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ABSTRACT: Survey sampling and inference may be 
accomplished by solely design-based procedures, or 
solely model-based procedures, or by model-assisted, 
design-based procedures. Depending  upon 
circumstances, there are advantages to each of these 
methods. There are times, particularly in (highly skewed) 
establishment surveys, when, either in terms of resources, 
and/or nonsampling error, it may not be practical to 
sample from among the "smallest' members of the 
population, and solely model-based procedures may then 
be advantageous. This paper shows a general approach 
that may be used to organize such estimations in a 
flexible manner. Readily available regression software 
may be used and results may be easily reorganized to 
present various aggregations. (Note: See Knaub (1999a) 
for an expanded version of this paper with greater use of 
examples and a discussion of the usefulness of this 
method as an imputation procedure.) 

BACKGROUND: 
Cutoff model-based sampling has proven to be useful at 
the Energy Information Administration (EIA) for 
establishment surveys because of practical problems that 
arise when trying to sample from among the smaller 
members of a population. These problems involve both 
timeliness and nonsampling error. An obvious example 
of this occurred when it was observed that a small 
electric utility only read its meters once every three 
months. A census of electricity sales is performed 
annually, but a sample is done monthly. To ask that 
utility to participate in a monthly sample would not be 
very practical. 

Since early discussions by Brewer (1963) and Royall 
(1970), and even comments by Cochran (1953); 
mentioned in Knaub (1995), most model-based sampling 
has probably only made use of simple linear regression, 
with a fixed zero intercept. (We will use a common 
misnomer and say "no intercept.") At the opposite 
extreme, econometric applications of regression for 
prediction have often used more intricate models, 
although perhaps too often they are overspecified. (Note 
here that Carroll and Rupert (1988) is an excellent 
monograph, with great application to model-based 
inference as well as many other applications.) 

Royall and Onnbedand (1981) studied improvement in 
variance estimation for the simple linear regression 
model, but, from Knaub (1992), page 879, Figure 1, it 
can be seen that in practice, improvement, if any, may be 
negligible. Royall has also considered the incorporation 
of randomization in the sampling procedure, and seems 
to have moved away from cutoff sampling. Brewer 
(1995) showed how model-based sampling and inference, 
and design-based sampling and inference may 
complement each other. Further, model-assisted, design- 
based sampling (see Sarndal, Swensson and Wretman 
(1992), Chaudhuri and Stenger (1992), et. al.) has 
become fairly popular. Other works, such as Sweet and 
Sigman (1995), and Steel and Fay (1995), have also 
advanced the use of models in a supporting role. 
However, for purposes of imputation and/or cutoff 
smnpling, model-based applications may have been given 
too little emphasis. Cutoff sampling can be very useful 
for highly skewed establishment surveys, not only 
because of practical data collection problems, but because 
of the efficient use it makes of resources. (See Royall 
(1970).) This should not be ignored. 

Although the simple linear regression model is very 
useful for inference from model-based survey sampling, 
sometimes a multiple linear regression model may be 
more useful. In Knaub (1996), we see an example. (This 
is expanded upon in Knaub (1997).) One may use test 
data to see which model (with one, two or more 
regressors) performs best, but there can be other 
considerations also. In Knaub (1996), the variate of 
interest was electricity sales for resale among a certain 
type of generators. The first regressor used was the same 
variate from a previous census. However, it was found 
that a lot of those generators were sporadic in their sales 
for resale, sometimes using all electricity for their own 
purposes, or perhaps not producing electricity for 
extended periods. It was not uncommon to have non- 
zero current sales for resale, but a zero value for the 
corresponding regressor. However, when a second 
regressor, generating capacity, was introduced, the 
situation was much improved. Every generating plant 
must have a positive capacity value, ff this procedure 
were not used, then all cases where a zero value for sales 
for resale was recorded in the previous census would 
need to be handled separately, perhaps as a separate 
stratum within the sample. A census or a design-based 
sample could be performed within that stratum. 
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NEW METHODOLOGY: 

For each of several models (with or without an intercept, 
and with one or two regressors), the author wrote test 
computer programs at the Energy Information 
Administration (EIA) to estimate totals and relative 
standard errors of the estimated totals, for multiple 
applications. It became obvious that it would be 
advantageous to utilize existing vendor generated 
programming if the future held possibilities of using 
more regressors, or at least the need to test and consider 
alternatives. The SAS system is available to EIA 
employees, so the use of SAS PROC REG was 
explored. This, however, is not to be considered an 
official endorsement of SAS products. In fact, any 
statistical software package that will provide (1) 
predicted values, (2) a standard error or variance of 
the prediction error, and (3) the mean square error 
(MSE) from the analysis of variance, will suffice. 
Thus, this paper relates to any prediction-oriented 
software. Such software will provide predictions, using 
a specified model, for every specified member of a set of 
potential respondents from whom data were not 
collected, provided that relevant data are collected. If we 
add those predictions and the collected values, then we 
obtain exactly the same estimated total that we would 
have obtained using the more traditional model-based 
approach to inference, if the set of data used is from the 
population or the portion of a population for which we 
seek to estimate a total. The estimation of variance will 
differ, but this was studied and an example will follow. 
For now, however, note the implications of this new 
organization of the estimation procedure. We need not 
limit ourselves to sampling within a category whose total 
we wish to estimate! When the time comes to present an 
estimated total for a given category, we need only to have 
a collected or a predicted value for every member of the 
population falling within that category. We then simply 
add the appropriate collected and predicted numbers to 
obtain the estimated total. Each member will have a 
value for the variate of interest, ff the value was not 
collected, then ideally it will have been estimated from 
the optimal regression model using the optimal 
corresponding sample. The data in that sample need not 
have been limited to the category for which we want an 
estimated total. The "optimal sample," in each case, 
would be one in which there is a compromise between 
sample size and heterogeneity. That is, using a larger 
sample by including a broader group of respondents only 
helps if these respondents do behave similarly under the 
model. (That is, the model and the parameter values 
chosen must relate reasonably well to all data to which 
the model is applied.) 

ESTIMATION OF VARIANCE: 

Here we will use VL (T - T) to represent the variance 

of an estimated total (or the variance of the error in 
estimating the total). This is a multivariate extension of 

V L found in Royall and Cumberland (1981). 

• • *2 l 
H e r e gL (T - T) = ~'~r ere /wi  + 

( N - n )  2 V* (bo)  
2 * 

+ (Y~r i X 1 ) V ( b  1 ) 

2 * 2 * 
+ ( ~ r X 2 i )  V ( b 2 ) +  ( ~ r X 3 i )  V ( b 3 )  

+ 2 ( N -  n ) ( ~ r  Xli )COY (bo,b  1 ) 

+ 2 ( Z r X l i ) ( £ r X 2 i ) C O V  (bl,b 2) + 

where ~ r means to sum over the cases not in the 

,2 
sample(Royall (1970)). o" e is the estimated variance 

of the random factor of the residual, e 0 (see Knaub 

-1/2 
(1993, 1995)), where the error term is e, = w, eo, . 

Also, W; is the regression weight; (N-  n) is the 

number of members of the population that are not in the 
sample; the b's are regression coefficients; and the x's 

are regressors. V* and cov  are estimates of 

variance and covariance. 

For the case where the data element of interest is 
collected for all members of a population, but we wish to 
'predict' a value for a new case, then the variance of the 

prediction error is represented by V L(Yi - Y i )  • 
(See Maddala (1992).) This may usually be considered 
to be a way to predict "future observations" (Maddala 
(1977), page 464), but it could be used to estimate for a 
single 'missing' observation. Note that when N-  n = 1, 

then VL (T - T) = VL (Yi -Yi ) • Now consider the 

form taken by the sum over r of VL(Yi - Yi)" 
$ , 

*2 ( N  n (b0) Z r W L  (yi - y i ) : Z r O - e / w ,  + _ ) v* 

2 V* 2 V* 
( ~ r  xl~ ) (b l )  + (~~r x2i ) (b2)  

+ . . .  
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Now consider regressors, x j ,  where for each regressor, 

the values are fairly constant. In the extreme, if X ji is a 

constant for all i (but may be different for j), then we 

have, summing over i for a given j, 

)2 )2 2 _ )2 
( Z r X j i  = (Cj E r  l = cj (N  . and 

2 _ 2 (N - n) , so in the extreme, Z r X j i  -- cj  

r )2 2 ( ~  x,i / Z r X j i  approaches N - n .  

Similarly, in the extreme case: 

( Y ,  r xki ) ( ~  r Xli ) = C k C l ( N - n )  2 and 

Z r XlaXli  = CkCl ( N  - n)  . 

Therefore, with 0 < d < 1, approximate as follows: 

V L (T -T) = t *2 t ,2 VL(Y7 Yi ) (re ere 
_ * _ _ _  + Z r  6(N r i l e  r w, wi 

* * *2  
Although VL (Yi -- Y i) and (:r e / w  i are 

usually nearly equal in many practical applications (the 
difference being negligible and not considered in 
Kaanb(1998), where the coefficients were dealt with 
as if they were constants), there is a cumulative impact 
here that is not negligible when (N-n) becomes somewhat 

larger than 1. Further, the nature of t~ was explored. 

(See Knaub (1999a) for a discussion ofthis topic.) Using 
both real and artificial test data, it appears that for 

establishment surveys, ~ = 0.3 might be used within 

strata, and then the variances corresponding to each of 
the strata may be added. Stratification should reduce the 

variances ofthe parameters and make t~ less important 

to the estimate of variance of the estimated total. (For 

household surveys, the optimal (~ may be smaller, 

perhaps 0.2, as mentioned in Knaub (1999a).) 

A D V A N T A G E S  O F  N E W  M E T H O D O L O G Y :  

One advantage is that data can be estimated using the 
most efficient groupings available. If that data grouping 
is just the category for which we are trying to estimate a 
total, then we will obtain the same estimated totals as 
when using Brewer ( 1963), Royall (1970), Knaub (1996), 
and others. (Standard errors will be slightly different due 
to the approximation above.) However, this method 
easily allows the use of any data set one chooses to 
designate for purposes of predicting each 'missing' 
number. (A number is 'missing' if it was not 
collected/observed. This could be a number for an entity 
not in a sample, or for a nonrespondent to a sample or a 
census.) The larger and more homogeneous the set of 

data used in each case, the better the predictions, and the 
better the overall estimation of the total. Thus, this is a 
more powerful method than if we were to only consider 
'borrowing strength,' a common term in small area 
estimation, where one may use data from a 'neighboring' 
area when the data in the area for which one wishes to 
report are too sparse. 

Another advantage, the one for which this method was 
created, is that the model can be quickly altered when 
necessary. That is, regressors may be added or deleted, 
as well as the intercept term, and the regression weight 
may be easily altered. 

In practice, this means a file is to be built containing 
collected values, predicted values, and values 

* * * 2 /  
for VL (Yi - Yi) , and ere w i Each record of 

the file will therefore contain either an observed or a 
predicted number, two variance related numbers (each set 
to zero if there is an observed number), and indicators to 
identify the groupings used to estimate the predicted 
numbers, and to identify possible categories for which we 
may wish to estimate subtotals. This yields a highly 
organized and flexible file that can satisfy the customer 
who wants to see What was added to obtain a given 
subtotal, and can be archived and later examined without 
ambiguity. (EIA customers have asked for this kind of 
information.) Further, later regrouping of data will be 
easy. Recently, for example, the boundary between two 
of the North American Electric Reliability Council 
(NERC) Regions changed substantially due to several 
companies changing their affiliations. Accounting for 
such a change would be easy when using this new 
methodology. 
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Consider a typical data file where "EG" is a category for 
purposes of performing predictions (an "estimation 
group"), and "PG" is a category for purposes of 
publishing subtotals (a "publication group"). Each line 
represents a record for a given member ofthe population. 
A y value is an observed (or "collected") value, and 

y is a predicted value. Let S12 = VL (Y; -- Y~) 

the variance of the prediction error, and $22 = 

*2/W O'e i ' the mean square error divided by the 

regression weight, for each case, i .  A few rows 
(records) of such a file could appear as follows: 

Yi or Yi S1 i $ 2  i ~,G PGZ PO2 

4359 0 0 1 2 1 

497 20 17 1 1 3 

317 13 11 1 2 2 

Next, suppose that we have some information on 
nonsampling error. Although nonsampling error is 
difficult to measure, tables of revision 'errors' (i.e., 
changes made) are sometimes maintained. The relative 
percent change between preliminary and final 
submissions from respondents may give some indication 
of the severity of nonsampling error. The S1 and $2 
values would be impacted by nonsampling error. In spite 
of the lack of information and the complicated nature of 
the true relationships between errors, it may be 
instructive to perform a data quality study occasionally, 
that would supplement the S1 and $2 values above so 
that applying the variance formula would no longer 
estimate only model variance, but instead would, to an 
extent, approximate overall error. For example, in the 
partial table above, we might, based on revisions, 

estimate that d i ,~ 0.02Yi + 3, ffthe d i are to replace 

the zero values associated with each observed value, y ; .  

The S1 and $2 values above might also be replaced by 

r. ~ 0.02Yi + Si 2 , using " S "  i n  place o f  e i the r  

"S 1" or "$2." This would yield the following: 

y, o~y; d~ or Fli dior r2i ~.G PG1 PG2 

4359 90 90 1 2 1 
497 22 20 1 1 3 
317 14 13 1 2 2 

EXAMPLE (using hydroelectric generation): 
This example is for hydroelectric generation in the 
Western United States. Logically, it would seem that US 

hydroelectric generation may best be collected within the 
US Standard Regions for Temperature and Precipitation 
used by the National Climatic Data Center of the 
National Oceanic and Atmospheric Administration 
(NCDC/NOAA) since one would like to have data 
grouped as homogeneously as possible for the largest 
data set possible. When estimating (technically, 
'predicting') hydroelectric generation for 'missing' 
observations (i.e., for that part of the population that was 
not on the sample, or, whether sample or census, did not 
respond), the regressors used here were generator 
capacity and previously reported generation from a 
census. The relationship of those numbers to a current 
sample or census of generation might be expected to 
differ by geographic region because the changes in 
precipitation might be expected to be similar within the 
NCDC regions. However, the Energy Information 
Administration (EIA) would publish such generation 
numbers by Census division (originally from the Bureau 
of the Census) or NERC region (from the North 
American Electric Reliability Council). Maps are 
included in Knaub (1999a) for all of these regions. The 
EIA might also publish these numbers by State. 

There is an NCDC region in the West consisting of 
California and Nevada, and another region north of that 
consisting of Oregon, Washington and Idaho. However, 
California, Oregon and Washington are in what EIA 
refers to as the Pacific Contiguous Census Division. 

What if hydroelectric generation data were collected in 
each of the two NCDC regions just mentioned, and data 
'predicted' for all members of the population for which 
data were not collected in those regions, and then a total 
was published across the Census subdivision for 
California, Oregon and Washington? An example will 
be shown to illustrate cutoff model-based sampling and 
inference. (Imputation is very similar, as shown in 
Knaub (1999a), and presented in Knaub (1999b).) 

In the following example, the "cutoff" will be that data 
are not collected from hydroelectric plants with less than 
200 megawatts of generating capacity. These data were 
chosen for use in testing as they represent a reasonable 
set of real data to isolate for this purpose. The author 
employed a testing technique used for a number of years 
since being suggested by Dean Fennell at the EIA. The 
data in this case come from two annual censuses. Data 
are removed from one census to simulate a sample with 
the remaining data. The other census supplies regressor 
data. After 'prediction'/estimation has been 
accomplished, the results are compared to what had been 
collected before the artificial 'sample' was formed. 
With enough such test data sets, one may judge the 
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performance of both total estimation and variance 
estimation to some degree. 

For the NCDC/NOAA West region, there are only 7 
hydroelectric plants out of 231 that meet the 200 
megawatt capacity threshold. They account for just over 
20% of the generation. Two regressors are used: 
generation from a past census, x, and plant capacity, c. 

A 

A preliminary estimate of y, y - 0.5x + 1.3c , was 

used in the regression weight. Regression weights for 
these models are discussed in Knaub (1999a). 

For the NCDC/NOAA Northwest region, there are 25 
hydroelectric plants out of 147 that meet the 200 
megawatt capacity threshold. They account for about 
85% of the generation. The same two regressors are 
used: generation from a past census, x, and plant 

A 
capacity, c. A preliminary estimate of y, y -  x+  0.9c , 

was used in the regression weight. 

For the Pacific Contiguous Census Division, there are 
28 hydroelectric plants out of 331 that meet the 200 
megawatt capacity threshold. They account for about 
70% of the generation. Two regressors are used: 
generation from a past census, x, and plant nameplate 
capacity, c. The sample (n = 28) of generation values, 

A 
y, is plotted against y - x + 0.8c below. Once again, 

/k 
y was a preliminary estimate of y, to be used in the 

regression weight. 
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When the Pacific Contiguous Census Division region 
(CA, OR and WA) is used as a category from which to 
sample, the model does not perform as well. Although 
graphs for these data can be somewhat deceiving, the 
graph above indicates that heteroscedasticity is not a 
well-defined phenomenon in the case of the Pacific 

Contiguous Census Division for these data. The sample 
size is small, but graphs showing most of the 
hydroelectric generation data in this region are found in 
Knaub (1999a), and they also appear a little odd. 

Yi - flxXi + flcCi + eo ( x  + 0.8c)  Y , with ) / =  0.8, is 

the model used here, as discussed in Knaub (1999a), 
which contains a section on regression weights with 
references to more information. Further, we have: 
R-square: 0.978 
x coefficient: 1.01; standard error: 0.08 
c coefficient: 0.75; standard error: 0.29 
n = 28; N = 331; T = 188,710 gigawatthours (GWh) 

T = 200,681and T - T = -11,971. 

Performance appears to be degraded as a result of 
sampling from within a category (the Pacific Contiguous 
Census Division) that istoo heterogeneous. 

However, after making the predictions by NCDC region 
in accordance with the new method, the predicted and 
collected data were aggregated within the Pacific 
Contiguous region, by NCDC regions. For each NCDC 

stratum, we use c/ = 0.3 and ), = 0.8, as mentioned in 

Knaub (1999a). One then obtains T* = 184,597 , and 

therefore T-T* = 188,710 - 184,597 = 4113 with an 
estimated standard error of 5327. To estimate 189 
terawatthours as 185 is decidedly better than 201, 
although this is only one example. 

For household surveys, data are typically not as skewed 
as in establishmem surveys, and data sets tend to be 
larger, whether one is dealing with sampling inference, 
imputation, or both. This paper, however, concentrates 
on the generally smaller, heavily skewed establishment 
survey, particularly where a cutoff sample is most 
practical. However, with possible adjustments to 

regression weights, and to ~ ,  the general procedure 
should be very widely useful, especially for imputation. 

SMALL AREA ESTIMATION:  
When regressor data are available, and models can be 
used to predict a response for any member of the 
population, then an estimated subtotal may be produced 
for any subgroup, ff we wished to estimate a 
hydroelectric generation total for a given State from 
which we had collected few if any responses (but we have 
complete regressor data), then we may do so. Accuracy 
may be too low to make the result useful, but this is 
always true for small area estimation. In this case, 
however, one can estimate a standard error, although 
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accuracy of that statistic, as well as the estimated total, 
would be dependent upon the accuracy of homogeneity 
assumptions. In the case of the above examples, it was 
found that data were homogeneous by State to the extent 
that for the States in the example, it would have been 
best to have sampled and estimated by State. Thus if all 
data were missing for a given State, it may be 
inappropriate to 'predict' each of those missing values 
using data from other States. A variance estimate would 
be produced, but it may not be acceptably accurate. 
However, if the estimated standard error is not too large 
for the purposes to which the data are to be used, and 
one states the homogeneity assumptions being made, 
it may be possible to provide such an estimated total to 
data 'customers' without misinforming them. 
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