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1.0 Introduction 
Systematic sampling (either with equal or unequal 

selection probabilities) is a common sampling scheme 
in complex sample designs. It is used because of its 
simplicity of implementation and its potential increase 
in efficiency, given a good frame ordering, which acts 
as an additional stratification. 

One problem with systematic sampling is that such 
samples can be viewed as a cluster sample of cluster 
sample size one. As such, unbiased variance estimation 
becomes impossible without additional assumptions. 
One common method for approximating the variance 
from systematic sampling is to treat the sample as a 
super-stratified sample. This is accomplished by placing 
the sample selected within a stratum into the order it 
was selected and pairing consecutively selected PSUs. 
Each pair can then be treated as a pseudo-stratum for 
variance estimation purposes. 

There are problems using the pseudo-stratum 
variance approach. The main problem is that the 
pseudo-stratum variances still does not reflect the 
appropriate systematic sampling variance. As such, the 
variance may only reflect with-replacement sampling. 
By assumption, the correlation between pseudo-strata is 
assumed to be zero. At first glance, it seems like these 
drawbacks would lead to an overestimate of the 
variance. However, since the correlations can be 
negative, this need not be the case. 

In Kaufman (1998), it is shown that using the 
pseudo-stratum approach can produce large 
underestimates of the variance. To reduce this problem, 
the 1998 paper proposes a consistent bootstrap variance 
estimation procedure. The advantage of the bootstrap 
methodology is that it becomes possible to reflect an 
appropriate systematic sampling variance. The problem 
with this procedure is that without special adjustments, 
the bootstrap estimator is biased. To produce an 
unbiased variance estimator, adjustments are based on 
estimates from multiple samples. Generally, this is only 
possible with variables on the frame. Since the required 
adjustment is dependent on the variable of interest, the 
proposed procedure can have limited utility. 

In this paper, the frame will be randomized in a 
controlled way, so that some of the affects on efficiency 
of the frame ordering are maintained, while eliminating 
the within and between pseudo-stratum correlations. 
Without the correlations, it becomes possible to estimate 
the variance in an unbiased fashion, where the 
expectation is taken across all possible random 

orderings. With an unbiased variance estimator, the 
bootstrap variance estimator can be adjusted using only 
data from a single sample. 

The organization of this paper is: 1) define the 
randomized systematic sampling, 2) define the bootstrap 
procedure, 3) describe a simulation study to test the 
bootstrap variance estimator, and 4) present the results 
and conclusions. 
2.0 Systematic Sampling 

Systematic probability proportionate to size sampling 
(PPS) is a common procedure used with complex 
sample designs. The procedure is described in (Wolter, 
1985, pp. 283-286). The idea is to divide the frame into 
consecutive, exhaustive and disjoint groups of Primary 
Sampling Units (PSUs), called partition groups, such that 
the total measures of size in each group are all equal. The 
total measure of size in a group is called the sampling 
interval. For this to work, some PSUs must span multiple 
partition groups. The first sampled PSU is randomly 
selected from PSUs in the first partition group. All other 
PSUs are selected systematically, one per partition group, 
starting from the point of selection of the first PSU. 

It is assumed that before sample selection, PSUs with 
measures of size larger than the sampling interval have 
been excluded from the sampling. Such units are 
considered certainty PSUs. 

An unbiased estimate for the total of variable X (7~y) 

H nh 

is ~ ~] X i / Pi , where H is the number of stratum, n h is 
h=l i=1 

the number of sampled PSUs in stratum h ,  x i is the 

value of X for selected PSU i ,  and Pi  is the selection 

probability for the PSU (i.e., Pi is the measure of size for 

PSU i divided by the stratum sampling interval). 
To simply the development of the randomized 

systematic sampling procedure 7~y will be rewritten into 

an equivalent estimator by treating the PSUs split 
between partition groups differently. Assume a h PSUs 

on the frame split between partition groups. Each of these 
a h PSUs will be split into two pseudo-PSUs ( j~ and J2 ). 

For PSU j ~ a h with probability of selection p j ,  the first 

pseudo-PSU selection probability (pj~) is the part of 

p j in the first partition group containing j and the 

second pseudo-PSU selection probability ( p  j2) is 

p j -  p j .  The partitioning weights (wj~ and w j2) are 

pj~ / pj  and Pit2 / PJ ' respectively. Without loss of 
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generality, the PPS selection described above can be 
viewed as selected from this new setup. For a given 
j ~  ah, at most one j lo r  j2can be selected. A j~or 

J2 actually selected will be denoted by j . .  And let k h be 

the number of j .  selected in stratum h.  

Now, 

Hnh HInh  kh I 
f'sy = ~ ~-,xi / Pi = ~ ~.,xi / Pi + E (Wj. Xj / pj. ) 

h=l  i=1 h=l  i=1 jo =1 i~ah jEa h 
3.0 Estimating the V (7~,) with a Randomized Frame 

In this section, an unbiased variance estimator for 

7~y will be derived using only the selected sample. To do 

this, the sampling frame must be randomized before the 
sample selection. The variance estimator will then be 
unbiased across all frame randomizations. The 
randomization will be done to maintain most of the 
affects of the implicit stratification induced by the 
original frame ordering. First, a general expression for 

V(7~,y) is specified. Next, the frame randomization is 

specified. Finally, an unbiased variance estimator is 
derived. 

3.1 General Expression for V(7~,y ) 

V (7~,) can be express as: 

Z V(xi/pi)+ZZp~j V(x~ lp , )V(x j /p j )  (1) 
h=l i=1 j,~i 
where: Pho is the weighted correlation between the 

i th and j th PSUs selected in the systematic selection 

process. 
Of course, without further assumptions, none of the 

above quantities have unbiased estimates. With the 

randomized ordering, T,y will be denoted as 7~r~y. 

3.2 New Ordering of the Frame 
To simplify the variance estimation, the original 

frame ordering will be modified. The first step in this 
process is to define pseudo-strata similar to those 
described in section 1.0. Within each stratum, place the 
frame in its original ordering. Next, determine the 
partition groups as described in the section 2.0. Partition 
groups are now consecutively paired. Each pair is 
considered a pseudo-stratum (ps ) .  After, the pseudo- 

strata are determined, PSUs that are in multiple pseudo- 
strata must be spilt into two pseudo-PSUs, as described 
at the end of section 2.0. The final step is to randomize 
the PSUs and pseudo-PSUs within each pseudo-stratum. 
It is assumed that n h is even, so there should be two 

PSU selections within each pseudo-stratum. 
This methodology maintains much of the additional 

stratification induced by the original ordering. With the 

original ordering, any contiguous group on the frame 
would have a selected sample size within one of the 
expected sample size for that group. With the new 
ordering, the selected sample size will be within two of 
the expected sample size. 

Another advantage of the new ordering is that across 
all possible frame randomization the correlation 

between the i th and j th PSUs selected is zero 

(i.e., Phi j=O) .  (2) 

One disadvantage with the new ordering is that if the 
sum of the covariance terms, from the original ordering, 
is negative for a variable X then the variance under the 
new ordering will be less efficient than under the old 
ordering. The reverse is also true, if the sum of the 
covariance terms is positive. Of course, with multiple 
purpose surveys, where many variables are measured, 
there may be some variables where the sum of the 
covariance terms is either positive or negative. In this 
situation, it isn't clear which ordering is overall more 
efficient. However, variance estimates based on the new 
ordering should not be negatively biased due to the 
covariances. A second disadvantage is that it becomes 
possible to select a pseudo-PSU multiple times. One way 
of minimizing this impact is to compute the expected 
number of pseudo-PSUs ( E ( p s ) )  selected twice and 

increasing the sample size by this amount: 

E ( p s ) = ~  ~ PJ, PJ2' whereahrefers to the set of 
h j~a h 

PSUs that span multiple pseudo-stratum. 

3.3 Estimating V (7~r,y) using the New Ordering 

To estimate V(7~r,y), the sampling must be 

conditioned on three things. The first, denoted by 1, 
represents the random ordering process described in 
section 3.2. The second, denoted by 2 ,  represents the 
PPS systematic sampling process. The third, denoted by 
N g, represents the number of PSUs/pseudo-PSUs in 

partition group g .  There are two ways pseudo-PSUs 

can be formed. The first way is in the formation of the 
pseudo-strata described in section 3.2, which could 
generate a pseudo-PSU in each g. For partition group 

(~) 0 or 1). g, assume there are "- (1) such units (i.e. m s = f f t  g 
Within a pseudo-stratum, a PSU may still span two 
partition groups. In this situation, the PSU would be 
converted into 2 pseudo-PSUs. Within g, assume there 

._ (2)=0 or 1). The number are - (2)of these units (i.e., ms ?It g 
of PSUs and pseudo-PSUs in a partition group g is: 

Ng = Ng"S +..,ng (~) +'rag(Z) , where Ns"S is the number of 

non-splitting PSUs. 
Given this: 

684 



Ng Ng " Ng 

= E EV(7~r~), since E(7~r,,,) = T (the population total) 
Ns 1 2  - "  2 " 

H 

: ~h p~h g~ y~p, N,E E V(7~rsy,~,s,g), from (1)and (2), 

where" f'ro,,ps,e, is the total for partition group g, 

pseudo- stratum ps  

Over all random subdivisions of PSUs and pseudo- 
PSUs in p s ,  the probability of any pair of PSUs or 

pseudo-PSUs being in partition group g is 

Ng(Ng-1)[(Nps(Nps-1)), where Nps = ~ N g  . 
g~ ps 

By using the argument in (Cochran, 1997, pp. 266- 
267) for the Rao, Hartley, Cochran estimator and that 
the number of PSUs/pseudo-PSUs ( N g ) in a group g 

is a random process, an unbiased estimator for 
V (T~.,) is" 

V(Trsy) : E N g -  - 
h h s 

/=1 

An unbiased sample estimator for 12 (f'r,y) or V ( f ro ' ) '  

also from Cochran, v(f'r,y ) ,  is: 

V(Trsy )  --" Z ( Z Ng - Nps)/(Np, 
h h geps g = l  

/ / ~;1/2(2x~ / p~ (3) 
g = l  

where X g is the variable of interest for the sampled 

PSU in partition group g and P8 is its selection 

probability. 
The second term of the product in (3) is the balanced 

half-sample variance estimate (BHR) for the pseudo- 
stratum. Therefore, any differences between (3) and 
BHR can be attributed to the first term in (3) (i.e., the 
scaling term). 

The scaling term acts as a finite population correction 
(FPC). If the N g 'S  are all equal in a stratum then this 

term resembles the simple random sample FPC. 
However, when the stratum PSUs are skewed in either 
direction, this term can be greater that 1. In this 
situation, the B HR estimator should be expected to 
underestimate the variance. 

V(f'r~) will now be used to produce an unbiased 

bootstrap variance estimator. When computing Ng, a 

PSU/pseudo-PSU that spans two partition groups is 
included in both Ng c o u n t s .  

4.0 Bootstrap Variance Estimator for Trsy, V* (7~rsy) 
The bootstrap variance estimator will be generated 

from a set of bootstrap samples. First, a discussion of 

the bootstrap sample size used in these samples, n h , 

will be presented. 

n h is chosen so that E (V (7~ro,)) = V(f'r,  ) ,  where 

E* represents the expectation with respect to the 
bootstrap selection. There are two ways to do this: 

The first way is to recognize that the sampling scheme 
proposed here, given a known set of N g 's ,  has the same 

inclusion and joint inclusion probabilities, as well as the 
same estimator, as the Rao, Hartley, Cochran estimator. 

Hence, Sitter's (1992) solution to n h can be used. One 

advantage here is that n h will not be a function of the 

variable of interest. Therefore, once n h is determined for 

one variable, across all possible randomizations, it should 
work for other variables, too. One disadvantage is that 
Sitter does not provide a closed form solution. Instead, a 
searching and bracketing process must be used. A 
possible second disadvantage is that the clustering in the 
selected sample is ignored. 

The second solution is to use a simulation searching 
~g 

process to determine n h that does not ignore the 

clustering. For this searching process, a number of 
stratum bootstrap variance estimates are generated, each 

with a different n h . Each of the bootstrap variance 

estimates can then be compared to V(7"r~y). A bracketing 

procedure can now be used to achieve an unbiased 
variance estimator. The disadvantage here is that this 
searching process is more involved than the first. 
However, since the cluster correlations, P hij, a c r o s s  all 

randomizations, are zero, this solution should be 
reasonably close to the first solution. 

In this paper, the second solution will be described and 
tested in a simulation. The simulation can then be used to 
verify that this solution, once solved for one variable, 
works equally well for all other variable. 

fro , for stratum h will be denoted by 7~h . 

4.1 The Bootstrap Procedure  
1. Select a systematic PPS sample ( s h ), as described in 

section 2.0, using the randomization methodology 
described in section 3.2. 

2. Generate a bootstrap frame based on the selected 
sample s h . For each selected PSU/pseudo-PSU 
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j with sampling weight w~ = 1 / p j ,  generate 

bootstrap-PSUs (b j )  by replicating t h e  j t h  

PSU/pseudo-PSU W j times. Note wj does not 

include the partitioning weight. The bj 'h bootstrap- 

. 

PSU has the following measure of size ( mbj ): 

mr, ~ = l bj .1/ w ~ , 

1, if bj is an integer component of wj 

= Cj C~ being the noninteger component 

lbj , if bj is a noninteger component of w~ 

Associate j'spseudo-stratum with each of the 

bootstrap-PSUs generated from the jth PSU 

Within each stratum, define a set of bootstrap sample 

sizes, n~h, k = 1 to Kh 

nkh = (n h - n h o ) ( k - 1 ) / ( K  h -1)+nh0,  where nh0is 

the lower bound for nkh. nh0must be chosen to 

provide a positively biased variance estimate. 
4. Randomize the bootstrap-PSUs within each pseudo- 

stratum. 

5. Choose an nkh, say n0k to be used to compute the 

first bootstrap variance. 
6. The bootstrap frame, bootstrap frame ordering, 

measure of size (mbj), and bootstrap sample size 

(nh) have been specified. Using these quantities 

select B bootstrap samples using the same 
procedures used to select the original systematic PPS 
sample. The one exception to this is that a bootstrap- 
PSU generated from noncertainy PSUs that become 
certainty in the bootstrap selection should not be 
eliminated from the selection process and taken in 
sample with certainty. The bootstrap weight should 
properly reflect the bootstrap-PSUs selected multiple 
times (see 7 below). Before each selection, the 
bootstrap frame must be re-randomized. 

7. For each bootstrap sample, compute a set of 

bootstrap weights, w j .  Compute T/, h like 7~h, using 

Wj instead of w j .  

The bootstrap-PSU weight, w j ,  is" wj = ~ w~, 
bj~s~' 

B S j • is the set of all b j ' s  generated from j that are 

selected in the B th bootstrap sample, and 

lbj " M b j  ] Pbj , if bj is from a PSU 

[lb~ Mbj / Phi x wj., if bj is from a pseudo- PSU 

M b j" is the number of times the bj th bootstrap- PSU 

is selected, 

Pbj: is the bootstrap selection probability for the 

bj 'h bootstrap-PSU. 

Phi = mbj / S l h  ' S l h  = y~ mbj / nkh " 
bje s h 

wj. :is the partitioning weight for the selected 

bootstrap-PSU. 
When pseudo-PSUs are selected, a bootstrap-PSU 

weight can be generated by adding up the w j ' s  

corresponding to the PSU. 

8. The bootstrap variance for 7~h given n kh is" 

- *  • • B • )2 
vk ( , , ~ )  = 1/(B - l) Z (7"~ -7"~ , 

b=l 

9. Repeat steps 5-8, for each n~h,  generating 

I" v~* ( ~  n~.) for k = 1 to X . .  

10. Compute v(T h) from sample sh and compare it to 
, ^ [ * 

each of the Vk (Tih nkh)  for k = 1 t o  K h . Denote 
I 

by Mhthe stratum bootstrap variance with the 

smallest negative bias. Denote by Ph the stratum 

bootstrap variance with the smallest positive bias. 
Define qh -- (Vh -- Mh)/(Ph -- Mh).  Select a random 

number between 0 and 1. If it is less than or equal 
t o  qh then use the replicate weights associate with 

Ph to produce future variances. Otherwise, use the 

replicate weights associated with M h . Denote this 

variance estimator by V*(7"h). This produces 

unbiased stratum variances because 

E(V* (Th)) = qhPh + (1 -- qh)Mh = V(7?h), where E 
q q 

represents the expectation with respect to the 
q h selection. To reduce the instability introduced by 

the bracketing, Ph and M h should be determined to 

be as close to zero bias as possible. 

Now, across all randomizations V*(Tr,y)is unbiased 
$ ^ 

(i.e.,E(V (Tr,y))= ~ Ev(Th)= ~ V ( T h ) =  V(Tr,y) ) 
h h 

5.0 Simulation 
To demonstrate the advantages of the bootstrap 

variance estimator, a simulation study is presented 
comparing B HR and the bootstrap variance estimators. 
Five hundred simulations are generated using frame 
variables. In tables 1-6, estimates are computed by each 
stratification variable (affiliation, region and school 
level), as well as one of the sort variables (Urbanicity). 
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5.1 Comparison Statistics 
Variance comparisons are based on the relative error 

of the standard error, relative mean square error of the 
variance and the 95% coverage rate. 
5.2 Sample Design 

Following the Schools and Staffing Survey sample 
design, the list frame component of NCES's Private 
School Survey (PSS) is stratified by detailed School 
Association (19 groups) by Census Region (4 levels), and 
by school level (3 levels). The school sample is selected 
systematically probability proportionate to size, using 
square root of the number of teachers, as the measure of 
size. Before sample selection, the schools are ordered by 
state, school highest grade, urbanicity, zip code, and 
school enrollment. One detailed association is simulated. 
5.3 BHR Variances 

The r th school half-sample replicate is formed using 
the usual textbook methodology (Wolter, 1985) with 2 
PSUs per stratum. When rt h _> 2, PSUs are placed in 

pseudo-strata (see section 1.0), which are used as strata 
for estimating variances. This is the BHR without FPC 
variance. A second B HR variance estimate (BHR with 
FPC Adjustment) adjusts the first variance estimator by 
1- Ph, where Ph is the average of the selection probabili- 

ties for the selected units within stratum h. 

5.4 Number of Replicates and Determining nh 

Forty-four and forty-five replicates have been used in 
the BHR and bootstrap variances, respectively. Total 

number of students is used to determine n h . 

6.0 Results 
In terms of relative error, MSE, and coverage rates, 

tables 1-6 show that the bootstrap variance estimator is 
better than either of the B HR estimators. 

The bootstrap and B HR variance estimates are 
different only in how they are scaled (see end of section 
3.3). Therefore, deficiencies in the B HR estimates are 
due to the use of an incorrect scaling factor. Each table 
has examples where BHR produces a large 
underestimate of the variance. This shows that the 
correct scaling factor, used in the bootstrap, can be 
greater than 1 in practice. 

The results indicate that the bootstrap performed well 
for every variable, even though the bootstrap sample 
size was based on a single variable (number of 
students). This demonstrates, as argued in the paper, 

that rt h is independent on the variable of interest. 

7.0 Conclusion 
In the past, the author has proposed using a bootstrap 

variance estimator when the PSUs are selected with a 
PPS systematic sampling scheme. With a non-random 
ordering of the frame, these bootstrap procedures can 
only be implemented using frame variables. To get 

around this problem, the PSS systematic selection 
scheme proposed here introduces a random element to 
the ordering, while maintaining much of the implicit 
stratification usually associated with systematic 
sampling. Now, an unbiased bootstrap variance 
estimator can be developed for any variable of interest 
without the dependence of the frame variables. 

The simulation study presented in this paper 
demonstrates that the bootstrap variance estimator is 
better than the BHR variance estimator, even when a 
simple FPC adjustment is applied. This is true with 
respect to relative error, MSE, and coverage rates. 

With respect to relative error, the bootstrap performs 
better than BHR because BHR is not scaled correctly. 
As such, BHR can provide either an underestimate or 
overestimate of the variance, depending on the 
distribution of the PSUs within the pseudo-strata. 

When a survey measures one variable or a number of 
variables all highly correlated with each other, it is 
likely that a frame ordering exists for an efficient 
systematic sample using a non-random ordering. In this 
situation, the standard variance methodologies (e.g. 
BHR, jackknife, Taylor Series) can safely be used, since 
these methodologies will likely, but not necessarily, 
overestimate the variance. In situations where the 
variance overestimation is unacceptably large (e.g., 
when the sampling rates are high, the covariance terms 
are very negative or the sample sizes are small or any 
combination of these) then the bootstrap procedure in 
(Kaufman, 1998) may be useful. 

When a survey measures a number of unrelated 
variables, determining an efficient frame ordering for all 
variables may be impossible. In this situation, using the 
standard variance methodologies, for the standard 
systematic sample, can be inappropriate because now 
variances may have a large underestimation problem. A 
safer alternative would be using the randomized 
systematic sampling procedures and bootstrap variance 
estimator proposed here. With these procedures, all 
variances can be appropriately estimated. Some 
estimates may be less efficient than a systematic 
procedure using a non-random ordering, but there will 
be no large systematic variance underestimation. 
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Table 1 -- % relative error, % relative mean square error mad % coverage rates for the Bootstrap and BHR variance 
esthnator for esthnath~g Total Number of Students by Affiliation, Region, Level and Urba~ficity 

Bootstrap BHR without FPC Adiustment BHR with FPC Adjustment 

Rel. Rel. Cov. Rel. Rel. Coy. Rel. Rel. Cov. 
Error MSE Rate Error MSE Rate Error MSE Rate 

Esthnate 

Other Affil. -2.3 23.8 92.7 3.2 25.8 92.9 0.2 23.4 92.7 

Northeast -1.9 46.8 91.9 -10.2 30.0 78.6 -12.4 31.9 78.6 
Midwest 2.7 46.8 94.6 54.9 149.4 100.0 50.9 137.5 100.0 

South -7.8 28.3 92.3 -10.6 29.2 100.0 -14.0 32.5 99.8 
West -4.2 34.2 93.5 6.4 31.3 92.9 3.9 28.1 92.9 

Elementar~ 0.9 37.0 93.1 2.2 30.1 99.8 0.0 28.7 99.8 
Secondar), 6.3 43.4 93.8 75.7 36.6 92.9 - 15.5 39.1 85.6 
Combh~ed -2.5 25.2 93.8 5.6 36.8 99.8 2.2 33.0 99.8 

Rural 3.0 31.0 96.4 -5.1 29.7 85.9 -7.9 30.3 85.9 
Suburban -2.6 27.5 92.3 17.9 58.2 92.9 14.6 51.3 92.9 

Urbaa] 4.9 33.0 95.2 6.1 37.2 93.1 3.1 33.7 93.1 

Table 2 -- % relative error, % relative mean square error mid % coverage rates for the Bootstrap and BHR variance 
esthnator for esthnath~g the Total Number of Schools by Affiliation, Region, Level and Urbanicity 

Esthnate 

Bootstrap BHR without FPC Adjustment BHR with FPC Adjustment 

Rel. Rel. Cov. Rel. Rel. Cov. Rel. Rel. Cov. 
Error MSE Rate Error MSE Rate Error MSE Rate 

Other Affil. -4.1 25.0 91.7 -11.1 26.8 85.7 -13.5 29.7 85.7 

Northeast -2.3 41.4 91.5 -5.2 40.7 85.7 -7.1 40.7 85.7 
Midwest 4.9 44.3 94.6 27.4 71.3 100.0 24.4 64.3 100.0 

South -7.7 31.4 90.9 - 1.0 23.1 85.6 -4.8 23.4 85.6 
West -8.3 36.0 90.3 3.9 32.4 93.1 1.4 30.1 93.1 

i 

Elementary -0.8 36.9 91.7 -26.1 52.4 71.5 -27.4 53.8 71.5 
Secondary, -3.0 57.8 90.1 23.1 87.5 100.0 13.0 66.8 100.0 
Combh~ed -4.6 26.5 91.7 13.3 45.6 100.0 9.9 39.3 100.0 

Rural -7.2 27.6 91.3 35.8 93.8 100.0 32.5 84.8 100.0 
Suburban 2.4 30.1 94.0 - 17.1 35.4 85.9 - 19.2 38.2 85.9 .. 

Urban -2.2 25.2 93.1 -8.7 29.8 92.9 - 11.1 31.6 92.9 

Table 3 -- % relative error, % relative mem~ square error and % coverage rates for the Bootstrap mid BHR variance 
esthnator for esthnathag the Total Number of Teachers by Affiliation, Region, Level and Urbanicity 

Esthnate 

Bootstrap BHR without FPC Ad iustment BHR with FPC Ad]ustment 

Rel. Rel. Coy. Rel. Rel. Coy. Rel. Rel. Cov. 
Error MSE Rate Error MSE Rate Error MSE Rate 

Other Affil. -4.5 24.6 93.1 -15.5 35.3 93.1 -18.0 38.2 93.1 

Northeast -2.7 39.5 91.9 -8.4 37.6 85.9 -10.8 38.3 85.9 
Midwest 4.2 38.3 94.8 35.7 94.0 100.0 32.2 84.5 100.0 

South -11.7 31.7 89.7 -12.5 30.3 85.7 -15.9 34.3 85.7 ..... 
West -4.7 39.3 91.7 20.0 67.3 93.1 16.9 60.5 93.1 

Elementary -3.2 31.6 93.5 -29.7 53.7 78.4 -31.1 55.3 78.4 .. 
Secondary, 7.5 45.6 94.8 7.8 42.9 100.0 -2.9 31.9 92.9 
Combh~ed - 1.7 27.4 95.0 15.5 52.5 93.1 11.9 45.5 93.1 

Rural 5.6 32.2 94.0 4.9 23.5 93. I 1.7 20.4 93.1 .... 
Suburban 0.9 27.4 92.7 4.8 26.9 92.9 1.6 23.8 92.9 

Urban 9.9 37.0 96.2 49.2 138.9 93.1 44.7 125.5 93.1 

Table 4 -- % relative error, % relative mean square error and % coverage rates for the Bootstrap and BHR variance 
esthnator for esthnath~g the Number of Students per School by Affiliation, Region, Level and Urbanicity 

% . ,, . % • • . 
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Table 5 -- % relative error, % relative mean square error and % coverage rates for the Bootstrap and BHR variance 
esthnator for esthnathlg the Number of Teachers per School by Affiliation, Region, Level and Urbanicity 

Bootstrap BHR without FPC Adjustment BHR with FPC Adjustment 

Rel. Rel. Cov. Rel. Rel. Cov. Rel. Rel. Cov. 
Error MSE Rate Error MSE Rate Error MSE Rate 

Esthnate 

i 

Other Affil. -4.3 24.0 92.9 -16.2 34.8 93.1 -18.5 37.7 92.7 

Northeast -2.0 45.7 92.3 -15.4 38.8 85.7 -17.3 40.6 85.7 
Midwest 7.9 49.0 94.2 32.7 87.3 100.0 29.3 78.6 100.0 

South -10.3 31.2 91.5 -5.8 24.4 92.7 -9.5 26.8 92.7 
West -5.8 35.9 92.5 18.9 62.7 93.1 15.9 56.1 93.1 

i 

Elementar), -2.1 35.3 93.5 -30.4 55.6 71.5 -31.7 57.1 71.5 
Secondar), 2.3 44.7 94.8 16.3 70. I 100.0 5.1 49.2 100.0 
Combh]ed -3.3 26.1 94.0 11.3 41.9 93.1 7.8 36.2 93.1 

i 

Rural 2.1 39.4 93.5 16.8 57.2 100.0 13.5 50.4 100.0 
Suburban 0.9 33.2 92.9 -23.5 43.8 79.0 -25.6 46.6 79.0 

Urban -2.0 31.5 94.6 -25.5 48.9 79.0 -27.8 51.5 79.0 

Table 6 -- % relative error, % relative metal square error and % coverage rates for tile Bootstrap and BHR variance 
esthnator esthnathlg the Student/Teacher Ratio by Affiliation, Region, Level and Urbanicity 

Bootstrap BHR without FPC Adjustment BHR with FPC Adjustment 

Rel. Rel. Cov. Rel. Rel. Cov. Rel. Rel. Coy. 
Error MSE Rate Error MSE Rate Error MSE Rate 

Esthnate 
, 

Other Affil. -0.4 30.8 93.8 14.8 40.7 100.0 11.6 34.5 100.0 
i .  

Northeast -5.7 65.7 90.5 -8.8 47.9 85.7 - 10.9 47.4 78.6 
Midwest 4.4 83.8 94.0 17.2 99.1 92.9 14.4 93.9 92.9 

South - 1.1 35.5 92.7 20.8 69.1 92.9 16.2 59.2 92.9 
West -6.2 35.0 91.5 14.7 56.2 93.1 12.1 51.3 93.1 

i 

Elementary 5.4 55.2 93.5 - 14.4 41.1 79.0 - 16.1 42.4 79.0 
Secondary 0.0 36.5 90.9 12.2 45.6 92.9 1.5 29.6 85.6 
Combhled -2.3 29.8 93.8 -8.1 29.6 92.9 - 11.1 31.4 92.9 

Rural 0.8 52.4 93.8 11.9 86.8 100.0 8.2 78.8 100.0 
Suburban 1.4 40.8 95.0 91.3 296.1 100.0 86.2 276.2 100.0 

Urban 0.2 37.5 94.8 -12.7 32.6 85.9 -15.2 35.0 85.9 


