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1. Introduction 
The National Population Health Survey (NPHS) is a 

longitudinal household survey conducted by Statistics 
Canada, instituted in 1994 to survey the health of 
Canadians along with its determinants. Wave 1 of the 
survey provided a panel of approximately 17,000 
respondents to be contacted every two years for up to 
twenty years; data are collected at four points in time 
during the survey year. Panel respondents were chosen by 
randomly selecting one person per surveyed household. 
The sample design of the NPHS is mostly based upon the 
Labour Force Survey (LFS) sampling methodology. The 
LFS design generally selects a stratified two-stage sample 
of dwellings selected within clusters (except in some 
rural, remote, and apartment strata) with six clusters per 
stratum. NPHS strata were created by grouping LFS 
strata, keeping some or all of the LFS selected clusters, 
but selecting fresh sample dwellings within those clusters. 
In Quebec the NPHS sample is taken from households 
that participated in the Enquire Sociale et de Sant~ (ESS), 
a health survey conducted by Sant6 Qu6bec in 1992-93. 
Its design was similar to that of the LFS. (For more 
details on the NPHS design, see Tambay and Catlin, 
1995.) 

This paper discusses the new bootstrap variance 
estimation program put in place for wave 2, carried out in 
1996-97 and released in 1998. Section 2 details the 
reasons behind the change, alternative methods examined, 
and the final choice. The bootstrap methodology is 
described in section 3, the results of empirical studies in 
section 4. Section 5 describes the implementation of the 
bootstrap weight program. Conclusions and areas for 
future work are provided in section 6. 

2. Background 
Given the variety of NPHS data products, the 

challenge is to produce useable data for quite disparate 
groups of users and to provide access to a variance 
estimation system. Two wave 2 public-use microdata files 
(PUMFs) were released, the first file containing general 
demographic and health information for all members of 
the sampled households, the second with detailed health 
information for the selected respondents only. (See 
National Population Health Survey: Public use microdata 
file documentation, 1996-97.) 

Statistics Canada must provide sampling variances 
for all surveys, but for multistage surveys such as the 
NPHS, resampling or Taylor methods are required, and 
analysts require access to design information. However, 
stratum and cluster information cannot appear on PUMFs 
for confidentiality reasons, due to the detailed level of 
geography they represent. If cluster membership were 
available on the PUMF, users could potentially determine 
household membership and thus significantly increase the 
probability of identifying individuals. On the other hand, 
if users do not have access to this design information, 
they cannot calculate design-based variance estimates. 

In wave 1 of the NPHS, approximate coefficient of 
variation (CV) tables were disseminated with the PUMFs, 
allowing users to look up a CV based on the size of the 
estimate calculated from the survey data. The CVs were 
derived using the variance formula for simple random 
sampling and incorporating a representative design effect, 
and are meant to apply to all characteristics. This design 
effect was determined by taking the 75 th percentile of the 
design effects for a wide range of characteristics. Tables 
were produced only by province and by age group, and 
could only be used for simple estimates such as totals and 
proportions. Users doing more complex analyses, where 
CV tables are not appropriate, had to contract with 
Statistics Canada for jackknife variance estimates. 

The challenge, then, is to preserve the confidentiality 
of respondents while giving users enough design 
information to calculate reliable variance estimators. For 
wave 2, several options were examined to better deal with 
this problem. Random renumbering of the stratum and 
cluster identifiers did not solve the problem. Since 
detailed cluster information would still be available on the 
file, a user could identify persons within the same cluster 
or even household, and could use this variable as a match 
key in an attempt to link PUMFs over time. 

Another option considered was the dissemination of 
collapsed superstrata and superreplicates (Mayda et al., 
1996) so that users would be provided with enough 
information to calculate a reasonable variance estimate 
while preserving the confidentiality of the data. 
Advantages of this method were that the superstrata and 
superreplicates contained a larger group of individuals 
than the original strata and clusters (replicates), and that 
unbiased variance estimates could be produced. The user 
would not be able to identify the original clusters with 
certainty, and the superstrata and superreplicates would 
mimic the original design. 
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This method had several disadvantages. First, the 
exact variances corresponding to the original design could 
not be generated. Second, collapsing reduced the number 
of degrees of freedom, affecting the precision of variance 
estimates and reducing the number of covariates available 
for use in analyses--a major problem in small domains. 
Third, Valliant (1997) has shown that with collapsed 
strata, the balanced repeated replication (BRR) variance 
estimator may become inconsistent, while the asymptotic 
equivalence of the BRR and jackknife variance estimators 
shown in Rao and Wu (1988) indicates that the jackknife 
variance estimator may suffer from the same problem. 
Fourth, collapsing might be less effective in future waves 
of a longitudinal survey. Depending on how the 
collapsing is done and the number of dwellings in the 
resulting collapsed replicates, attrition, migration, and 
other events might affect the usability of future results. 
Finally, the provision of superstrata and superreplicates 
might facilitate malicious linking of PUMFs over time, if 
the collapsing were to be done deterministically. 

The final option was to create bootstrap weights so 
users could calculate variance estimates closer to the 
exact .estimates and for more complex analyses. The 
bootstrap has a number of advantages over the jackknife 
used in wave 1. First, with the bootstrap it is possible to 
give users a reasonable  number of replicate weights, 
compared with 3,000 jackknife replicates. Disseminating 
replicate weights reduces the need for Statistics Canada 
to respond to requests from users for custom variance 
estimates. In fact, the original goal was to provide 
bootstrap weights with the wave 2 PUMFs. (Section 4 
describes why this could not be achieved.) 

Secondly, it was felt that the bootstrap program 
would be easier to run; the jackknife program was not 
feasible operationally given the very large cross-sectional 
supplemental samples that had been added in wave 2. As 
well, the jackknife had been programmed to be run 
province by province, which would not have taken into 
account interprovincial migration between survey years. 
Thirdly, we still wanted to produce the coefficient of 
variance (CV) tables for use in simple analyses, but we 
wanted to replace the process used to create the tables for 
wave 1, which was not easily extendible to longitudinal 
data, with bootstrap design effects and CVs. Finally, the 
bootstrap is recommended over the jackknife to estimate 
the variance of nonsmooth functions such as quantiles 
and the low income cut-off (LICO) point (Kova~evi6 and 
Yung, 1997). Because of these advantages, it was decided 
to introduce the use of bootstrap weights in wave 2. 

3. Bootstrap Methodology 
This section describes the "standard" bootstrap used 

in the NPHS, as well as some of the problems 
encountered in its implementation. 

3.1 The Standard Bootstrap 
The bootstrap resampling method for the iid case has 

been extensively studied. (See Efron, 1982.) It was 
extended by Rao and Wu (1988) to stratified multistage 
designs and again by Rao, Wu and Yue (1992) to include 
nonsmooth statistics. This latter design was implemented 
in the NPHS. It assumes L design strata, where stratum h 
has Nh clusters and nh >- 2 sampled clusters. Subsampling 
within selected clusters (e.g., selecting one person in a 
dwelling) is performed according to some probability 
sampling design with unbiased estimation of cluster 
totals, Yhi, with h= 1 . . . . .  L and i = 1 . . . . .  n h. 

An estimator of the total Y, for example, is obtained 
using the variable of interest, Yhik, and design weights, 
whi ~, associated with the k th sample element in sample 
cluster i belonging to stratum h by 

? 
~ ( h i k ) e s  Whik Yh ik '  

where s denotes the sampled elements. The NPHS design 
weights are then poststratified to ensure consistency with 
known demographic totals. Given that each element in the 
population belongs to a poststratum that can cut across 
the design strata, the total number of elements in the c-th 
poststratum is c M ,  a known quantity. Letting cWhi ~ 
represent-the poststratified or final weight defined by 

cM 
c Whi k - Whi k, 

cM = ~hi~sWhik CShik a n d  C~)hi k the poststratumindicator 
variable, the poststratified estimator is defined as 

Yps = E E cWhikYhik CShik" 
c (hik)es 

The standard bootstrap variance estimator for 
= g (]~), with I~ given above and g a known function, is 

calculated as follows: 

(i) Independently for each stratum, select a simple 
random sample with replacement of m h clusters from 

, 

the nh sampled clusters. With mhi defined as the 
number of times the (hi)-th cluster is selected 

, 

(Eimhi = m h )  , define the bootstrap weights as 

, m h m h n h , 
W hi k = 1 - + ~ m hi W hi k . 

nh-1 nh-1 m h 

For the NPHS, m h was set to nh-1, a commonly used 
value, ensuring that the bootstrap weights, Whik ,  

would be nonnegative and reducing the equation to 

* / ' / h  * 
W hi k - m h i  Whi  k .  

n h - 1  

(ii) These weights are then poststratified in the same way 
as the design weights to obtain the final weights: 

, _  cM • ill'l* E * c Whi k Whi k, where c = (hik)esWhik C~)hik. 

c11~1" 
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To calculate the bootstrap estimator of O, 0", replace 
the survey weights, c Whi k, with the final bootstrap 

, 

weights, c Whi k, in the formula for O. 
(iii) Independently replicate these two steps a large 

number of times, B, and calculate the corresponding 
^ ,  ^ ,  

estimates, 0(1 ) .... ,0(8 ). 
The bootstrap variance estimator for 0 is then given by 

us(O) = ~ ~ b  O(b) - 0(.) , where 0(.) = (l/B)~bO(b). 

3.2 Missing Clusters 
This implementation of the bootstrap takes into 

account only the final weighting step, poststratification. 
Ideally, all adjustments to the design weight should be 
included in the calculation of the bootstrap weights. For 
example, nonrespondents and respondents should be 
included in the initial file from which bootstrap 
subsampling is done. Only then should nonrespondents be 
dropped. 

Since only survey respondents were included in the 
implementation of the bootstrap for the NPHS, the 
problem of missing clusters arose. If there are originally 
n h clusters in a particular stratum, a simple random 
sample with replacement of nh-1 clusters should be taken; 
the bootstrap weight expansion factor should be nh/(n h- 1). 
However, because of nonresponse, some of the smaller 
clusters had no respondents among their sampled 
households; i.e., in stratum h, Ph clusters were missing. 
Given the decision to include only respondents in the 
bootstrap subsampling for the NPHS, there was no choice 
but to take a sample of nh-Ph-1 of clusters from the 
remaining nh-ph clusters with responding households. 
Similarly, the bootstrap weight expansion factor in this 
case was (nh-Ph) / (nh-Ph-1). This happened rarely enough 
that the impact on estimates was negligible. 

Limited empirical study has suggested that ignoring 
nonresponse adjustments in the bootstrap algorithm does 
not have a large impact on the final variance estimates: 
they are negatively biased, but this bias is small. In any 
event, we plan to incorporate this weighting adjustment in 
the bootstrap algorithm in wave 3, properly accounting 
for entirely missing clusters and nonresponse within 
clusters, two potential sources of variation. 

4. Empirical Study 
Results of studies on the optimal values for the 

bootstrap sampling parameters, the type of bootstrap to 
use, and confidentiality issues are presented here. 

4.1 Simulations 
Many simulations were run to determine B, the 

number of bootstrap samples. There is a tradeoff here 
between precision and operational efficiency: B must be 
large enough to produce reliable variance estimates, but 

not so large as to make the bootstrap weight files 
unwieldy. Using a subset of wave 1 data, variance 
estimates stabilised at around 200 bootstrap samples for 
estimates of totals and ratios and at around 400 for 
regressions. An empirical comparison of the bootstrap 
with 500 weights and the jackknife suggested that the 
bootstrap CVs of almost 95% of simple estimates and 
75 % of regression coefficient estimates were within _+ 1% 
of the jackknife CV. (See Appendix A for more 
comparisons.) 

4.2 Mean Bootstrap v s .  Standard Bootstrap 
The dissemination of these standard bootstrap 

weights with the PUMF puts respondents at risk of 
disclosure, since records in a given cluster will all have a 
bootstrap weight of zero if that cluster is not selected in 
a particular bootstrap sample. (For these records, mhi = O, 

resulting in a bootstrap weight of zero; multiplicative 
weight adjustments such as poststratification will not 
change the situation.) This problem arises because entire 
clusters are being resampled rather than single units as in 
the classical bootstrap. In a single bootstrap replicate, 
these zero weights do not pose a disclosure risk. 
However, cluster membership can be identified by 
examining the pattern of zero weights over all B bootstrap 
replicates. Even if cluster location is not on the PUMF, 
the use of other PUMF variables may allow users to 
deduce this, breaching confidentiality. 

We did a number of simulation studies using wave 1 
data and the mean bootstrap described in Yung (1997), to 
attempt to overcome this problem. In the mean bootstrap, 
R (perhaps 20) bootstrap samples are produced and the 
mhi  S are averaged over the R samples. As long as each 
cluster appears in at least one of the R bootstrap samples, 
the averages will all be non-zero. Mean bootstrap weights 
and estimates are created as follows: 
(i) Independently for each stratum, select a simple 

random sample of nh-1 clusters with replacement 
from the nh sample clusters. 

(ii) Repeat step (i) R times. Let mhi(r ) be the number of 
times the (hi)-th cluster is selected in the r-th 

bootstrap sample and mhi(. ) = (I/R)~rmhi(r) b e  the 
average number of times the (hi)-th cluster is 
selected over the R bootstrap samples. Define the 
mean bootstrap weight as 

. F / h  . 

Whik(.)  - mhi(. ) Whik" 
n h - 1 

(iii) Poststratify the mean bootstrap weights Whik(. ) t o  

obtain c Whik(.), the bootstrap final weights. Calculate 
0* using the bootstrap final weights. 

(iv) Independently replicate steps (i) to (iii) a large 
number of times, B, and calculate the corresponding 

estimates, 0('1) ..... 0(~)" 
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The mean bootstrap variance estimator is then given as 

Vg~ (0) = "~ (b) - 0(.) , where 0(.) = ( l /B)  ~b O(b~" 

Note that this procedure does not eliminate the 
possibility of a zero weight. R should be chosen to be 
large enough that the chance of mhi(r ) =0 for all 
r = 1 .... ,R is very small, but not so large that drawing 
R x B  bootstrap samples becomes computationally 
difficult. In the NPHS implementation, we used a two- 
step procedure. We chose R - 20 to produce the initial set 
of bootstrap replicates; if any replicates contained zero 
weights, we rejected them and produced a new set of 
replicates. The alternative would have been to leave R 
variable and continue steps (i) and (ii) until no zero 
weights remained, but the procedure used was 
straightforward, quickly obtained the desired sets of 
bootstrap replicates, and simplified the variance formula. 

4.3 Confidentiality Concerns 
The mean bootstrap reduces confidentiality concerns 

somewhat. However, records in the same cluster for a 
particular bootstrap sample will still share the same 
weight, albeit not zero. However, when the method was 
originally developed, it was hoped that sufficient noise 
might be added by final poststratification of the mean 
bootstrap weights to alleviate this problem. 

The mean bootstrap weights were analysed for 
possible inclusion on the NPHS wave 2 PUMFs, to give 
users the opportunity to calculate their own variance 
estimates. Unfortunately, cluster analysis showed that a 
malicious user would be able to recreate, with 100% 
accuracy, stratum and cluster membership from patterns 
in the bootstrap weights. This would not identify the 
location of these strata and clusters, but other information 
on the PUMF might allow this user to deduce location for 
at least some strata and clusters. For this reason, priority 
was shifted to providing variance estimation capability in 
the remote access program. (See section 5.4.) 

We hope to test the mean bootstrap weights further 
for possible inclusion with future PUMFs. The disclosure 
risk seems reasonably low; we shall try to determine if 
this level of risk is acceptable. Work is also being done 
on the mean bootstrap algorithm itself to try to reduce or 
eliminate this risk, by collapsing strata before resampling 
and through the addition of noise to the final bootstrap 
weights. 

5. Implementation 

5.1 Master Files 
The main application of the bootstrap weights has 

been for use internally with the master files to produce 
variance estimates. For each survey weight on the master 

file (four cross-sectional and three longitudinal weights), 
a set of 500 bootstrap weights was created and stored in 
a central location. SAS macros were distributed to 
analysts that calculate variance estimates for such 
statistics as totals, ratios, and linear and logistic 
regression parameters. 

We also created sets of 500 bootstrap weights for 
each of the survey weights on the wave 1 master files: 
the general weight for all household members, the health 
weight for the selected person, and the weight for a 
special Health Canada supplement that had been done. 
These weights were used in the simulation studies noted 
above and have been used for some analyses. The long- 
term goal is to be able to handle variance estimation for 
analyses on all waves of the survey using the bootstrap 
weights. 

For external users, approximate CV tables were again 
disseminated with the PUMFs, derived this time from 
bootstrap design effects. Using bootstrap weights greatly 
reduced the time and complexity of this process. 

5.2 Share Files 
A second set of survey data files, the "share files", is 

sent to Health Canada and the provincial health ministries 
after each wave, containing only those respondents who 
agree to share their data with these departments. As 
subsets of the master files, the share files must be 
reweighted and poststratified to demographic totals. One 
reason for switching to bootstrap weights was to provide 
external users such as these with a means of calculating 
their own variance estimates. With wave 2 share weights 
calculated, bootstrap share weights could also be created. 
These weights, along with SAS and SPSS variance 
estimation programs, were provided to these departments. 

5.3 Supplemental Surveys 
There is also the opportunity at each wave for survey 

supplements. In wave 2, Health Canada funded 
supplemental questions and sample in order to interview 
all 1996 NPHS respondents with asthma. The supplement 
surveyed severity, environmental triggers, and drug use 
associated with their asthma, and was conducted several 
months after each NPHS collection quarter. Master and 
share files were created, and bootstrap weights were 
calculated for the two weights (general and health) on 
each file. This implementation of the bootstrap program 
was more complete than that of the core survey, in that 
the asthma bootstrap weights were adjusted for second- 
phase nonresponse. As well, because respondents with 
asthma are a relatively small domain, we were able to 
increase the number of bootstrap replicates to 1,000. The 
share file bootstrap weights and SAS programs to 
calculate variance estimates were made available to the 
client. 
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5.4 Remote Access to the NPHS Master Data Files 
For reasons of confidentiality, the NPHS PUMFs 

contain significantly less information than the master 
files. Many of the original survey variables, available on 
the master files, are not placed on the PUMF, while 
others are modified (e.g., regroUped, top-coded) to 
minimise the risk of disclosure. As well, a longitudinal 
PUMF has not been released for wave 2. To overcome 
these data gaps, a remote access program was instituted 
to allow users to run analyses using the master microdata 
file, but in such a way that the data remain confidential. 
Analysts write their own analysis programs and send 
them to Statistics Canada where they are run with the 
master microdata file as input. Output is then checked for 
confidentiality before being returned to the analyst. It is 
the analysts' responsibility to ensure that their analysis 
programs run properly. To this end we provide them with 
dummy files that they can use for development and 
testing of their programs. The dummy files have the same 
format as the master files, but contain fake data and only 
a subsample of records. 

The data in the dummy files had to be consistent with 
the skip patterns induced by the questionnaire and 
approximately preserve the marginal distributions of 
variables and the relationships between closely related 
variables from the master microdata files. This was 
particularly important in the case of the longitudinal 
dummy file, since no longitudinal PUMF is yet available. 
To meet these objectives, the dummy files were created 
by randomly swapping blocks of variables among 
respondents within classes. Following the skips in the 
questionnaire, these classes were generally based on 
age/sex categories by province with a minimum class size 
to ensure confidentiality after data swapping. The blocks 
were formed by dividing variables into fifty groups of 
highly dependent variables, which were then further 
collapsed based on questionnaire-induced dependencies 
between them. As a final step to help ensure realistic 
estimates from the dummy files, the weights were 
poststratified within the classes to master file totals. 

For variance estimation, 500 sets of bootstrap 
weights were produced for each dummy file, allowing 
analysts to write their own variance estimation programs 
to be run at Statistics Canada using the master file and its 
associated bootstrap weights. Sample variance estimation 
programs using SAS and SPSS, adaptable to particular 
analyses, are also provided to users. This implementation 
exemplifies the power of the bootstrap program: its use 
can be extended easily to meet new survey demands. In 
this case, the dummy bootstrap weights were easily 
calculated using the dummy survey files and the original 
bootstrap SAS programs, resulting in a remote process 
much more efficient than the former case-by-case 
response to variance estimation. 

6. Conclusions and Future Work 
The dissemination of bootstrap weights allows users 

of NPHS data to now calculate their own correct 
design-based variance estimates for simple statistics such 
as proportions and totals as well as for more complex 
statistics such as regression coefficients. Although some 
technical knowledge is required, the calculation of these 
estimates is generally straightforward. The use of 
bootstrap weights should also prove fruitful for other 
surveys with complex sample designs, whether or not 
they release PUMFs. 

We are working to improve the user interface of the 
variance programs and to include nonresponse and other 
weighting adjustments in the bootstrap algorithm for 
wave 3. These additions will ensure that the bootstrap 
captures more of the total variance and will eliminate the 
problems related to missing clusters noted in earlier. The 
mean bootstrap algorithm is also being revisited, to try to 
solve the confidentiality problem noted and thus to be 
able to disseminate bootstrap weights with the PUMFs. 
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APPENDIX A: Bootstrap v s .  Jackknife CVs 

Using the survey weight from NPHS health P U M F  
for wave 1 (1994/95), 250 bootstrap files were created, 50 
each with B = 100, 200, 300, 400, and 500. These sets of 
bootstrap files were then used to calculate CVs for a large 
number of estimates, which were compared with the CVs 
from the full jackknife used in wave 1. Tables 1 and 2 
show the results over 90 estimates of totals and ratios and 
over 25 regression estimates respectively. The average 
number of CVs over the B bootstrap samples within x% 
of the jackknife CV is given in the first line of each cell. 
The standard deviation of this average is also given. The 
second line (in parentheses) is the percentage over the 90 
or 25 estimates. 

For example, in Table 1, averaged over 100 bootstrap 
weights, 70.5 + 3.8 of the 90 estimates had bootstrap 

CVs within 1% of the jackknife CV. In percentage terms, 
this is 78.4% + 4.2%. If 500 bootstrap weights are used, 

this increases to 84.7 _+ 2.3 or 94.3% + 2.6%. For 

regressions, shown in Table 2, with only 100 bootstrap 
weights, 55.5% + 7.6% of the regression estimates had 

bootstrap CVs within 1% of the jackknife CV, which 
increased to 75.0% + 7.0% using 500 bootstrap weights. 

As expected, as the number of bootstrap weights is 
increased, not only does the average percentage of 
bootstrap CVs that are close to the full jackknife CV 
increase, but the standard deviation around that average 
percentage decreases. That is, the bootstrap CVs become 
more stable as B increases. 

Table 1: Number and (Percentage) of Bootstrap CVs Within x% of the Jackknife CV 
Estimates of Totals and Ratios (Number of Estimates=90) 

C U  B - C g j a c k k n i f  e 

-+1% 

_+2% 

_+4% 

>14%1 

Average + S.D. for Bootstrap 

B=100 

70.5 _+_ 3.8 

(78.4 __+ 4.2%) 

84.1 __ 2.8 

(93.4 _+ 3.2%) 

89.5 + 0.7 

(99.5 + 0.7%) 

0.5 +_. 0.7 

(0.5 _ 0.7%) 

B=200 

77.6 + 3.5 

(86.2 + 3.9%) 

87.6 ___ 1.5 

(97.4 _ 1.7%) 

89.9 + 0.3 

(99.9 + 0.4%) 

0.1 ___0.3 

(0.1 + 0.4%) 

B=300 

81.5 ___ 2.7 

(90.6 __+ 3.0%) 

88.9 __. 1.1 
(98.7 __+ 1.2%) 

90.0 ___ 0.1 

(100 __. 0.2%) 

0.0 __. 0.1 

(0.0 _+ 0.2%) 

B=400 

83.9 + 2.4 

(93.3 + 2.7%) 

89.1 _+ 1.0 
(99.0 _ 1.1%) 

90.0 ___ 0.1 

(100 _ 0.2%) 

0.0 +_. 0.1 

(0.0 _ 0.2%) 

B=500 

84.7 + 2.3 

(94.3 __+ 2.6%) 

89.2 ___ 0.9 

(99.1 ___ 1.0%) 

90.0 __. 0.0 

(100 +__ 0.0%) 

0.0 _ 0.0 

(0.0 _+ 0.0%) 

Table 2: Number and (Percentage) of Bootstrap CVs Within x% of the Jackknife CV 
Regressions (Number of Estimates=25) 

C V  B - C V j a c k k n i f  e 

_+1% 

_+2% 

+ 4 %  

>14%1 

Average + S.D. for Bootstrap 

B=100 

13.9 ___ 1.9 
(55.5 _ 7.6%) 

18.1 __. 1.6 

(72.5 +_ 6.5%) 

21.7 _ 1.2 

(86.7 _.+ 4.9%) 

3.3 __. 1.2 

(13.3 +_. 4.9%) 

B=200 

16.4 _ 1.6 

(65.1 _ 6.6%) 

20.1 __. 1.4 

(80.6 _ 5.7%) 

23.0 __. 0.9 

(92.1 _.+ 3.8%) 

2.0 + 0.9 

(7.9 +_ 3.8%) 

B=300 

16.7 _ 1.6 

(66.8 __. 6.5%) 

20.6 __. 1.4 

(82.6 _ 5.7%) 

23.5 _ 0.7 

(93.8 +_. 2.9%) 

1.5 __.0.7 

(6.2 +_. 2.9%) 

B=400 

18.5 ___ 1.9 
(73.9 __+ 7.4%) 

21.6 __. 1.3 

(86.5 +_ 5.4%) 

23.5 _+ 0.9 

(94.0 + 3.5%) 

1.5 ___ 0.9 

(6.0 + 3.5%) 

B=500 

18.7 __ 1.8 

(75.0 +__ 7.0%) 

22.1 _+ 1.1 

(88.3 _.+ 4.3%) 

23.6 __ 0.9 

(94.5 __. 3.4%) 

1.4 __. 0.9 

(5.5 _+ 3.4%) 
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