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A b s t r a c t :  If one wants to estimate a parameter 
for each of many small areas, one can generally im- 
prove the independent direct estimates by "borrow- 
ing strength" from the other small areas. Much re- 
search has been devoted to the situation in which 
one seeks to minimize the (possibly weighted) sums 
of the expected squared errors of the small area esti- 
mates. Thomas A. Louis, Malay Ghosh, and others 
have considered the contrasting situation in which 
the relationship among the small area parameters is 
of primary interest. For example, one might be inter- 
ested in knowing the proportion of small areas where 
the high school dropout rate is above some level. 
The aim in such problems is to minimize the dis- 
tance between the observed distribution of the "en- 
semble" (set) of small area estimates and the true 
distribution of the ensemble of parameters. This 
paper explores the situation further, expanding on 
Cohen (1998) by considering the effects of covariates. 

1. In troduc t ion  

Suppose we are investigating the values of a cer- 
tain parameter (e.g. average income or an average 
measure of the level of literacy) for each of many 
small areas. If the goal is the best estimates of these 
parameters considered individually, then empirical 
and hierarchical Bayes techniques have been devel- 
oped that  improve upon naive estimators. What  if, 
though, we want to know which small areas have pa- 
rameter values above a fixed cutoff C and which be- 
low? A different approach is required to treat prob- 
lems of this type. 

Louis (1984) was the first to study these small 
area estimation problems although Rubin (1981) 
had looked at the situation in another context. 
Lahiri (1990) and Ghosh (1992, 1994) built on the 
work of Louis, extending it to non-normal and mul- 
tivariate situations. Our aim is to build on the work 
of these authors and, in particular, to investigate the 
use of loss functions that  measure the distance be- 
tween the distribution of the estimates and the dis- 
tribution of the parameters. This paper continues 
the work of Cohen (1998) by considering covariates. 

For a general appraisal of small area estimation, 
Ghosh and Rao (1994) is highly recommended. 

The recent and interesting work of Shen and 
Louis (1998) studies and compares the different ap- 
proaches to small area estimation in a two-stage hi- 
erarchical setting. 

The organization of this paper is as follows- 
This introduction is Section 1. Section 2 provides 
background information. Section 3 treats a normal 
model with covariates. Some concluding remarks are 
given in Section 4. An Appendix discusses the esti- 
mation of ranks. 

2. B a c k g r o u n d  

2.1 P r e v i o u s  W o r k  

Consider the estimation of m parameters 
^B ^B 

01 , . .  , Om under squared error loss. Let 01 , . . .  , 0 m 
denote Bayes estimates of these parameters based 

m on data Y - (Y1 , . . . ,  Ym). Let 0. - 1 ~ = 1  0i and 
m ~)B 1 m ^B 

• = ~ }--~i=l 0i . Then 

E(O.lY ) _ ~.s 

but 

[m ] m ( B) 
E E ( O i - O ) 2 I Y  > E  oiB--t} 2. 

i=1 i=1 
This was shown by Louis (1984) under a normality 
assumption and, in general, by Ghosh (1992). 

The point is that  the Bayes estimates of the pa- 
rameters (under squared error loss) have the same 
mean as the parameters themselves, but are on aver- 
age less "spread out." If we are trying to use the col- 
lection of Bayes estimates to study the distribution 
of the parameters, we will have the distorted view 
that  the parameters are more concentrated about 
their mean than they really are. We have been dis- 
cussing Bayes estimates, but empirical Bayes esti- 
mates face the same problem. 

In the context of small area estimation, the Oi 
are parameters associated with small area i, say 

^B 
mean household income. If we use the 0 i to study 
the Oi, we will underestimate the diversity in the 
parameters. 

Louis (1984) tackled this problem by investigat- 
ing the class of estimators Oi that satisfy 

m 

E ( 0 . I Y )  - 0. where 0 = 1 E 0i m i=1 
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and 

i = 1  i = 1  

He still used squared error loss but it was minimized 
subject to these constraints. The constraints force a 
match on the first two moments between the distri- 
bution of the estimates and the distribution of the 
parameters. 

In giving a theoretical basis to his work, Louis 
(1984, Subsection 2.2) introduced the notion of a 
general loss function operating on the empirical dis- 
tributions of the parameter estimates and the pa- 
rameters. Our investigation will be based on such 
loss functions; they are described in the next sub- 
section. 

2 . 2  L o s s  F u n c t i o n s  

Given m parameters 01, . . .  ,0m, define the 
function 

m 

G i n ( t ) -  1 ~ I ( 0 ~  < t) (2.1) 
m 

/ = 1  

where I(.) is 1 when its argument is true and 0 oth- 
erwise. We can regard Gm as the empirical distri- 
but/on function of the parameters. From a Bayesian 
point of view, the parameters are random variables. 
It should be noted, however, that  the parameters will 
generally not be identically distributed and maybe 
not independent. 

Let G,~ be an estimator of Gin. For example, 
given m estimates t ) l , . . . ,  0m of 0 1 , . . . ,  0m respec- 
tively, one could estimate Gm by 

m 

0m (t) = 1 E I(0i < t), (2.2) 
m 

i = 1  

but we do not require estimators of Gm to be of the 
form (2.2). If we want to study the distribution of 
the 0i, we would like to find an estimate Gm that  
is close, in some sense, to Gm. In other words, we 
would like ]lGm-Grail to be small where I[" I1 is a dis- 
tance function or metric. Examples of such distance 
functions include 

IlGm -GmllW, a 

/? - I G m ( t ) - G m ( t ) l ~ d W ( t ) ,  
oo  

(2.3) 

I[5m -- Vmll ,w,o 
L 

- ~ welGm(te) - Gm(te)[~ 
g = l  

(2.4) 

and 

= max 
- - o o < t < o o  

I G m ( t ) -  Gm(t)l. (2.5) 

In (2.3), a > 0 and W(t) is a weight function that we 
can choose to give more weight to ranges of param- 
eter values in which we are especially interested. In 
(2.4), a > 0 and the w = ( w l , . . . ,  WL) are weights 
attached to the points t = ( t l , . . .  , tL). If we adopt 
a general definition of integral, the second distance 
function is just a special case of the first. An even 
more special case is 

I]Gm - Gmllto,~ - ] G m ( t 0 )  -- Gm(to)i a 

that  considers only a single point in the space of 
parameter values. For example, if 0/ corresponds to 
average household income in small area i and to = 
$25,000, then ]Gm(to)-Gm(to)l measures how close 
we are in estimating the proportion of small areas 
with average household incomes less than or equal 
to $25,000. 

The distance function (2.5) is of great interest 
but difficult to work with analytically. There are, 
of course, other distance functions one might want 
to consider. In this paper, though, we concentrate 
on (2.3) with a - 2. The goal is to minimize the 
(conditional) expected distance given the data. 

If we are presented with a distribution function 
estimate Gm of the form (2.2), we can recover the 
set of values of the t)i from the jumps in the func- 
tion Gm, but we cannot determine uniquely which 
small area i is associated with which jump. In fact, 
any one-to-one assignment of the small areas to the 
jumps gives rise to the same value of Gm- Letting 
{9 - ( 0 1 , . . . ,  Om) and 0 - ( 0 1 , . . . ,  Om), Louis (1984, 
p. 394) suggests using a loss function of the form 

[ [ ¢ m  - -  a ll + 0) (2.6) 

for some small e > 0 where L(-,-) is, for example, 

the sum of squared errors L(0, 0) - }-~i~1(0i - 0i) 2. 
The second term in the loss function is designed to 
force a unique assignment of the jumps in Gm of 
form (2.2) to the small areas i without otherwise 
affecting the loss function much. Shen and Louis 
(1998) develop an alternative approach in which the 
estimation of the ranks is a separate stage in the 
estimation process. See the Appendix for some dis- 
cussion of estimating the ranks. 

Given any es t imator  e m  of Grrt, not neces- 
sarily of form (2.2), we can estimate the ensemble 
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{ 0 1 , 0 2 , . . .  , Ore} by 

{~)1, ~)2,... ,Ore} 

{ d  ( ) dm ( 1 )  = ~1 1 - 1  1 2 - - ~  

m m 

( 1 )  ( 1 ) }  
dm 1 m -  1 -- ~ dm 1 m -  

m m 

We use (2.6) to determine which t)i corresponds to 

(1 )  
Gm 1 J - ~ , 

m 

and so forth. A justification for the use of J - ~  
m 

(rather than --2-  or some similar expression) is m+l 
given by Theorem 1 of Shen and Louis (1998). 

In the next subsection, we make use of some 
of the loss functions described in this subsection to 
investigate a normal model. 

2.3 N o r m a l  M o d e l  w i t h  K n o w n  Var iances  

Suppose that each Oi ~ N(#, 7-2), that is, sup- 
pose each Oi is normally distributed with mean # 
and variance 7-2. Suppose further that the Oi are in- 
dependent. Let Y~ given 0~ be N(0~, cry) and let the 

2 Y/ be independent and cr i > 0, i - 1 , . . . , m .  We 
shall use this simple model as a starting point. 

Let 

7-2 
")'i : 2 7-2" ~i q- 

2 the posterior distribution For known #, 7-2, and cri, 
of 0i given Y is normal with mean 

E(0ilY) - # + Vi(Yi - #) 

and variance 

2 var(0ilY ) - 7i~ri. 

The OilY are independent. We have 

E{Gm(t) IY } = 
m 

1 ~ E { I ( 0 i  _< t)lY } 
m i=1 

m 

1 ~-'~Pr(0i _< trY ) 
m i--1 

. ./) 
m i=1 Eri ~ ~  

(2.7) 

where (I) is the standard normal distribution func- 
tion. 

Let us consider the distance function 

/? I I G m  - amlfw,2  - (Gin(t)  - am(t))  2 dW(t) 
OO 

where W(t )  >_ 0 and f-~c~ dW(t) < oc. The condi- 
tional expected distance given Y is 

E(IIGm - amllw, 2 ]Y)  

{F E (Gin(t) - Gin(t)) 2 dW(t) 
OO 

Y} 
- ) 

The last step is justified because the integrand is 
nonnegative and bounded. But the last integral can 
be minimized by minimizing 

for each t. Note that the solution does not de- 
pend on W(t) .  It is known from standard results 
in Bayes estimation that (2.8) is minimized by the 
choice Gin(t) - E{Gm(t)IY}. For the simple normal 
model, the latter quantity is given by (2.7). 

Note: Carlin and Louis (1996, p. 238) and Shen 
and Louis (1998) obtain 

m 

Gin(t) - E{Gm(t)IY } - 1 ~ P r ( 0 i  _< tlY) 
m i=1 

for a two-stage hierarchical model. 
It is of interest to compute the (conditional) 

expected loss because this provides a measure of the 
closeness of estimation, analogous to mean squared 
error. If Gin(t) - E{Gm(t)IY}, then 

E { (Gin(t) - Gin(t)) 2 I Y }  - var{Gm(t) mY}, SO 

/? E(lldm - amllw,2 I Y) - var{Gm(t)lY } dW(t). 
OO 

(2.9) 

But 

var{Gm(t) IY} 

m 

m--- ~ Evar{I(Oi _< t)IY} 
i--I 

m 

m--- ff ~ '  Pr(Oi < tlY){ 1 - Pr(Oi < tlY)}; 
i--1 
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thus where 

var{Cm(t) lY} 

1 ~ [  ( t - # - 7 / ( Y ~ - # ) )  

rn---- ~ i=1 0.i 

x { 1 - ~ ( t - P - 7 i ( Y / - P ) ) } ] .  

(2.10) 

From (2.9) (210), E(IIa - amIIW,  IY)c . 
be computed. 

3.  N o r m a l  M o d e l  w i t h  C o v a r i a t e s  

In applications, it is usually the case that  we 
have background data  on each small area i. We shall 

! represent this background data as xi, a 1 x r row vec- 
tor. The model of Fay and Herriot (1979) specifies 
that  Oi has mean x ~  where/3  is an r x 1 column 
vector of regression parameters. Because /3 is the 
same for each small area i, we are able to "borrow 
strength" across small areas in estimating it. 

Suppose that  each 0i ~ N(x~/3, T2), that  is, sup- 
pose each Oi is normally distributed with mean x~/3 
and variance T 2. Suppose further that  the 0i are in- 
dependent. Let Y/given 0i be N(Oi, ~2i) and let the 

2 Y /be  independent and a i > 0, i - 1 , . . .  , m. 

3.1 K n o w n  

, T2 2 the poste- For known xi, ,3, , and 0./, 
r/or distribution of Oi given Y is normal with 
mean E(0ilY) - x~/3 + 7 i ( Y / -  x~/3) and variance 

_ 2 where 7i T2 var(0ilV) % a  i, - -  / ( 0  .2 -~- T2). The 
assumption that  ¢1 is known is, of course, unrealis- 
tic, but we shall make it anyway for the time being. 
Then the OilY are independent. As in (2.7), we have 

E{Gm(t)IY} 

m i=1 0 . /V/~ 

(3.1) 

Moreover, as in (2.9) and (2.10), 

F E(IIGm - amlIw, 2 I Y)  - var{Gm(t) lY } dW(t)  
CX:) 

(3.2) 

var{Gm(t) IY} 

e -x Z- 
i--1 0 . i ~  

o-i V / ~  

(3.3) 

3.2 E s t i m a t e d / 3  

Now let us suppose the regression parameters 13 
are unknown and must be estimated from the data. 

~.2 and 2 We still suppose that  xi, , 0.i are known. 
Then, treating ¢~ as random, the 0 i lY ,~  are inde- 
pendent normal with conditional mean 

E(0~IY,/3) = x~¢~ + 7~(Y~ - x~¢~) 

where 7i - T2/( 0.2 + w2) • Moreover, 

E{Gm(t)IY,  ¢~} 

( , _ 1 ~ t - x i / 3 - 7 i  ' 

m i=l  0.i 

Now Gin(t) can be computed by 

Gin(t) -- E{Gm(t)IY } 
= EZ E{Gm(t)pY,¢t}. 

To implement a Bayesian or empirical Bayesian ap- 
proach, one needs to put a prior distribution on ~. 
One might use, for example, ~ ~ N(0, AI) for large 
A, a vague prior. Computat ion of G,~ is feasible with 
Markov Chain Monte Carlo techniques (e.g., Gibbs 
sampling). One would also want to compute 

I 
to assess error (analogous to mean squared error). 

4. C o n c l u d i n g  R e m a r k s  

This paper has built upon the work of Louis 
(1984), Ghosh (1992), and others that  study ways 
of estimating the distribution of small area param- 
eters. Our focus has been on using loss functions 
that  measure the distance between the distribution 
of the estimates of the parameters and the distribu- 
t/on of the parameters  themselves. This paper ex- 
tends Cohen (1998) by considering covariates. There 
are many aspects of this problem that  have yet to 
be explored. 
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A p p e n d i x :  E s t i m a t i n g  t h e  R a n k s  

The development in this Appendix follows that 
of Subsection 2.1 of Shen and Louis (1998). The 
ranks R = R 1 , . . . ,  Rm are 

m 

/h --rank(0i)- E I ( 0 i  _> Oj). 
j = l  

For an estimator R of R, let us consider the loss 
function I_(R,R) - y~'iml(/~ • - R / )  2. The R that 
minimizes Elk(-, R)IY ] has components 

m 

/h - E(/~IY) - ~-~ Pr(Oi _> OilY ). 
j = l  

The/{~ will generally not be integers. As noted 
by Shen and Louis, they will exhibit shrinkage to- 
ward (m + 1)/2. Because of the convenience of inte- 
ger ranks, Shen and Louis use the estimator 

- 

the rank of the estimated rank. We supplement the 
results of Shen and Louis with a theorem. 

Theorem. The estimator R minimizes 
Eli_(., R)IY] among all estimators in the class of esti- 
mators whose components are distinct integers from 
the set {1,. . .  ,m}. 

m 

Proof. Let R be a competing estimator in the 
class and suppose that for some k and t~, /{k < /{e 
but /{k > /{e. Then /{k > /{e. Moreover, for i - 
1 , . . .  ,m, 

E[(/~. - / ~ ) 2 1 Y  ] - E[(/5~ - / ~ ) e  + (/~. _ R~)2ly] 

because /h. - E(/~]Y) so it suffices to minimize 
E i ~ l ( / ~  - / h ) 2 -  Noting that 

- h k )  2 + 2 

= ( / L -  R k )  2 + 2 

--  

where the last term is positive, we see that the esti- 
mator 1~' that switches the k th and ~th components 
of R is better than R (that is, has smaller condi- 
tional expected loss). The estimator 1% is the only 
estimator in the class that cannot be improved in 
this way, so it minimizes the expected loss. 

Note: It has been implicitly assumed that the 
probability of ties among the ranks is 0. The result 
could be modified to account for ties, but we shall 
not do so here. 
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