, are entirely different.
Let X; from the first group and Y; from the sec-
ond group represent the it* common variables from
the two groups. Our measure is nonparametric, and
really does not require existence of any moments.
However, if inference is required about the concor-
dance measure, then one would require the mean and
variance of the mixed variables in each group. Then,
we assume that the two common variables, X; and
Y, have common expected value and variance.

This concept is extended to two populations with
more than one object. In this case we construct the
possible pairs of objects between the two groups, and
calculate the measure of concordance for each pair.
The sum of all the concordance from these pairs is
divided by the number of the pairs to measure the
similarity between the two groups.

We discuss a simple method to calculate the con-
cordance between two groups with mixed variables.
In Section 2, we describe the measure of concordance
when each group includes only one object. In the



second part, we extend the comparison of two groups
when the each group includes more than one object.
Finally, we discuss how to transform common vari-
ables to obtain better measures when the common
variables are widely spread out. In Section 3, we
include some comments and possible extension.

2. Measure of Concordance

First, we construct a measure of concordance to
compare two groups, each including one object (e.g.,
two persons). Second we construct a measure of con-
cordance between two groups, each including more
than one object. Last section discuss how to trans-
form the variables to have better measures when
these variables are wide spread. In each section, we
include examples to illustrate the measure of con-
cordance.

2.1 Comparison of Two Groups with One
Object ’

Let X, Xo,..., X, and Yy, Y5, ..., Y, be the mixed
variables of the object in group X and group Y,
respectively in the population. The corresponding
sample variables are x1,...,2, and ¥y, ..., y, from
each group. Here x; and y; are common variables
for : = 1,...,n. For instance, in comparing two per-
sons, x; and y; are races for the two persons, g
and yg are education, xs and ys are sex, x4 and 4
are weights and so on. These variables could also
be ranks, percents, counts, measurements, nominal
variables, and may take any other types that are
quantifiable with positive numbers.

Let (z1,vy1), - - -, (Zn, Yn) be the n pairs of common
variables from the two groups with common expec-
tation and variance. We assign a weight to each pair.
Define the weight W; for i = 1,...,n with the con-
straint Y .., W; = 1. The individual weights could
be different according to its importance among the
n traits in the overall picture. For the equal weight,
W, = 1/n for each term.

When proper weights are assigned to each term,
we measure the concordance as the weighted average
of ratios of common part of X; and Y; divided by the
square root of X; and Y;. The common part of two
variables may be considered as some form of “corre-
lation” between them. When z; > 0 and y; > 0 for
all 7 and one to one correspondence is possible for
the common variables between two groups, we define
the measure of concordance, denoted by CN(x,y),

ON(y) = S wIlop)

i=1 (:Ctyz)

When all terms are considered similar in importance,

we may assign the same weights (i.e.,W; = 1/n)
to all terms. When the minimum value is z; (i.e.,
min(x;,y;) = x;) for all i, the term under the

summation sign in the equation (1) is simplified to
CN(x,y) = >, Wi(/x:i/y;). Similarly, when the
minium value is y; (i.e., min{(z;,y;) = ;) for all
i, it reduces to CN(x,y) =Y, Wi(\/ys/x;). Thus,
CN(x,y) is a weighted average of terms in (0,1]. If
the two groups are the same (i.e., z; = y; for all ),
CN(z,y) = 1 and CN(z,y) — 0 when the differ-
ence between x; and 1; becomes large for all i. We
note that the CN measure is bounded by 0 and 1
(i.e.0 < CN(z,y) < 1).

The CN measure (1) has other properties. It is
invariant to scale, it is not invariant to location.
CN(az,ay) =CN(x,y) for any scalar a > 0, but
CN(zx+a,y+ a) £ CN(z,y) for any locator a > 0.
Let y = ax for a scalar a. Then CN(z,y) = 1/Va
for a > 1 and CN(z,y) = Jafor 0 <a < 1.

Since there is only one observation from each ob-
ject and two objects are different, the variance of
NC(x,y) estimator is not available. There may be
correlation between some of x4, ..., x, and similarly
for y1,...,yn. If the group includes more than one
object as in Section 2.2, we can obtain the variance
as seen in Section 2.2,

In practice, the value x (or y) in denominator may
be zero and in this case CN measure is undefined.
To avoid such cases, the x (or y) can be rescaled to
make it different from zero, adding a small number
to each x and y. It may also happen to have negative
values, and we may adjust them similarly adding a
constant number to x and y.

Example 1

With the seven mixed variables (i.e., height,
weight, age, sex, race, income, education), we can
measure the concordance of John and Paul. The re-
spective common variables for John and Paul are
(6, 5, (120 lbs, 110 lbs), (25 yrs, 30 yrs),
(male, male), (white, black), (50 k/yr, 40 k/yr)
and (college graduate, high school graduate). Here
the mean and variance of the mixed variables for
each person is meaningless, and it is not sensible to
calculate the Pearson’s correlation coefficient. To
quantify sex, 1 for male and 2 for female; similarly,
1 for white and 2 for black; 4 for college graduate
and 2 for high school graduate. These indicators are
quantified by (6, 5), {120, 110), (25, 30), (1, 1), (1,
2), (5, 4), (4, 2). When equal weights are assigned
to these 7 variables (i.e., 1/7), CN measure of con-
cordance between the John and Paul is
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1
ON = 2(

/576 + /110/120 + ... + \/2/4) = 0.87. (2)

However, suppose that we want to emphasize the
race component in their relationship, and one half
of the weight is assigned to race and the remaining
half is evenly divided to the six variables. Then, the
CN measure of similarity is 0.80, which is reduced
from 0.87 with the equal weight case.

In addition, our measure of concordance can be
interpreted as the correlation between two sets of
variables if they are expected to have a large pos-
itive correlation. When two groups are highly cor-
related with Pearson’s correlation coeflicient greater
than 0.80 and when each group includes the mea-
surements of same type, the CN measure is almost
the same as Pearson’s correlation coefficient and CN
rank correlation is same as Spearman’s rank corre-
lation.

Example 2

We compare the CN measure of the data to two
Pear-
son’s correlation and Spearman’s rank correlation.
We obtain the ranks for the numbers of eggs laid
and similarly for the number of ovulated follicles,
and paired them for 14 hans. Then we calculate
the rank correlation by CN methods and Spearman’s
correlation.

In studying the use of ovulated follicles in deter-
mining eggs laid by ring-necked pheasant (Kabat et
al., 1948), the eggs laid and ovulated follicles of 14
hans are: (Eggs, Follicles) (39, 37), (29, 34},
(49, 52), (28,26), (31, 32), (25, 25), (49, 55),
(57, 65), (51, 44), (21, 25), (42, 45), (38, 26),
(34, 29), (47, 30).

methods often used to measure correlation.

Table 1: Comparison of CN measures with other
correlation coefficients

Methods correlation
Pearson 0.92
CN 0.92
CN rank 0.87

Spearman Rank 0.87

Table 1 shows that Pearson’s correlation coefli-
cient and the CN measure are the same. We also
present, Spearman’s rank correlation and the CN
measure for the ranked data; these are the same.
This shows that the CN measure is a sensible mea-
sure of the relationship between two commensurate
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variables which are expected to have a moderate to
high correlation.

Example 3: A Small Scale Simulation

We use the data in Example 1 to study the sen-
sitivity of CN(x,y) to changes in the weights W;.
We generate weights from the Dirichlet distribution
with mean 1/7 for the seven cells and we allow 7 to
vary when 7/7 are the parameters of Dirichlet distri-
bution. Small 7 reflects very heterogeneous weights
and large 7 very homogeneous weights. We allow 7
to vary: 7 = 5, 10, 25, 50, 75, 100, 200, 400. At
each of these eight design points, we generate 100
sets of weights and computed CN(x,y).

In Table 2, we present a five number summary
of CN(x,y) at each value of 7. As 7 varies from 5
to 400, the average of CN(x,y) decreases smoothly
from a range of (0.74, 0.98) to (0.86, 0.89). The
values of CN(x,y) fluctuate about 0.87, the value
corresponding to equal weight case. Thus, if the
weights are varying widely, the variation in CN(x,y)
is moderate, and if the weights are very similar (1/7),
there is virtually no variation of CN(x,y) values.

Table 2: Five number summary of the CN measure
by 7

T Min Q1 Q2 Q3 Max
5 .74 .84 .87 .90 .98
10 .78 .84 .87 .90 .94
25 .81 .86 .87 .88 .93
50 .83 .86 .87 .88 .91
75 .84 .86 .87 .88 .90
100 .84 .86 .87 .88 .90
200 .85 .87 .87 .88 .90
400 .86 .87 .87 .87 .89

2.2 Comparison of Two Groups with More
Than One Object

When each group includes more than one object and
each object is characterized with mixed variables as
discussed, the work in Section 1 can be generalized
to accommodate this complex case.

Suppose that group A includes objects a1, ..., an,
and group B includes objects b1,...,0,. There
would be m? pairs of (a;, b;) for i = 1,...,m? The

object a; of the group A is characterized by a string
of n mixed variables, x;y,..., %, and the object
b; of the group B is characterized by a string of
Yil, - - -, Yin Mixed variables. The common variables,



x;; and y;;, for the j-th pair, j=1,...,n, from the
i-th pair, i =1,...,m?, are identified first. When
proper weights are assigned to each pair for the i-
th group, the CN measure of equation (1) can be
extended to measure the similarity between the two
groups A and B.

man(ziz, Yij)

CN
(xz]yz])

(4, B) = Z ; (3)
1 :

The n weights are same for all i, then we can
reduce the weights W;; to W, with constraint
ijl)n W; = 1 where we may use equal weight
W; = 1/n for all j . The measurement CN(A,B)
of similarity is also bounded by 0 and 1 as we have

discussed in Section 2.1.

1
m?2

Example 4.

Two groups, A and B, of students are compared
where group A has 3 students from the freshmen
class and group B has 2 students from the se-
nior class. We want to measure the similarity be-
tween these two groups according to the 6 vari-
ables. Group A includes three students identi-
fied with characteristics (19, M, W, 1st, 4.0, En-
glish), (18, F, W, 1st, 4.0, Sociology), and
(19, M, W, lst, 4.0, History) for their age, sex,
race, years in college, grade point average, and major
field. Similarly, group B includes two students with
characteristics of (21, F, B, 4th, 2.0, math) and
(22, M, B, 4th, 2.0, physics), respectively for their
age, sex, race, years in college, grade point average,
and major field.

Quantifying is a problem when the variable is
nonnumeric. Sex may be indicated by 1 for male
and 2 for female, and similarly race by 1 for white
and 2 for black. It is not easy to quantify the major
field, and there may be many ways we to do so.
Liberal arts and sciences may be differentiated by
two digit number, 10 for liberal arts and 20 for
science, and within each field the major may be
designated by one digit numbers 1 for English, 2
for Sociology, and 3 for History. According to this
rule, we may quantify English major with 11, So-
ciology major with 12, and History major with 13.
Similarly, we can use 21 for Mathematics and 22 for
Physics. With these numeric indicators, group A has
(19,1, 1,1, 4.0,11), (18,2, 1,1, 4.0,12), and (19,1
1, 1, 4.0, 13) for the 3 freshmen students, and
Group B has (21, 2, 2, 4, 2.0, 21), and (22, 1,
2, 4, 2.0, 22) for the 2 senior students.

There are 6 possible pairs between these two
groups. Giving equal weights to each pair, we obtain
0.74 for the CN measure of the two groups. Thus,
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there is at least moderate concordance between these
two groups.

2.3 Variance of Common Variables

When the variables are all commensurate, it is pos-
sible to measure uncertainty about estimates of the
CN measure; otherwise this is not sensible. For ex-
ample, we can assume the existence of second mo-
ments.
Using Taylor’s expansion, and assume mean
E(x”) = pigis B(Yij) = pyi, variance Var(z;;) =
o, Var(y;) = ng‘ and covariance Cov(z;j, ¥ij) =
0ij, the variance of Wj\/x;;/yi; of the jth term in
the ith group (similarly for W;((/vs;/2i;)), is given
by

2

Var(Wis /@i Jus) = —2 g2
ar(Wja/@ij/yij) = 4.2, (1yi/ pni) oz
v o

+(Mzi/ﬂyi)05¢+20ij] + O(n™1).

The variances and covariance may be estimated by
usual method of moment. When E(z;;) = E(yi;) =
pi, variance Var(z;;) = Var(yi;) = o2 and covari-

Wzaz

TL?L . When
1

the n terms are independent and the minimum value

is z;; (i.e., yi;) for all i, overall variance is the sum

of these variances:

ance 0;; = 0, the variance is reduced to

2

W;
V(IJ‘(CN(CE,@/)) = ZU 2u2 g; + O(

(1)

When Var(z;;) and Var(y;;) are different and
Cov(x;j,y:5) = 0i; # 0; above variance has to take
these into account, and keep the separate terms of
two variances and covariance. When the minimum
value is not decided consistently in the n terms,
we use Var(y/x;;/y:;) when the ijth term includes
min(z;;, ¥i;) = x;; and the Var(,/y;;/x;;) when the
thh term includes min(xij,yij = Yij-

2.4 Transformation of Common Variables

The quantity y/z/y may often overestimate or un-
derestimate the real values when the ranges of all
common values like x and y are spread widely or
narrowly, while these specific x and y are within a
narrow range or wider range. To correct this prob-
lem, first we find the minimum and maximum val-
ues of common variables. We subtract the common
minimum from x and y variables and divide this re-
sulting difference by the difference between common
maximum and minimum values. Then, we apply the
CN measure to these transformed variables.



Suppose that we know the maximum value B and
minimum value A, and that 95 percent of all com-
mon objects are greater than this minimum value.

We adjust all variables as (y — A)/(B — A) and

- —A
(x—A)/(B—A), and a term of CN measure is / =%

instead of y/y/x for z > y. The adjusted ratio is a
more representative value for the relationship of x
and y. We need to know the minimum value A for
this adjustment.

Example 5.

In Example 1, we have the seven pairs of common
variables: (6,5) for height, (120,110) for weight,
(25, 30) for age, (1,1) for sex, (1,2) for race, (5,4)
for income, (4,2) for education. The first pair is
the heights of two persons. The major problem is
the find the minimum height of people. For now
suppose that the minimum height is 4 feet. Then
the transformed heights are [(5 —4)/(6 — 4) = 1/2
and \/1/2 = 0.71. Similarly setting the minimum
weights of people to 90 lbs, the weight (120, 110) be-
comes (110—90)/(120—90) = 2/3 and /2/3 = 0.82
instead of \/110/120 = 0.96. The minimum of age
is set to 1, then adjusted term for ages (30,25)
s 4/25—-1/30—-1 = 0.91. Male is 1 and female
is 2 and /1 —-1/2—1 = 0. But, When both sex
are male or female, we define that /0/0 = 1 for
the same sex, and /0/1 0 for dlfferent sex,
and similarly for race. The minimum for income
are set to 1 and the incomes (4,5) provides a CN
term of \/4—1/5—1 = 0.87. For the minimum
of education is set to 1, the common education
variables (2,4) gives \/2 — 1/4 —1 = 0.58.

Using these transformed variables, CN(John,
Paul) is:

CN(John, Paul) = $(0.71 + 0.82 + 0.91

+ 140+ 0.87+0.58) =0.70

Previous value for CN(John, Paul) was:

CN(John, Paul) = 1(0.91 + 0.92 + 0.91

+1+0.71 +0.89 + 0.71) = 0.87.

The traits that incur most changes are 0.71 re-
duced to 0.00 for race, the 0.71 reduced to 0.58 for
education, 0.91 reduced to 0.71 for height, 0.92 re-
duced to 0.82 for weight. These reduced values ap-
pear more reasonable than the original scores. Hence
the new CN measure may be a better estimate.

Example 6.

In Example 4, the age, sex, race, years in college,
grade point average, and major field are the charac-
teristics of students. We may set the minimum and
maximum of these values at (1,90) for age, (1,2) for
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sex, (1,2) for race, (1,4) for the years of education,
(1, 4) for grade point average, and (10, 29) for major
field.

Group A: (19, 1, 1, 1, 40, 11), (18, 2, 1, 1, 4.0,
12), and (19,1, 1, 1, 4.0, 13) for three freshmen
students, and Group B: (21, 2, 2, 4, 2.0, 21}, and
(22, 1, 2, 4, 2.0, 22) for two senior students. By
transforming these values, we have Group A: (18, 0,
0,0,3,1), (17, 1,0, 0, 3, 2), and (18,0,0,0, 3, 1)
for the three students, and Group B: (20, 1, 1, 3, 1,
12), and (21, 0, 1, 3, 1, 12) for the two students.

The CN values of six pairs are: (1/18/20, 1/0/1,
VO/1, /173, /1/11),

T, AT AT AT, /TS, /2T
(+/18/20, \/0/1, 1/0/1, \/O/1, \/1/3, \/3/11),
(VIB/2L, \/OJ0, \/O/T, \/OJ3, \/1]3), /1/12),
(/17/21, 1/0/1, 0/1, 0/3,\/7\/2/1

(+/18/21, 1/0/0, \/0/1, \/0/3, \/1/3, \/3/12)

The quantity 1/0/0 is set to 1 to mdlcate that the
two numbers indicate the same. The average sum of
these is CN(A,B) = (1/6)(1/7)[1.83 + 2.93 + 2.05 +
2.80 + 1.89 + 3.01] = 0.35. The original score of
0.743 is reduced considerably. This happens mainly
because the CN terms of opposite sex or race is zero.

3. Conclusion

We are not aware of any method to calculate the
similarity between two objects with mixed variables.
When there are no common variables (or distribu-
tions) as seen in the examples, we can not use the
usual correlation methods. Those mixed variables
may be nominal values, measurements, counts, and
qualities that indicate an object’s characteristics.
When the variables for each object are mixed, we
present a way to calculate the concordance between
two objects. We extend this concept between two
groups to include more than one object.

When the variables are similar in each object and
Pearson’s correlation » > 0.8, we found that the
CN measure is approximately the same as the Pear-
son’s correlation coeflicient for continuous variables
and that the CN rank measure is about same as
the Spearman’s rank correlation when the ranks are
used for CN measure. The transformed variables
may provide similar scores as those of Pearson’s cor-
relation coefficient even if the Pearson’s correlation
r < 0.8.

One problem is the correlated variables. The few
variables of an object may be correlated. For exam-
ple, the income and education or height and weight
of a person might be correlated. If such correlation
exist, an extra adjustment is needed.



An interesting problem is how to compare para-
metrically two populations with mixed multivariate
characteristics. For example, a random sample of
multivariate observations is obtained from one popu-
lation, and an independent random sample from an-
other population and these samples are to be used to
compare the two populations. There are both con-
tinuous and discrete variables for each multivariate
observation, and all the variables are jointly corre-
lated. A simple example is when each individual
in the sample has their sex and income measured.
Then, one can take a Bernoulli random variable for
sex and a lognormal distribution for income, and
these two are correlated. We believe that this is a
challenging problem.
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