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A b s t r a c t :  We consider two populations, each of 
which contains at least one object. On each ob- 
ject there are several t rai ts  measured.  We obtain a 
simple nonparametr ic  measure of concordance to as- 
sess the degree of positive relationship between the 
two populations,  and in this measure the different 
t rai ts  can be weighted. We consider two cases, one 
in which each populat ion has one object and the 
other case in which each populat ion includes more 
than one object. Using the one to one correspond- 
ing common variables, our formula gives a similarity 
measure which ranges between 0 and 1 with increas- 
ing similarity from 0 to 1. We perform a simula- 
tion to assess the sensitivity of the measure to the 
changes in the weights. When the respective vari- 
ables are widely spread out, the score obtained from 
the t ransformed values appears to be the bet ter  mea- 
surement.  

1. I n t r o d u c t i o n  

Statisticians routinely calculate the correlation be- 
tween two groups when the measurements  are sim- 
ilar, both continuous and discrete variables (e.g., 
weight and sex). Pearson (1896) presented mathe-  
matical  formula of correlation est imation and many 
papers have been published since then on the same 
topic (Falk and Well 1997, Zhenng and Matis 1994, 
Rodgers and Nicewander 1988, Nelson 1998). When 
the variables are mixed and there is no common 
distribution, the calculation of correlation between 
two groups is not possible. Others use the ranks of 
the variables instead when the variables do not have 
common distr ibution (Steel and Torrie 1960, Good- 
man and Kruskal 1954 1963 1972, Kendall 1949b). 
But the ranking can be done for the same type of 
variables; therefore, the mixed variables can not be 
ranked. 

No method  is available to obtain relation between 
two groups with mixed variables. We present a 
simple method to calculate similarity between two 
groups when each group includes mixed variables 

and when one variable in tha t  group matches to an- 
other variable in the second group. Our method  can 
be used only when such one to one matching is pos- 
sible for the variables in the groups and when the 
each variable can be properly quantified to a posi- 
tive number.  

This method is useful to many areas. For exam- 
ple, one may compare two persons when they have 
common mixed variables such as weight, height, age, 
sex, race, education, and income. Similarly we may 
compare two companies of different sizes and prod- 
ucts, two countries of different populat ion and cul- 
ture, and two hurricanes of different forces and di- 
rections. It may also be applicable to form s t ra ta  in 
sample surveys, combining similar subunits.  When 
there are more traits,  the measure of similarity is 
more reliable. The proper quantification of common 
variables is very impor tan t  factor for the measure- 
ment.  

Let X 1 , . . . ,  Xn be the mixed variables of size n 
from one group. Two variables, Xi and Xj for i ¢ j ,  
in the same group are entirely different types. Some 
of the variables may be correlated as discussed in 
the  conclusion. Similarly Y1 , . . . ,  Yn are the mixed 
variables of size n in the other group. Again any two 
variables, Yi and Yj for i 5¢ J, are entirely different. 
Let Xi from the first group and Y~ from the sec- 
ond group represent the i th  c o m m o n  variables from 
the  two groups. Our measure is nonparametr ic ,  and 
really does not require existence of any moments.  
However, if inference is required about  the concor- 
dance measure, then one would require the mean and 
variance of the mixed variables in each group. Then, 
we assume tha t  the two common variables, Xi and 
Yi have common expected value and variance. 

This concept is extended to two populations with 
more than one object. In this case we construct  the 
possible pairs of objects between the two groups, and 
calculate the measure of concordance for each pair. 
The  sum of all the concordance from these pairs is 
divided by the number of the pairs to measure  the 
similarity between the two groups. 

We discuss a simple method to calculate the con- 
cordance between two groups with mixed variables. 
In Section 2, we describe the measure  of concordance 
when each group includes only one object. In the  
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second par t ,  we ex tend  the  compar i son  of two groups  
when  the  each group  includes more  t h a n  one object .  
Finally, we discuss how to t r a n s f o r m  c o m m o n  vari- 
ables to ob ta in  b e t t e r  measures  when  the  c o m m o n  
variables are widely spread  out.  In Section 3, we 
include some c o m m e n t s  and  possible extension.  

2. M e a s u r e  of  C o n c o r d a n c e  

First ,  we cons t ruc t  a measu re  of concordance  to 
compare  two groups,  each including one objec t  (e.g., 
two persons) .  Second we cons t ruc t  a measure  of con- 
cordance  be tween  two groups,  each including more  
t h a n  one object .  Last  sect ion discuss how to t rans-  
form the  variables to have be t t e r  measures  when 
these  variables are wide spread.  In each section, we 
include examples  to i l lus t ra te  the  measu re  of con- 
cordance.  

2.1 C o m p a r i s o n  o f  T w o  G r o u p s  w i t h  O n e  
O b j e c t  

Let X1, X 2 , . . . ,  X n  and  Y1, Y 2 , . . . ,  Yn be the  mixed 
variables of the  objec t  in group  X and  group  Y, 
respect ively in the  popula t ion .  The  cor responding  
sample  variables are x l , • •.,  Xn and  Yl , • •.,  Yn f rom 
each group.  Here xi and  Yi are c o m m o n  variables  
for i = 1 , . . . ,  n. For instance,  in compar ing  two per- 
sons, x l and  yl are races for the  two persons,  x2 
and Y2 are educat ion ,  x3 and  Y3 are sex, x4 and  Y4 
are weights and so on. These  variables could also 
be ranks,  percents ,  counts,  measuremen t s ,  nominal  
variables,  and  may  take  any o ther  types  t h a t  are 
quant i f iable  wi th  posi t ive numbers .  

Let (Xl, Yl), . . . ,  (xn, Yn) be the  n pairs  of c o m m o n  
variables f rom the  two groups  with c o m m o n  expec- 
t a t ion  and  variance.  We assign a weight  to each pair.  
Define the  weight  Wi for i = 1 , . . . ,  n wi th  the  con- 
s t ra in t  Ein=l W i -- 1. The  individual  weights  could 
be different according to  its i m p o r t a n c e  a m o n g  the  
n t ra i t s  in the  overall picture.  For t he  equal  weight,  
Wi = 1In for each te rm.  

W h e n  p rope r  weights  are assigned to each term,  
we measu re  t he  concordance  as t he  weighted average 
of ra t ios  of c o m m o n  pa r t  of Xi and  Yi divided by the  
square  root  of Xi and  ~ .  The  c o m m o n  pa r t  of two 
variables may  be considered as some form of "corre- 
lat ion" be tween  them.  W h e n  xi > 0 and  Yi > 0 for 
all i and one to  one cor respondence  is possible for 
the  c o m m o n  variables  be tween  two groups,  we define 
the  measu re  of concordance,  deno ted  by CN(x,y) ,  

n min ( z i ,  Yi) 
C N ( x ,  y) - E Wi . (1) 

W h e n  all t e rms  are considered similar in impor tance ,  
we may  assign the  same weights  (i.e.,Wi = l / n )  
to  all te rms.  W h e n  the  m i n i m u m  value is xi (i.e., 
min(x~,y~) = x~) for all i, t he  t e r m  under  t he  
s u m m a t i o n  sign in the  equa t ion  (1) is simplified to 
C N ( x ,  y) - ~ i  Wi(v /x i /Yi )"  Similarly, when  the  
m i n i u m  value is Yi (i.e., m i n ( x i , y i )  - Yi) for all 
i, it reduces  to  C N ( x ,  y) = ~ i  Wi (~ /y i / x i ) .  Thus,  
CN(x ,y)  is a weighted average of t e rms  in (O,1]. If 
t he  two groups  are the  same  (i.e., xi = Yi for all i), 
C N ( x , y )  = 1 and  C N ( x , y )  --~ 0 when the  differ- 
ence be tween  xi and  Yi becomes  large for all i. We 
note  t h a t  the  CN measu re  is b o u n d e d  by 0 and 1 
(i.e.,0 < C N ( x ,  y) <_ 1). 

T h e  CN measu re  (1) has o ther  proper t ies .  It is 
invar iant  to  scale, it is not  invar iant  to location.  
C N ( a x ,  ay) = C N ( x , y )  for any scalar  a > 0, bu t  
C N ( x  + a, y + a) ¢ C N ( x ,  y) for any loca tor  a > 0. 
Let  y = ax for a scalar  a. T h e n  C N ( x ,  y) = 1/x/-d 
f o r d >  1 a n d C N ( x , y )  = v / -d fo r0  < a <  1. 

Since there  is only one observa t ion  from each ob- 
ject  and  two objec ts  are different,  the  var iance  of 
NC(x ,y)  e s t ima to r  is not  available. The re  may  be 
corre la t ion be tween  some of x l , .  • . ,  xn and  similarly 
for Y l , . . . ,  Yn. If the  group  includes more  t h a n  one 
objec t  as in Section 2.2, we can obta in  the  var iance  
as seen in Section 2.2. 

In pract ice,  t he  value x (or y) in d e n o m i n a t o r  may  
be zero and  in this  case CN measu re  is undefined.  
To avoid such cases, t he  x (or y) can be rescaled to 
make  it different from zero, adding  a small  number  
to  each x and  y. It may  also h a p p e n  to have negat ive  
values, and  we may  adjus t  t h e m  similarly adding  a 
cons tan t  n u m b e r  to x and y. 

E x a m p l e  1 

W i t h  the  seven mixed  variables (i.e., height,  
weight,  age, sex, race, income, educa t ion) ,  we can 
measu re  the  concordance  of John  and  Paul.  The  re- 
spect ive c o m m o n  variables  for John  and  Paul  are 
(6', 5'), (120 lbs, 110 lbs), (25 yrs, 30 yrs), 
(male, male),  (white,  black),  (50 k /y r ,  40 k /y r )  
and  (college g radua te ,  high school g radua te ) .  Here 
the  m e a n  and var iance  of t he  mixed  variables for 
each person  is meaningless ,  and  it is not  sensible to 
calcula te  the  Pea r son ' s  corre la t ion coefficient. To 
quant i fy  sex, 1 for male  and  2 for female; similarly, 
1 for whi te  and  2 for black; 4 for college g r a d u a t e  
and  2 for high school g radua te .  These  indica tors  are 
quant i f ied  by (6, 5), (120, 110), (25, 30), (1, 1), (1, 
2), (5, 4), (4, 2). W h e n  equal  weights  are assigned 
to  these  7 variables (i.e., 1/7),  CN measu re  of con- 
cordance  be tween  the  John  and  Paul  is 
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v/~0/120 ... x/f /n) 0.st. ) c x  - ~ ( d ~ +  + + - (2 

However, suppose tha t  we want to emphasize the 
race component  in their  relationship, and one half 
of the weight is assigned to race and the remaining 
half is evenly divided to the six variables. Then,  the 
CN measure  of similarity is 0.80, which is reduced 
from 0.87 with the equal weight case. 

In addition, our measure of concordance can be 
interpreted as the correlation between two sets of 
variables if they are expected to have a large pos- 
itive correlation. When  two groups are highly cor- 
related with Pearson's  correlation coefficient greater  
than  0.80 and when each group includes the mea- 
surements of same type, the CN measure  is almost 
the same as Pearson's  correlation coefficient and CN 
rank correlation is same as Spearman 's  rank corre- 
lation. 

Example  2 

We compare the CN measure of the da ta  to two 
methods  often used to measure correlation. Pear- 
son's correlation and Spearman 's  rank correlation. 
We obtain the ranks for the numbers  of eggs laid 
and similarly for the number of ovulated follicles, 
and paired them for 14 hans. Then we calculate 
the rank correlation by CN methods  and Spearman 's  
correlation. 

In studying the use of ovulated follicles in deter- 
mining eggs laid by ring-necked pheasant  (Kabat  et 
al., 1948), the eggs laid and ovulated follicles of 14 
hans are: (Eggs, Follicles) = (39, 37), (29, 34), 
(49, 52), (28,26), (31, 32), (25, 25), (49, 55), 
(57, 65), (51, 44), (21, 25), (42, 45), (38, 26), 
(34, 29), (47, 30). 

variables which are expected to have a modera te  to 
high correlation. 

Example  3: A Small Scale Simulation 

We use the da ta  in Example  1 to study the sen- 
sitivity of CN(x,y) to changes in the weights Wi. 
We generate weights from the Dirichlet distribution 
with mean 1/7 for the  seven cells and we allow r to 
vary when r / 7  are the parameters  of Dirichlet distri- 
bution. Small r reflects very heterogeneous weights 
and large r very homogeneous weights. We allow r 
to vary: r = 5, 10, 25, 50, 75, 100, 200, 400. At 
each of these eight design points, we generate 100 
sets of weights and computed CN(x,y).  

In Table 2, we pro_sent a five number summary  
of CN(x,y) at each value of r.  As r varies from 5 
to 400, the average of CN(x,y) decreases smoothly 
from a range of (0.74, 0.98) to (0.86, 0.89). The 
values of CN(x,y) fluctuate about  0.87, the value 
corresponding to equal weight case. Thus,  if the 
weights are varying widely, the variation in CN(x,y) 
is moderate,  and if the weights are very similar (1/7), 
there is virtually no variation of CN(x,y) values. 

Table 2: Five number summary  of the CN measure 
by ~- 

"r Min Q1 Q2 Q3 Max 

5 .74 .84 .87 .90 .98 
10 .78 .84 .87 .90 .94 
25 .81 .86 .87 .88 .93 
50 .83 .86 .87 .88 .91 
75 .84 .86 .87 .88 .90 
100 .84 .86 .87 .88 .90 
200 .85 .87 .87 .88 .90 
400 .86 .87 .87 .87 .89 

Table 1: Comparison of CN measures with other 
correlation coefficients 

Methods correlation 

Pearson 0.92 
CN 0.92 
CN rank 0.87 
Spearman Rank 0.87 

Table 1 shows tha t  Pearson's correlation coeffi- 
cient and the CN measure are the same. We also 
present Spearman 's  rank correlation and the CN 
measure for the ranked data; these are the  same. 
This shows tha t  the CN measure is a sensible mea- 
sure of the relationship between two commensura te  

2.2 Comparison of Two Groups with More 
Than One Object 

When each group includes more than one object and 
each object is characterized with mixed variables as 
discussed, the work in Section 1 can be generalized 
to accommodate  this complex case. 

Suppose tha t  group A includes objects a l , . . . ,  am 
and group B includes objects b l , . . . , b i n .  There 
would be m 2 pairs of (ai, bi) for i = 1 , . . . ,  m 2. The  
object ai of the group A is characterized by a string 
of n mixed variables, x i l , . . . , x ~ n ,  and the object 
bi of the group B is characterized by a string of 
Y i l , . . . ,  Yin mixed variables. The  common variables, 
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xij and Yi j ,  for the j- th pair, j = 1 , . . . ,  n, from the 
i-th pair, i = 1 , . . . ,  m 2, are identified first. When 
proper weights are assigned to each pair for the i- 
th group, the CN measure of equation (1) can be 
extended to measure the similarity between the two 
groups A and B. 

1 min(xi~,_ yi__j) 
CN(A,  B) - m2 ~ ~ Wj ~ Y i j )  (3) 

i = l , m  z j = l , n  

The n weights are same for all i, then we can 
reduce the weights Wiy to Wj with constraint 
~j=l ,n  Wj = 1 where we may use equal weight 
Wj = 1/n for all j .  The measurement CN(A,B) 
of similarity is also bounded by 0 and 1 as we have 
discussed in Section 2.1. 

E x a m p l e  4. 

Two groups, A and B, of students are compared 
where group A has 3 students from the freshmen 
class and group B has 2 students  from the se- 
nior class. We want to measure the similarity be- 
tween these two groups according to the 6 vari- 
ables. Group A includes three students identi- 
fied with characteristics (19, M, W, 1st, 4.0, En- 
glish), (18, F, W, 1st, 4.0, Sociology), and 
(19, M, W, 1st, 4.0, History) for their age, sex, 
race, years in college, grade point average, and major  
field. Similarly, group B includes two students with 
characteristics of (21, F, B, 4th, 2.0, math)  and 
(22, M, B, 4th, 2.0, physics), respectively for their 
age, sex, race, years in college, grade point average, 
and major  field. 

Quantifying is a problem when the variable is 
nonnumeric. Sex may be indicated by 1 for male 
and 2 for female, and similarly race by 1 for white 
and 2 for black. It is not easy to quantify the major  
field, and there may be many ways we to do so. 
Liberal arts and sciences may be differentiated by 
two digit number,  10 for liberal arts and 20 for 
science, and within each field the major  may be 
designated by one digit numbers 1 for English, 2 
for Sociology, and 3 for History. According to this 
rule, we may quantify English major  with 11, So- 
ciology major  with 12, and History major  with 13. 
Similarly, we can use 21 for Mathematics  and 22 for 
Physics. Wi th  these numeric indicators, group A has 
(19, 1, 1, 1, 4.0, 11), (18, 2, 1, 1, 4.0, 12), and (19, 1 
1, 1, 4.0, 13) for the 3 freshmen students, and 
Group B has (21, 2, 2, 4, 2.0, 21), and (22, 1, 
2, 4, 2.0, 22) for  the 2 senior students. 

There are 6 possible pairs between these two 
groups. Giving equal weights to each pair, we obtain 
0.74 for the CN measure of the two groups. Thus, 

there is at least moderate  concordance between these 
two groups. 

2 .3  V a r i a n c e  o f  C o m m o n  V a r i a b l e s  

When the variables are all commensurate,  it is pos- 
sible to measure uncertainty about  estimates of the 
CN measure; otherwise this is not sensible. For ex- 
ample, we can assume the existence of second mo- 
ments. 

Using Taylor's expansion, and assume mean 
E(xij)  = #xi, E(yij) = #vi, variance Var(xij)  = 
crzi2, Var(yi) - ay i2 and covarianceCov(x~j, yij) - 
ffij, the variance of Wjv/x i j /Y i j  of the j th  term in 

the ith group (similarly for Wj((v/yij /x~j)) ,  is given 
by 

wy 
Var(Wj ~/xij /yij ) -- A-77ff-2 [(pyi lpzi )axi 

4#yi 

~ - ( # x i l ~ y i ) O ' 2 i  ~- 20"ij ] ~- O(7~-1). 

The variances and covariance may be estimated by 
usual method of moment.  When E ( x i j ) =  E ( v i j ) =  

2 and covari- #i, variance Var(xij)  -- Var(yij) -- ~i 
2 2 Wj ai 

ance f f i j  - -  O, the variance is reduced to 2,~ " When 

the n terms are independent and the minimum value 
is zij (i.e., Yij) for all i, overall variance is the sum 
of these variances: 

W? 
' a 2 ). (4)  V a r ( C g ( x ,  y)) -- Eij~..2 i + O( T~-I 

2p~ 

When  Var(xij)  and Var(y,j) are different and 
Cov(xij, Yij) = ~rij ~ O, above variance has to take 
these into account, and keep the separate terms of 
two variances and covariance. When the minimum 
value is not decided consistently in the n terms, 
we use Var(~/x i j /y i j )  when the i j th  te rm includes 

min(xij ,  Yij) = x i j  and the Var(v /y i j /x i j )  when the 
i j th  te rm includes min(xij , Yij ) = Yij. 

2 .4  T r a n s f o r m a t i o n  o f  C o m m o n  V a r i a b l e s  

The quanti ty X/~/y may often overestimate or un- 
derest imate the real values when the ranges of all 
common values like x and y are spread widely or 
narrowly, while these specific x and y are within a 
narrow range or wider range. To correct this prob- 
lem, first we find the minimum and maximum val- 
ues of common variables. We subtract  the common 
min imum from x and y variables and divide this re- 
sulting difference by the difference between common 
max imum and minimum values. Then, we apply the 
CN measure to these transformed variables. 
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Suppose tha t  we know the maximum value B and 
minimum value A, and tha t  95 percent of all com- 
mon objects are greater than this minimum value. 
we  dj st ( y -  A)/(B- A) 

and a term of CN measure is \/~Y-~A ( x - A ) / ( B - A ) ,  
y 

instead of X/~ /x  for x > y. The adjusted ratio is a 
more representative value for the relationship of x 
and y. We need to know the minimum value A for 
this adjustment.  

E x a m p l e  5. 

In Example 1, we have the seven pairs of common 
variables: (6, 5) for height, (120, 110) for weight, 
(25, 30) for age, (1, 1) for sex, (1,2) for race, (5, 4) 
for income, (4, 2) for education. The first pair is 
the heights of two persons. The major  problem is 
the find the minimum height of people. For now 
suppose tha t  the minimum height is 4 feet. Then 
the transformed heights are [ ( 5 -  4 ) / ( 6 -  4) = 1/2 
and v / l / 2  = 0.71. Similarly setting the minimum 
weights of people to 90 lbs, the weight (120, 110) be- 
comes ( 1 1 0 -  9 0 ) / ( 1 2 0 -  90) = 2/3 and X//2/3 = 0.82 

instead of V/110/120 = 0.96. The minimum of age 
is set to 1, then adjusted term for ages (30, 25) 
is V / 2 5 - 1 / 3 0 - 1  = 0.91. Male is 1 and female 

is 2 and V / 1 - 1 / 2 - 1  = 0. But, when both sex 
are male or female, we define that  X/~/0 = 1 for 

the same sex, and V~/1  = 0 for different sex, 
and similarly for race. The minimum for income 
are set to 1 and the incomes (4, 5) provides a CN 
term of V / 4 - 1 / 5 - 1  = 0.87. For the minimum 
of education is set to 1, the common education 
variables (2, 4) gives V / 2 -  1 / 4 -  1 =  0.58. 

Using these transformed variables, CN(John,  
Paul) is: 

1(0 71 + 0.82 + 0.91 C N ( J o h n ,  Paul)  - 7 • 
+ 1 + 0 + 0.87 + 0.58) = 0.70 
Previous value for C N ( J o h n ,  Paul)  was: 

1(0 91 + 0.92 + 0.91 C N ( J o h n ,  Paul)  - 7 • 
+ 1 + 0.71 + 0.89 + 0.71) = 0.87° 
The traits tha t  incur most changes are 0.71 re- 

duced to 0.00 for race, the 0.71 reduced to 0.58 for 
education, 0.91 reduced to 0.71 for height, 0.92 re- 
duced to 0.82 for weight. These reduced values ap- 
pear more reasonable than the original scores. Hence 
the new CN measure may be a better  estimate. 

E x a m p l e  6. 

In Example 4, the age, sex, race, years in college, 
grade point average, and major  field are the charac- 
teristics of students.  We may set the minimum and 
maximum of these values at (1, 90) for age, (1, 2) for 

sex, (1, 2) for race, (1,4) for the years of education, 
(1, 4) for grade point average, and (10, 29) for major  
field. 

Group A: (19, 1, 1, 1, 4.0, 11), (18, 2, 1, 1, 4.0, 
12), and (19, 1, 1, 1, 4.0, 13) for three freshmen 
students, and Group B: (21, 2, 2, 4, 2.0, 21), and 
(22, 1, 2, 4, 2.0, 22) for two senior students. By 
transforming these values, we have Group A: (18, 0, 
0 , 0 , 3 ,  1), (17, 1 , 0 , 0 , 3 , 2 ) ,  and (18 ,0 ,0 ,  0, 3, 1) 
for the three students, and Group B: (20, 1, 1, 3, 1, 
12), and (21, 0, 1, 3, 1, 12) for the two students. 

The CN values of six pairs are" (V/18/20, X/~/1, 

X / - ~ ,  X / ~ ,  X / i ~ ,  V /1 / l l ) ,  
(@17/20, lx/i-~, 0 x / ~ ,  X / - ~ ,  X / ~ ,  V/2 / l l ) ,  

(@18/20, 0X/~ ,  0x/~f, X / ~ ,  l x / ~ ,  @3/11),  

(@18/21, 0X/-0~-6 , 0 V ~ ,  0 V ~  , l x / ~ )  , V~/12) ,  

(@17/21, 0x/-@-f , X / ~ ,  X / ~ ,  X / ~ ,  @2/12),  

(V/18/21, 0x/-~, 0@-~, 0V/-0~, X / ~ ,  V/3/i2)  • 

The quanti ty V/-0-/0 is set to 1 to indicate that  the 
two numbers indicate the same. The average sum of 
these is CN(A,B) = (1/6)(1/7)[1.83 + 2.93 + 2.05 + 
2.80 + 1.89 + 3.01] = 0.35. The original score of 
0.743 is reduced considerably. This happens mainly 
because the CN terms of opposite sex or race is zero. 

3.  C o n c l u s i o n  

We are not aware of any method to calculate the 
similarity between two objects with mixed variables. 
When there are no common variables (or distribu- 
tions) as seen in the examples, we can not use the 
usual correlation methods. Those mixed variables 
may be nominal values, measurements,  counts, and 
qualities tha t  indicate an object 's characteristics. 
When  the variables for each object are mixed, we 
present a way to calculate the concordance between 
two objects. We extend this concept between two 
groups to include more than one object. 

When the variables are similar in each object and 
Pearson's correlation r > 0.8, we found tha t  the 
CN measure is approximately the same as the Pear- 
son's correlation coefficient for continuous variables 
and tha t  the CN rank measure is about same as 
the Spearman's  rank correlation when the ranks are 
used for CN measure. The transformed variables 
may provide similar scores as those of Pearson's cor- 
relation coefficient even if the Pearson's correlation 
r < 0.8. 

One problem is the correlated variables. The few 
variables of an object may be correlated. For exam- 
ple, the income and education or height and weight 
of a person might be correlated. If such correlation 
exist, an extra adjustment  is needed. 
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An interesting problem is how to compare para- 
metrically two populations with mixed multivariate 
characteristics. For example, a random sample of 
multivariate observations is obtained from one popu- 
lation, and an independent random sample from an- 
other population and these samples are to be used to 
compare the two populations. There are both con- 
tinuous and discrete variables for each multivariate 
observation, and all the variables are jointly corre- 
lated. A simple example is when each individual 
in the sample has their sex and income measured. 
Then, one can take a Bernoulli random variable for 
sex and a lognormal distribution for income, and 
these two are correlated. We believe that  this is a 
challenging problem. 
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