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1. I n t r o d u c t i o n  

Item nonresponse occurs when a sampled unit coop- 
erates in the survey but fails to respond to some of 
the items. To compensate for item nonresponse at 
the processing stage, various imputat ion procedures 
have been used in practice to fill in missing item 
values. Hot deck imputat ion is the imputat ion pro- 
cedure in which the value assigned for a missing item 
is taken from respondents in the current sample. 

Many of the hot deck imputat ion procedures start  
with a division of the sample into cells based on aux- 
iliary variables known for both the respondents and 
nonrespondents. We will restrict our attention to 
the case where the imputed values are selected with 
a random mechanism from a set of donors in the 
same cell. This cell is called the imputation cell. 

In spite of its convenience, treating the imputed 
values as if they are true values and making infer- 
ence using standard formulas should be used with 
caution. The standard variance estimators, in par- 
ticular, lead to underestimation because the addi- 
tional variability due to missing values and imputa-  
tion is not being taken into account. Rubin (1987) 
advocated multiple imputat ion to estimate the vari- 
ance due to imputation.  Multiple imputat ion is a 
model-based approach in that  models are specified 
for the study variable, conditional on the realized 
sample and the respondents. 

Rao and Shao (1992) proposed an adjusted jack- 
knife variance estimator in the context of the model 
randomization approach, where the population val- 
ues are treated as fixed and inferences are based on 
the sampling distribution generated by repetitions of 
the sample selection procedure and a model for re- 
sponse probabilities. In this paper, we propose a new 
replication variance estimator for hot deck imputa-  
tion that  can be used for a wide range of statistics 
and hot deck imputat ion methods. 

2. P r e l i m i n a r i e s  

A population of N identifiable elements is denoted 
by U -  {1 ,2 , . . . ,N} .  A subset of the population is 
selected and called a sample. The selection of sam- 
ples uses a set of probability rules called the sampling 
mechanism. Let A denote the set of indices for the 
elements in the sample. 

Let Y/ denote the value for the i-th unit of some 
characteristic of interest. Let the population vector 
be 

Y - ( Y 1 , Y 2 , " "  , Y N )  . 

Let the population quantity of interest be 0N = 
ON (Y) and let {) be the estimator of ON based on 
the full sample. 

An estimator of the variance of {) is the replicate 
estimator 

L 

k-1 

where ~)(k) is the estimate of 0 based on the observa- 
tions included in the k-th replicate, L is the number 
of replicates, and ck is a factor associated with repli- 
cate k determined by the replication method. 

A 

When the original estimator 0 is a linear estimator 
of the form 

0 -  (2) 
i C A  

the k-th replicate of {) can be written as 

i C A  

where w} k) denotes the replicate weight for the i-th 
unit of the k-th replication. Then, 

E w}k) - E wi, k - 1, 2 , . . . ,  L. (4) 
l E A  i C A  

Let us assume that  the finite population U is 
made up of G imputat ion cells. Within each cell 
g, g = 1, ..., G, the elements are identically and in- 
dependently distributed with mean #g and variance 
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2 i.e. Og 

"2 (5) 

where Ug denotes the set of indices for the g th im- 
putation cell. We call the model (5) the imputation 
cell model. 

The model-based approach in survey sampling 
makes inferences based on the conditional distribu- 
tion of Y given the sample outcome A. This con- 
ditional distribution is determined by the sampling 
mechanism as well as by the distribution of the vari- 
able Y. The dependence on the sampling mecha- 
nism can be avoided if the sampling mechanism is 
ignorable. Let the distribution of Y be denoted by 
Z; (Y) and call £ (V) the superpopulation model. 
Then, the sampling mechanism is ignorable under 
the superpopulation model if and only if 

L; (Y I A) = z2 (Y) ,  (6) 

where Z; (YI  A) is the conditional distribution of Y 
given the sample outcome A. 

Under the existence of nonresponse, let AR and 
AM denote the set of indices of the respondents and 
nonrespondents, respectively. Define the response 
indicator function 

1 Y/ responds 
R i -  0 Y/ does not respond 

i E A  

(7) 

and 
R = (Ri;i~_ A) .  

The distribution of R is called the response mecha- 
nism. The response mechanism is usually unknown 
and is specified by a model. Conditional inference 
for Y given R requires the specification of the re- 
sponse mechanism. 

Let £ (Y I A, AR) be the conditional distribution 
of Y given the sample outcome A and the response 
outcome AR. Then, the response mechanism is ig- 
notable under the model if 

£ ( Y I A ,  A R ) = £ ( Y I A ) .  (s) 

If the sampling mechanism and the response mech- 
anism are ignorable, then the imputation cell model 
still holds for the responding units as well as for non- 
respondents. That  is, 

i E Ug. (9) 

On the other hand, if one assumes the actual respon- 
dent observations satisfy (9), no other assumptions 

are necessary. Rubin (1976) and Scott and Smith 
(1977) discuss ignorability. 

The hot deck imputation method that we consider 
is based on imputation cells. Tile hot deck imputa- 
tion method assigns the value from a record with a 
response to the record with a missing value on that 
item in the same cell. The record with the response 
will be called the donor and the record with the 
missing value is the recipient. Often, the values for 
a vector of missing items are taken from the same 
donor. 

Given the values of the respondents, the proper- 
ties of the augmented sample are determined by the 
the choices of which donors go with which recipients. 
Define 

1 if }~ is used as donor for }5 (10) 
d i j  - -  0 otherwise 

f o r j E A M  and 

d = (dij;i  C AR, j  C AM).  (11) 

Then the distribution of d is called the imputation 
mechanism. 

The following class of imputation mechanisms is 
of particular interest. 

(I.1) For any missing j E AM and any responding 
l E A R ,  

Pr (dij = 1] Y ) =  Pr (dij - 1). 

(1.2) If the unit i E Ar and the unit j C AM belong 
to different imputation cells, 

Pr (dij = 1) = 0. 

(I.3) If the unit i EAR and the unit j ¢ AM belong 
to the same imputation cell, 

0 <  Pr(di j  = 1 )  < 1. 

Assumptions (1.1) to (1.3) are sufficient conditions 
for the distributions of the observations after impu- 
tation to be the same as those of the observations 
before imputation. Hence, given the imputation cell 
model (9) and the three assumptions, we have 

Y/ [ (A, AR, d) ii~ (pg, ~r~), i C Ug. (12) 

0 Variance Est imat ion after Impu- 
tation 

We consider a pairwise imputation method, where 
two distinct donors are selected for each missing 
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item. This is a special case of fractional imputation, 
proposed by Kalton and Kish (1984). We assume 
there are at least two donors in each imputation cell. 
The following assumption describes the pairwise im- 
putation method. 

(I.4) For each missing j E AM, 

E dij -- 2, 
iEAR 

where AR is the set of respondents, AM is the 
set of nonrespondents, and d i j  is the imputation 
indicator defined in (10). 

When the original estimator 0 is a linear estimator 
of the form in (2), the linear estimator based on the 
augmented sample can be written as 

OI -- E aiYi, (13) 
lEA 

where 

ai _ Ri (wi  + E O.5dijwj (14) 

is the sum of the weights of the items that are im- 
puted from unit i. If Y/ is missing, then a i  = O. 
Notice that, under ( I .2)and (I.4), 

E E ai - wi, 9 -- 1 ,2 , . . .  , G (15) 
iEAnU 9 iEANU 9 

because, by (14), 

E 
iEAnU~ 

ai = E wi + E E 0.5dijwj 
iEARAUg iEARNU~ jEAM 

-- E Wi+ E Wj 
iEARNU~ jEAMAUg 

-- E Wi " 
iEAAU~ 

For simplicity of notation, let us define 

Ag = ANUg,  g =  1 ,2 , . . .  ,G. 

In theorem 1, we establish properties of the esti- 
mator for the population total under the imputation 
cell model. The variance of the estimator is a func- 

2 This expectation is tion of the expectation of a i . 
a function of the procedure used to select donors. 
For example, with an equal probability design, the 
use of a procedure that produces nearly equal ai will 
minimize variance. 

T h e o r e m  1 Let the superpopulation model be (5). 
Assume the sampling mechanism and the response 
mechanism are ignorable, and that the imputation 
mechanism satisfies (I.I)- (I.4). Let 0 be a linear 
estimator of the form (2) constructed from the full 
sample that is design unbiased for the population 

^ 

quantity ON. Then, the linear estimator 0i based 
on the imputed sample satisfies 

E ('OI -- ON) -- 0, (16) 

Far  (Oi) -- V a t  ( ~  E Wing 

E ai cry , +E  

g=l iEAg 

Var @_r -- ON) -- 

(17) 

g=l lEA e 

} E (a] - ai) O~g (18) 

where the ai are defined in (14), A is the set of sam- 
ple indices defined in Section 2, AR is the set of re- 
spondent indices defined in Section 2, G is the num- 
ber of imputation cells, and Ag is the set of indices 
for the gth imputation cell in the sample. 

Proof .  Let the linear estimator for the full sample 
be as in (2) and let 0I be the imputed estimator. 
For any measurable set B1 and B2 in the sigma-field 
cr (Y) generated by the random variable Y, we have 

Pr (I/i E -~1, Yj E ]~21dij = 1) 

Pr (dij - 1 ]Y/, Yj) 
Pr (Y/ E B1, Yj C B2) x 

Pr (dij - -  1) 

So, by (I.1) and (I.3), 

Pr (Yi E B1,Yj E B2 I dij = 1 ) =  Pr (Yi E B1, Yj E B2). 
(19) 

Similarly, 

Pr (Y/ e/31,  Yj E B2 I d, 5 = 0 ) =  Pr (Yi e/31,  Yj E B2). 
(20) 

Hence, from (19) and (20), 

Pr (k) E B, ,Yj  E B2 [ d i y ) -  Pr (Y/ E B~,Yj E B2). 
(21) 
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To show the mean part (16), by (21), 

E(OIIA, AR, d) 
G 

- E E aiE(Y/ ]A, AR, d) 
g=l iEAs 

G 

: ~2  Z a~E (~ I A, A ~ )  
9=1 iEA~ 

Under model (5), the ignorable sampling mecha- 
nism, and the ignorable response mechanism, we 
have 

E (0I i A, A/i:, d) 
G 

- E E ai~ 
g=l iEAg 

G 

g=l iEAe 

(22) 

where the last equality comes from (15). Thus, by 
the design unbiasedness of 0, 

E (0 I )  -- E { ~  (~)I I A , A R , d ) }  

So, (16)is proved because ~ a  g=l ~ieAnU~ wilts is 
design unbiased for E (0s). 

For the conditional variance of 0I, by (13), 

Var {0I ] A, AR, d} 

= E ~ aiajCov (Yi, Yj I A, AR, d) 
iEAjEA 
G 

_ a i ( r g ,  

g=l iEA~ 

where the last equality comes from (21). 
A 

For the total variance of Oi , note that 

Vat (0I) -- Vat { "  (OI I A, AR, d ) }  

+E {Var @I I A, AR, d)}. (24)  

Inserting (16) and (23)into (24), the result (17) fol- 
lows. Now, 

Var (Oi -- ON [ A, AR, d) 

= Vat (0, I A, AR, d) 

-~o~(~i,o~l~,~,d) 
+Vat (ON I A, AR, d). (25) 

Note that, for ON -- }-~iN=l Yi, 

Coy ('di , 0N ] A, AR, d) - 

and 

Var (ON [ A, AR, d) - 

G 

E E  
9=1 iEANUg 

G 

E E 4  
g=l iEUg 

2 
ai Srg 

So, from (25), 

,a~(~,-O~, I ~ ,~ ,a )  
G G 

- -  E E (a~ - 2ai) ~ -4- E E cr~ 
g=l iEAAUg 

Note that, by (15), 

- 

G 
~ E E  

g=l iEAnU~ 

g=l iEAnUg 

g=l iEU~ 

E E wirrg 
g=l iEAg 

G 

E E 4  
g=l  iEU~ 

C } 
2 

2 + E E ~ g  ( a f -  2a~)~ 
9=1 iEUg 

(a~ - a~) ~ , 

So, 

(26) 

Therefore, using the decomposition (24) applied to 
f . .  

O I -  ON, the result (18) follows. • 

If we treat the imputed values as if they are true 
values and apply the standard replication variance 
estimator VjK in (1), then the naive variance esti- 
mator can be expressed as 

L 2 
V J K -  E C k  (O~k)--0I) (27) 

k--1 

07 ) - ~ al~)~ (2S) 
iEA 

where 

with 

ai + E 
jEAM 

and t)i is defined in (13). The expectation of the 
naive variance estimator is given in the following 
theorem. 
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T h e o r e m  2 Let the assumptions of Theorem 1 
hold. Assume the jackknife variance estimator VjK 
for the full sample is design unbiased for the variance 
of O . Then, the naive jackknife variance estimator 
Via- applied to the augmented set satisfies 

z(G~) _ 

9=1 i6A~ 

+ E E  
k=l = i6Ag 

2} Crg . 

(8o) 

(k) is the k-th where ai is defined in (1~) and and a i 
replication version of a,: defined in (29). 

Proof .  We write 

z{vL} 
= E{E(V]~,~ [A, AR, d)} 

- -  J~' {J~' [ k C k  (O~k) -- 0I)2 I A'Atg"d] } 

Observe that 

(3~) 

E [~Ck (oik) 0i )2  ] - IA, AR, d 
k=l 

L 
-- ~ c k  [E (O~k) OI I A, AR, d ) ]  2 

k=l 
L 

-Jr-ZckVar (Oi k, - Oi I A, AR, d ) .  (32) 
k=l 

Under the ignorability of the sampling and the re- 
sponse mechanism and the assumption (I.1)-(I.4) of 
the imputation mechanism, 

G 
E(t}~ k ) - 0 ,  I A, AR, d ) - - E  Z (w5 k > - w j )  pg 

g=l j6Ag 

and 

G 
Var (0~ k) - OI I A, AR, d) - Z Z (alk) 

g--1 i6A~ 

2 ") 
- ~i ~a. 

Now, define 

G 

9=1 i6A~ 
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the estimator of the same functional form as 0 with 
the means #a replacing the response variable Y/, i E 

Ug. The estimators t) and 0 are identical whenever 
%~ - 0. The jackknife variance estimator applied to 

. .  

0 can be written as 

Z ek -- -- 
k--1 k=l g=l j 

where ~(k) is the k-th replicate of t)'. By the design 
unbiasedness of the jackknife variance estimator ap- 
plied to ~/, we have 

= 

g=l i6Ag 
(aa) 

where the expectation and the variance are cal- 
culated with respect to the sampling mechanism. 
Therefore, by (31), (32), and (33), we have (30). 

By Theorem 1 and Theorem 2, we can calculate 
the bias of the naive variance estimator under the 
imputation cell model. The bias of VIK is 

B i a s - F .  E ck - a i )  - a ~  (rg 
-- i6Ag k=l 

(34) 

2 For each To adjust for the bias, we must estimate cry. 
missing item j E AM, we have two distinct imputed 
values with each having weight 0.5wj. We treat each 
pair as a pseudo stratum and apply the two-per- 
stratum jackknife method to the pseudo strata in 

2 cell 9 to estimate Crg. 
To illustrate this, assume Ys and Yt are two dis- 

tinct donors for the missing item Yj. If the Y~ in 
pseudo stratum j E AM is deleted, then the jack- 
knife replicate for t)x can be written as 

4 -5~) = ~ a ~  + 0 . 5 ~ 5 ~  - 0.5~jr~ 
lEA 

(as) 

where 0~-js) is the jackknife replicate of 01 when the 
element s in the pseudo stratum j C AM is deleted. 
So, for j E AM N Ug, 

{( )2 } 
E 0~-J~) 0I IA, AR, d --0.  2 2 - 5wj(rg. (36) 



The fact that the bias term (34) is also a linear func- 
tion of (rgS suggests a bias-corrected variance estima- 
tor. 

The suggested variance estimator is of the form 

Vcl - VJK + ~ ~ dijqji  (o~-Ji) 01) 2 (37) 
jEAM iEAR 

where dij is the imputation indicator function de- 
fined in (10) and the replication factors qji are to be 
determined. Note that 

{ ( )2 
jEAM lEAR 

G 
2 2 

g=l jEAMNU 9 iEAI:¢ 

[ A, AR, d 

If we want to estimate the variance of OI, then the 
determining equation for qji with dij - -  1 is 

L 
Z c k  (a}k) ai) 2 2 -- + 0.5 ~ dijqjiwj -- a~. 
k=l jEAM 

A solution is 

qji -- 
2 2 (k) 2 

0.5 ~ di jwj  a i - ~ Ck a i -- ai . 
jEAM k=l 

(3s) 

If we want to estimate the variance of OI -- ON with 
ON - }--~N=I Y), then a solution is 

qji -- 

-1 

0.5 Z di jwj  
jEAM 

× al 
k=l 

- -  a i  

Several simplifications of the suggested variance 
estimator in (37) are possible. Since the two squared 
jackknife deviates in a pseudo stratum have the same 
expectations, deleting only one element per each 
pseudo s t ratum reduces the number of replications. 
Then, the variance estimator can be written as 

g c 2 -  VJK -n t- ~ qj ( o ~ J ) -  01) 2 (39) 
jEA~  

where qj = qjs + qjt with qjs and qjt are calculated 
from (38) when Ys and Yt are two distinct donors 

for the missing item Yj. In this case, 0~ j) - t)~ -is) 
defined in (35). 

4.  C o m m e n t s  

The model assumptions are those commonly made 
for the imputation cell model. Nontheless they are 
relatively strong assumptions. They are used in the 
proof of mean unbiasedness and in an even stronger 
way in the proof of variance unbiasedness. 

Modest modification of an existing single imputa- 
tion program is required to implement the fractional 
imputat ion procedure. In practice, we would employ 
a scheme such that donors are used approximately 
an equal number of times and such that a donor 
is never used twice for the same recipient. Given 
the data set, all estimation is conducted with the 
single data set. Under the model, all functions of 
the Y-variable, including the distribution function, 
are consistently estimated. Once the weights qj a r e  

determined, variance calculation can be carried out 
with a program such as WesVarPC (1996). No ad- 
ditional programming is required. 

The variance estimation procedure is relatively ef- 
ficient because the degrees of freedom for the esti- 
mation of the imputation variance is equal to the 
number of recipients. Of course, one can reduce the 
number of replicates if desired. 
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