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1. INTRODUCTION 

Most surveys suffer from total and/or item nonresponse. 
Total nonresponse is experienced when all the survey 
items are missing for at least one unit in the sample and 
is generally compensated for by using nonresponse 
adjustment weights. Item nonresponse occurs when some 
but not all items are missing for one or more sampled 
units. It is generally compensated for by using imputation 
methods. The focus of this paper will only be on item 
nonresponse and imputation. 

normality assumption and will present an estimation 
method that is robust against bad specification of the 
error distribution and, to some extent, against bad 
specification of the model involving the variable of 
interest. 

in section 2, the problem is more precisely defined and 
some notation is introduced. The third section contains 
different estimators of a population mean under different 
hypotheses concerning the response mechanism and the 
data distribution. In section 4, the results of a simulation 
study comparing the estimators described in the third 
section are presented. Finally, the last section contains a 
brief discussion. 

When the probability of responding to a given item in a 
survey does not depend on unobserved values, as it is the 
case when it depends on an auxiliary variable observed 
for all units of the sample, then nonresponse is said to be 
ignorable. In all other cases, nonresponse is 
nonignorable. It happens when the response probability 
of a given unit depends on the value of the variable of 
interest only observed for part of the sample. Readers are 
referred to Little (1982) for a more formal definition of 
the concepts of nonignorable and ignorable nonresponse. 
In practice, it is often assumed that nonresponse is 
ignorable. This assumption can, however, be erroneous. 
For example, when income is measured in a survey, it is 
realistic to believe that individuals with a low income are 
more likely to be nonrespondents to an income item than 
individuals with a high income, Or vice versa. 

In estimating a mean or a total, using techniques 
appropriate for ignorable nonresponse when nonresponse 
is actually nonignorable can lead to a severe bias. Few 
statistical methods dealing with nonignorable 
nonresponse are available. For ratio imputation, 
Rancourt, Lee and S~irndal (1994) propose simple 
correction factors that reduce bias when estimating a 
mean. Greenlees, Reece and Zieschang (1982) model the 
response probability and the variable of interest jointly, 
using the maximum likelihood method to estimate 
parameters of the models. This method, however, is 
based on the assumption that errors, in the model 
involving the variable of interest, are normally 
distributed. This assumption can be difficult to test when 
nonresponse is nonignorable. 

This paper will propose a simple way of testing the 

2. NOTATION 

In the following, we want to estimate the mean of the 
variable Y for a population P. First, a sample S is selected 
from the population. Then, the survey is conducted and 
the variable Y is only observed for part of the sample S. 
The sample of respondents is denoted by R and the 
sample of nonrespondents is denoted by O. It is also 
assumed that we have one variable, X, observed for all 
units in the sample S and correlated with Yo 

The estimator of the population mean, ~t : ~_,i~PYi/N, 
where N is the population size, can be obtained by 
imputing missing values: 

, Z i + R W i Y i + Z i ~ O w i r i  * 
~11 = , (2.1) 

~ i e O  W i 

where w i are the sampling weights corresponding to the 
inverse of the selection probabilities and Yi*  are imputed 
values for the nonresponding units. For simplicity, it will 
be assumed, in the following, that the sampling weights 
are constant for all the units in the population. The 
sampling weights w i can thus be removed from equation 
(2.1). 

3. ESTIMATION METHODS 

This section is devoted to developing expression (2.1) 
under different hypotheses concerning the response 
mechanism and the data distribution and to describe 
appropriate estimation methods. Section (3.1) considers 
the case of an ignorable response mechanism and section 
(3.2) deals with a nonignorable response mechanism. 
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3.1 Ignorable responsemechanism 

A very simple ignorable response mechanism is one in 
which all the units in the sample have the same response 
probability and is called the uniform response 
mechanism. Under such a response mechanism, even 
imputing the mean of respondents to the nonrespondents 
will produce a valid estimator of the population mean. 
This estimator can, however, be strongly biased in the 
presence of a more realistic response mechanism such as 
one in which the response probability depends on the 
variable X (which is correlated with Y). In this case, it is 
preferable to use the variable X as supplementary 
information for the estimation of the population mean g. 
For example, the usual ratio imputation estimator (RAT) 
imputes missing values by using the following model: 

Yi = ~ Xi + F-'i , (3.1) 

where 13 is an unknown parameter and e i is a random 
error term uncorrelated with X i with zero mean and 
variance c2Xi  . The imputed values are given by 

Yi = B * X i, where B = ~-'ieR Yi ] ~-'ieR Xi is an 
estimator (obtained by the weighted least-squares method 
and the responding units) of B which is itself an 
estimator of 13. Actually, B is the estimator that we 
would have obtained (by the weighted least-squares 
method) if we had observed all the units in the sample S. 
Note finally that all the models considered in this paper 
are assumed to be valid for all the units in the sample S. 

3.2 Nonignorable response mechanism 

The usual ratio imputation estimator, RAT, can be 
strongly biased when the response mechanism depends on 
unobserved values of Y (nonignorable response 
mechanism). Using model (3.1) with responding units 
leads to an inconsistent estimator of the slope 13 because 
the expectation of the random e r r o r  ~i is not zero, given 
that i is a responding unit. The RAT estimator is thus not 
satisfactory in the presence of a nonignorable response 
mechanism. In such a situation, a better approach 
consists of simultaneously estimating the parameter of 
equation (3.1) and some parameters used to model the 
response probability. For example, this probability could 
be modeled in the following way: 

1 
P ( R i =  1 I Yi) = 1 + e x p [ - ( %  +a 1Yi)] ' (3.2) 

where a 0 and a~ are unknown parameters and R i is a 
binary variable indicating whether unit i responds 
( R  i = 1 ) o r n o t ( R  i : 0) .  

In the next three subsections, three estimation methods 

developed for the case of a response mechanism that 
depends on Y will be presented. 

3.2.1 Maximum likelihood method 

This method can be found in Greenlees, Reece and 
Zieschang (1982). It consists of using models (3.1) and 
(3.2) and requires the additional assumption that random 
e r r o r s  ~3 i are normally distributed (or any other 
distribution relevant for the type of data analyzed) and 
mutually independent. The natural logarithm of the 
likelihood function, l, can be written: 

l = ~ i e R  l n [ P ( Y i ) f ( Y i l X i ) ]  

+ ~-,i~o l n [ 1 - E ( P ( Y i )  i Xi) ] , (3.3) 

where p(Y.) = P ( R  i -- 1 [ Y.) and f ( Y .  I X i )  is the 
probability density function of Y/ given X i. T h e  
maximum likelihood method consists of finding the 
parameter values which maximize I. To calculate 
E ( p  (Y i )  I X i) ,  the following approximation has been 
used (Zeger, Liang and Albert, 1988): 

E ( P ( Y i ) l X i ) =  1 
1 + e x p { - k [ a  0 +0tl(~Xi)] } ' (3.4) 

~/ 2 (I 2 where k = 1/ c2al X i + 1 and c -  16V/3/15n. T h i s  
approximation is based on the assumption that errors are 
normally distributed with variance 13 2 X  i . T h e  
maximization of (3.3) was done by using a Newton- 
Raphson type algorithm and the NLIN procedure of the 
SAS software (SAS Institute Inc.,1990). 

Once the unknown parameters have been estimated, 
~ v a l u e s  Yi* c a n b e ~ s o a s t o ~  Eie S e2 /Xi  
under the constraint F_,i~ s e i = 0, where e i = Yi - [~* Xi,  
f o r  i~R,  e i = gi* - ~ * X i '  for i ~ O ,  and 13" is the 
estimate of 13. The estimator of the population mean can 

* _. ~ *  thus be written: la/ Ei~ s Xi/n where n is the sample 
size of S, and will be denoted by ML. The rationale 
behind this approach is that the preceding constraint 
would have been respected if we had observed the 
variable Y for all the units in the sample S and if we had 
modeled this variable by the use of model (3.1). 

3.2.2 Robust estimation method 

The maximum likelihood method requires that the model 
(3.1) be appropriate and the errors be normally 
distributed. When one or both assumptions are violated, 
it is preferable to use a more robust estimation method. 
If the response probabilities were known and greater than 
zero for all the units in the population, a robust estimation 
method (against bad specification of the error distribution 
as well as against bad specification of the model (3.1)) 
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could be obtained by minimizing the sum of squared 
errors weighted by the inverse of the error variance times 
the inverse of the response probabilities p(Yi).  This 
minimization is equivalent to solving the system of 
equations 

1 (Y i -~X i )  = 0 ~-ai~R p (  ~ " (3.5) 

By similar reasoning, if f (  Y/ I X i) were known, we could 
estimate a 0 and a~ of model (3 .2)by  the maximum 
likelihood method and solve the system of equations 

a 
~-ai~R ~ In [p ( Yi ) ] + 

(3.6) 
~-~i~o Oct-----~kO ln[1 -E(p (Y/ )  I Xi)] - 0 

for k c { 0, 1 }. Parameter estimates of 13, a0 and a~ can 
thus be obtained by solving unbiased estimating equations 
(3.5) and (3.6). An algorithm allowing the discovery of 
the solution consists of alternatively solving (3.5) and 
(3.6) until convergence is reached. To achieve this, 
E(P(Yi)  I X i) must be calculated. Calculating this 
expectation, however, requires knowledge of the error 
distribution (which is likely to be unknown). To cope 
with this problem, we can assume that errors are normally 
distributed and use approximation (3.4), but this 
approximation was found to be not very robust against 
bad specification of model (3.1). A globally better and 
simpler approximation to E(P(Yi) I Xi) allowing us to 
get rid of the normality assumption is obtained by using 
the first term of a Taylor series expansion: 

E(P(Yi)  l X i) ~ p([3S~) . (3.7) 

An interesting property of (3.7) is that alternatively 
solving (3.5) and (3.6) is obtained with the following 
algorithm: 
1. Set initial values for a 0 and ct 1 (for example, set 

P(Yi)  = 1 for all responding units); 
2. Solve (3.5) with current values for % and ct 1 by 

using a weighted linear recession procedure; 
3. Impute missing values by Yi (j) = ~ * fj) Xi , where 

superscript (j) indicates the iteration number 
(one iteration consists of passing from step 2 to 
step 4) and 13 *~) is obtained through step 2; 

4. Solve (3.6) by using a logistic regression 
procedure and the imputed values calculated in 
step 3; 

5. Return to step 2 or stop if convergence is 
reached. 

Thus, it suffices to have only a linear regression 
procedure and a logistic regression procedure to obtain 
the desired estimates. In practice, this algorithm is very 
efficient for finding the solution but, in some cases, it can 

take many iterations to reach convergence. This is the 
reason for the use of the Newton-Raphson algorithm in 
the simulation study of the next section. Note that the 
algorithm above bears some similarities to the EM 
algorithm of Dempster, Laird and Rubin (1977), except 
that it is not conceived to maximize a likelihood function. 

As in section (3.2.1), once the unknown parameters have 
been estimated, imputed values Yi* can be determined so 
as to minimize ~-'iEs e: /Xi  under the constraint 
~-'ies ei = 0, where ei = Yi - ~* Xi, for i~R, 
ei = Y i * - ~ 3 * X i ,  for icO. The estimator of the 
population mean can still be written by ~i - 13 ~2i~ s Xi /n  
and will be denoted by R-T1. 

A slight modification of the algorithm above can be 
obtained by changing step 3 so as to impute missing 
values as described in the preceding paragraph but using 
13" (/), the current value of [3" at iteration j ,  instead of 13". 
This modification, however, was not retained in this 
paper because it was found to be not globally superior to 
R-T1 and could sometimes require too many iterations 
and much computer time before converging. 

Instead of doing step 4 of the algorithm presented in this 
section, we could also solve the following two equations: 

~--~i~S R i - P (  Y/.) = 0 

and 

~-,i~s (R i -P(Y i . ) )Y i  ~) = 0 , 

where Y~. = Yi, for icR, and Y/. = Yi ~), for icO. The 
estimator Of the population mean obtained this way will 
be denoted by R-T1M. Note that step 4 is very similar to 
the preceding two equations, except that in step 4, E 
replaces g/* 0~. 

In order to use the maximum likelihood method, we can 
be interested in verifying whether or not the errors of 
model (3.1) seem to be normally distributed. To achieve 
this, we can do the graph of standardized residuals 

• ,[I 1/2 ( i ) - 1  , ( j ,  1/2 , ei/~ a i versus IF (ei/ X i )],for icR,where 
is an estimate of ~, ~ (.) is the distribution function of 
a standard normal random variable, and F* (.) is the 
estimated empirical distribution function. When errors 
are normally distributed, the points on this graph should 
approximately be along a line of slope 1 passing through 
the origin. Since units in the sample respond with 
unequal probabilities, the estimated empirical distribution 
function can be given by (Sfirndal, Swensson and 
Wretman, 1992, p. 199): 
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F (ei/(J* 1/2 
* Xi )=  

y'~j:j~Randej/X;,2 ei/Xil/2 1/p* ( Y ) 

~ jeR  1 / p * ( E )  

It should be noted that, in the above equation, the 
response probabilities are estimated, as opposed to the 
S~irndal, Swensson and Wretman formula in which the 
selection probabilities are known. 

3.2.3 Corrected ratio imputa t ion  method 

This method has been developed by Rancourt, Lee and 
S~irndal (1994) for the case of ratio imputation (model 
3.1). It consists of simply multiplying imputed values 
obtained in the case of an ignorable response mechanism 
(see section 3.1) by a correction factor, C. The authors 
studied the behaviour of 8 such factors. In this paper, 
only one of these 8 factors, which is globally very good 
with respect to bias, will be considered: 

~i~S Wiil n 

where W is the rank of Xi, for i tS ,  n R is the respondent 
sample size and /~ is the estimated coefficient of 
correlation between X and Y based on the respondent 
data. This method will be denoted by RAT-C. It 
possesses the advantage of being simple although the 
correction factors are only available for model (3.1). 

4. S I M U L A T I O N  STUDY 

In order to compare the estimators of the population mean 
presented in the preceding section, a simulation study was 
carried out. Four populations of size 1000 have first been 
generated according to the following model: 

k/2 
Y" = ~o + ~lXi + r~Xi ~'i' (4.1) 

where X i, for i~P, are mutually independent and 
exponentially distributed random variables with mean 3 
and e i, for i~P, are mutually independent random 
variables, uncorrelated with X i, with zero mean and 
variance 1. Two populations have I~ i distributed 
according to the standard normal distribution 
(e i -, N(0,1)) and the two other populations have e i 
distributed according to the standard exponential 
d i s t r i b u t i o n  c e n t e r e d  at  z e r o  
(e i - ,  Exp(mean = 1) - 1). For each of these two 
distributions, one population is in agreement with model 
(3.1), that is 13 o = 0, 131 = 1.5, ~2 = 4.5 and X = 1 
(ratio model) and the other population is generated 
according to a linear model with non-zero intercept and 
constant variance, that is [30 = 0.5, [31 = 1.5, (y2 = 13.5 

and X = 0 (non-ratio model). The squared theoretical 
coefficient of correlation between X and Y is 60% for the 
four populations considered in this simulation study. 
Also, for each of these four populations, 5 response 
mechanisms have been tested; one in which all the units 
in the population have the same response probability, 
called UNIFORM, one in which the response probability 
decreases when X increases, called DEC-X, one in which 
the response probability increases when X increases, 
called INC-X, one in which the response probability 
decreases when Y increases, called DEC-Y, and, finally, 
one in which the response probability increases when Y 
increases, called INC-Y. For each of these 5 response 
mechanisms the expected response rate is 70%. For the 
four non-uniform response mechanisms, the response 
variable is generated by using the following response 
probability model: 

p (Z i) = exp ( - exp (a  0 + (~1 Zi) ) , (4.2) 

where Z i = X i for DEC-X and INC-X, Z i = Y for 
DEC-Y and INC-Y, ct 1 = 0.1 for DEC-X and DEC-Y 
and a~ = -0.1 for INC-X and INC-Y. The parameter ~0 
is determined so as to obtain an expected response rate of 
70%. Note that the form of the response probability (4.2) 
differs from the form (3.2) used for the ML, R-T1 and R- 
T 1M estimators. 

For each of the 20 combinations of the 5 response 
mechanisms and the 4 populations, 1000 samples of 
respondents have been generated. For each of these 1000 
samples of respondents, the 5 estimates of the population 
mean described in the preceding section have been 
calculated. Then, for each of the 20 combinations, the 
mean and the variance of the 1000 estimates have been 
calculated, denoted by ~f and V[ respectively. Finally, 
we calculated an estimate of the relative bias (RB) given 
by [ (~/  - la )/la ] 100% and an estimate of the standard 
error of the relative bias (SE) given by 
(100/la) ( V ; ] I O 0 0 )  1/2. 

Table 1 shows the results of the simulation study 
comparing the bias of the 5 estimators described in the 
preceding section. The best method with respect to the 
relative bias is highlighted for each situation. Not 
surprisingly, the ML estimator performs very well when 
the response mechanism is nonignorable (DEC-Y and 
INC-Y), the error distribution is normal and the model is 
in agreement with (3.1). When one or more of these 
hypotheses does not hold true, though, the bias can be 
substantial. In particular, this method is very sensitive to 
the validity of the model. As we cannot very often have 
full confidence in a model, great care must be taken 
before using this estimator. 
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For the uniform response mechanism, all the estimators 
perform very well, except the ML estimator for the non- 
ratio model. For the other ignorable response 
mechanisms (DEC-X and INC-X) and apart from the ML 
estimator, the RAT estimator always performs better than 
the RAT-C estimator which usually (7 cases out of 8) 
performs better than the R-T1 estimator which itself 
always performs better than the R-T1M estimator. For 
the nonignorable response mechanisms (DEC-Y and 
INC-Y), the case in which we are especially interested in 
this paper, the opposite tendency is observed; the R-T1M 
estimator always performs better than the R-T1 estimator 
which always performs better than the RAT-C estimator 
which itself always performs better than the RAT 
estimator. 

5. DISCUSSION 

In the cases where the nonresponse rate is very low or the 
correlation between X and Y is very high, all the 
estimators studied in this paper will likely have a low bias 
and the choice of an estimator should be made according 
to the simplicity criterion which favours the usual RAT 
estimator. This estimator is also favoured when 
nonresponse is ignorable. 

For nonignorable response mechanisms, which may be 
more realistic in practice, the robust estimation method 
presented in this paper seems to be the best method, 
according to the simulation study, with respect to bias. If 
we have confidence in a model and the normality 
assumption seems to hold true, the maximum likelihood 
method can also be used. But, in practice, these two 
assumptions are often violated. 

If we do not want to assume anything at all about the 
response mechanism, the RAT-C estimator is preferable 
to the other 4 estimators. It seems to be a compromise 
between the usual RAT estimator, which works well in 
the case of ignorable nonresponse, and the robust 
estimators R-T1 and R-T1M, which work well in the case 
of nonignorable nonresponse. It possesses the advantage 
of being simple but, on the other hand, it cannot be 
extended, like other methods, to more general regression 
situations. 

The robust estimation method, as well as the maximum 
likelihood method, require modeling the response 
probability of each unit in the sample of respondents. So, 
instead of imputing missing values, we could weight the 
respondent data by the inverse of the response 
probabilities. Note also that models (3.1) and (3.2) could 
be modified to include other independent variables, if 
available. 

The goal of this paper consisted of developing a robust 
estimation method against bad specification of the error 
distribution and, to some extent, against bad specification 
of the model involving the variable of interest allowing a 
reduction in the bias introduced by a nonignorable 
response mechanism. In future research, it would be 
interesting to evaluate simple variance estimation 
methods in the presence of imputed data when the robust 
estimation method presented in this paper is used. 
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TABLE 1: RESULTS OF THE SIMULATION STUDY 

RESP. 
MECHAN. 

EST.  POPULATION 

EXPONENTIAL NORMAL 

NON- RATIO NON- 
RATIO RATIO RATIO 

RB(%) SE RB(%) SE RB(%) SE RB(%) SE 

DEC-Y 

INC-Y 

DEC-X 

INC-X 

UNIFORM 

RAT - 13.9 0.05 - 10.6 0.06 - 10.8 0.06 -7.1 0.05 

RAT-C -7.5 0.07 -3.5 0.09 -2.3 0.08 1.1 0.09 

ML -3.8 0.08 10.2 0.13 1.4 0.07 33.7 0.17 

R-T1 -4.3 0.14 -2.4 0.08 -1.6 0.08 -0.6 0.06 

R-TIM ii!iiii~i!iiiiiii[ iliiiiiili!ili~i~i1!i iiiiiiiiiiiiii i! ii~i~ii !ii! i::I!iNiii iiili~Ii iiiiiili31iiiiiilii!iiliiiii31iii!i i!iii 

RAT 5.8 0.04 6.2 0.04 6.3 0.04 6.2 0.04 

RAT-C 3.2 0.04 3.4 0.04 3.9 0.05 3.7 0.04 

ML -12.0 0.50 -42.4 0.17 ii!iii~l~i !!~iiiiiiiiiii ~i~ili!:ili~!i~i -34.8 0.13 
:: i i:: ::!i :: :: ::iii:: :: :: ::i:: :: :: iii ::i::[: :: :: :: :: :: :: ::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

R-T1 1.1 0.04 1.4 0.05 1.9 0.06 1.7 0.06 

R-~M iil ii iii i i i i i i i i i i i i i i i iNil i i i l iN~ii lI~ 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••£••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••!••••••••••••••••••••••••••••••••••••••••••••••••••••• 

RAT 

o4 oo7 iN®Iiiiiiiiiiiii~~Ii®ii 
~::ii~.~::~::~::~::~::~::~::~i::~::~i£~ii::~i::~::~i::~!i::~i~i~N~.£~N~ 

RAT-C 4.3 0.08 6.2 0.08 5.7 0.07 7.1 0.08 

ML 6.8 0.08 15.2 0.15 8.4 0.07 31.8 0.18 

R-T1 12.5 0.20 7.2 0.08 7.3 0.08 5.9 0.06 

R-T1M 13.0 0.15 8.3 0.08 8.4 0.08 6.4 0.06 

RAT 

RAT-C -1.8 0.05 -2.6 0.05 -2.4 0.05 -2.9 0.05 

ML -6.5 0.13 -51.7 0.24 -5.8 0.06 33.9 0.15 

R-T1 -3.5 0.05 -4.2 0.05 -4.4 0.06 -4.8 0.06 

R-TIM -4.5 0.05 -5.2 0.06 -5.9 0.07 -6.0 0.07 

RAT 

RAT-C 

iiiiiiii~i!iii ii!iiiiii!~i!!iiiiii!iiii~i~iiiii i!!!iiiiiiiiii~i®ii o.o 
:: i~i:::::::::::::: ::::::::::::::::::::::::: :: :::: i:: :: :: :: :: ::i?: ~ :: ::::::::::::::::::::::::::::::::::::: ::~::::::::::~::::::::::::::::~::::::::::::::::::::~::~::::::::::::::::::~::::~::~:::::::::::::::::::::::::::.::::~::::~::::~::::i::~::::::::::::::::::::::::::::::::~::::::~::~::::::~::::~::~::::~::::::::::::::::::::::: 

0.1 0.06 0.1 0.06 0.1 

ML -0.4 0.07 -24.8 0.97 

R-T1 0.1 0.07 0.1 0.06 

R-TIM 0.1 0.07 0.1 0.06 

o 

0.06 0.0 0.06 

0.0 0.07 -25.4 1.06 

0.0 0.06 0.0 

li!i~i~i ii!iiiiii~N~iii~ -o.~ 
~:'~:'~i~:'~:'~:}:i}~:'~:'?'~:'~:'~:'~i~:~:'~:'~:'~:y~:~;~:~;~.~#~:~:.~:.?~:~.~:~:.~!~.~i 

0.06 

0.06 
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