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A b s t r a c t :  

For inference from link-tracing designs, Frank and 
Thompson (1998) derived the likelihood function for 
the graph model. In addition, they provided the 
likelihood functions considered under the symmet- 
ric model and also an asymmetric  model. In that  
paper, they used maximum likelihood estimators to 
est imate the graph model parameters.  Here, we pro- 
pose a Bayesian approach for the estimation prob- 
lem. For problems with sampling designs that  fol- 
low social links from one person to another, it is 
quite often tha t  prior information is available on the 
proportions tha t  one wants to estimate. Thus, us- 
ing these information effectively via a Bayesian ap- 
proach should yield bet ter  estimators. Also, under 
the Bayesian setup, obtaining interval estimates and 
assessing the accuracy (posterior variances) of the 
estimators can be done without much added diffi- 
culties whereas such tasks would be very difficult to 
perform using the classical approach. In general, a 
Bayesian analysis yields one distribution (the poste- 
rior distribution) for the unknown parameters,  and 
from this a large number of questions can be an- 
swered simultaneously. 

1 I n t r o d u c t i o n  

Social network data  include measurements on the 
relationships between social entities. Collecting net- 
work data  on entire networks requires a great deal of 
t ime and effort, especially when networks are large. 
It is thus important  to be able to estimate network 
properties from samples. In link-tracing sampling 
designs, social links are followed from one respon- 
dent to another to obtain the sample. For hidden 

and hard-to-access human populations, such sam- 
piing designs are considered the most practical way 
to obtain a sample large enough to study. For exam- 
ple, in a study of injection drug use in relation to the 
spread of the HIV infection, initial respondents may 
be asked to identify drug-injection partners who are 
then added to the sample. 

Social entities with social s tructure are often mod- 
eled as graphs, with the nodes of the graph rep- 
resenting social entities and the arcs of the  graph 
representing social links, relationships, or transac- 
tions. The population graph itself can be viewed 
either as a fixed structure or as a realization of a 
stochastic graph model. Samples are taken to ob- 
tain information about  the population graph. Usu- 
ally, the sampling method will take advantage of the 
arcs or links from one entity to another. There is a 
large literature on network sampling, both applied 
and theoretical. Frank (1977a, 1977b, 1977c, 1978, 
1979a, 1979b, 1980, 1997) has many important  re- 
sults in sampling for social networks. His classic 
work (Frank 1971) presents a basic solution for esti- 
mating graph quantities from the sample data. Sni- 
jders and Nowicki (1997) proposes various statistical 
approaches, including a Bayesian approach, to esti- 
mation and prediction for stochastic block models for 
graphs with latent block structure.  

Snowball sampling is one type of link-tracing sam- 
pling design in which individuals in an initial sample 
were asked to identify a fixed number of acquain- 
tances, who in turn were asked to identify the same 
number of acquaintances and so on for a fixed num- 
ber of stages or waves. This very clever network 
sampling idea originated from Goodman(1961). Er- 
ickson (1978) and Frank (1979b) review snowball 
sampling design with the goal of understanding how 
other "chain methods" (methods designed to trace 
ties through a network from a source to an end) 
can be used in practice. Snijders (1992) used the 
same term "snowball sampling" to include designs 
in which only a subsample of links from each node is 
traced. Frank and Snijders (1994) consider model- 
and design-based estimation of a hidden population 
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size, tha t  is , the number of nodes in the graph, 
based on snowball samples. 

Another  link-tracing procedure for which design- 
based est imators  are available is adaptive cluster 
sampling (Thompson 1990, 1997, Thompson and Se- 
bet  1996), which has been formulated in the graph 
sett ing as well as the spatial setting. With a fixed- 
populat ion,  design-based approach in the graph set- 
ting, both  the characteristics of the people and the 
social ne tworks t ruc tu re  of the populat ion are viewed 
as fixed, unknown values. Design-based estimation 
methods have the advantage tha t  properties such as 
design-unbiasedness or consistency do not depend 
for their validity on any assumed model for the pop- 
ulation. On the other hand, these properties do 
depend on the sampling design being carried out as 
specified. In this paper,  we use the model-based 
methods described in Thompson and Frank (1998). 
The model-based methods do depend on the as- 
sumed model for the populat ion or graph. Their ad- 
vantage is t ha t  they apply to a wide range of sample 
selection procedures. In many real studies of hidden 
and hard-to-reach populations,  the sample selection 
procedures, including link-tracing, are not readily 
analyzed based on idealized design induced proba- 
bilities. For example, in a long-term study on the 
heterosexual transmission of HIV infection (Rothen- 
berg, et al., 1995), the target  populat ion of interest 
consisted of commercial sex workers, their paying 
and nonpaying partners,  persons who use injectable 
drugs, and the sexual partners  of drug users in the 
Colorado Springs area. Persons in the purposively- 
selected initial sample were interviewed and, in addi- 
tion to their individual characteristics, identities of 
their sexual par tners  were obtained. Persons named 
by two or more respondents were also located and 
interviewed. The wide range of link-tracing proce- 
dures used in studies such as these has motivated 
the emphasis in this paper  on model-based inference 
methods.  

In Thompson and Frank (1998), maximum like- 
lihood est imators of populat ion graph parameters 
and predictors of realized population graph quan- 
tities were described and compared to commonly- 
used conventional estimates or data  summaries such 
as sample means and proportions of node or link 
values. It is impor tant  to note tha t  in most cases 
the conventional estimates are not the best estimates 
and conventional estimates or unadjusted summaries 
of sample da ta  obtained through link-tracing proce- 
dures can be misleading if viewed as pertaining to 
populat ion or whole graph characteristics. 

In this paper,  we consider a Bayesian approach 
for the  est imation problem. For real problems with 

sampling designs tha t  follow social links from one 
person to another,  it is quite often the case tha t  
there is prior information on the characteristics tha t  
one wants to estimate. Thus, using this information 
effectively via a Bayesian approach should yield bet- 
ter estimators. Also, note tha t  under the Bayesian 
setup, obtaining interval estimates and assessing the 
accuracy (posterior variances) of the est imators can 
be done without  much added difficulties whereas 
such tasks would be very difficult to perform us- 
ing the classical approach. In general, a Bayesian 
analysis yields one distr ibution (the posterior dis- 
tr ibution) for the unknown parameters ,  and from 
this a large number of questions can be answered si- 
multaneously. The prediction problem, which is an 
important  problem in studies of hidden and hard- 
to-access human populations,  can also be answered 
once we obtain the posterior distr ibution.  

Notation for a full graph model with links related 
to node values and its likelihood function will be 
given in Section 2. In Section 3, the likelihood 
function for the sample obtained from a link-tracing 
designs will be presented and a Bayesian inference 
method will be introduced. 

N o t a t i o n s  and l i k e l i h o o d  for a Full 
G r a p h  M o d e l  w i t h  Links  R e l a t e d  to  
N o  de Values  

Consider a graph of N nodes labeled 1,2,...,N. As- 
sociated with the u th  node is a variable of inter- 
est Yu. The full set of node labels is denoted by 
U - {1, 2, ..., N} and the sequence of node vari- 
ables by Y - (Y1,... ,YN). For two distinct nodes 
u and v, the indicator variable Xuv equals one if 
there is an arc (directional link) from u to v and 
zero otherwise. The matr ix of arc indicators, having 
Xuv as the element in the uth  row and vth column, 
is the graph adjacency matrix,  denoted X. For con- 
venience we will assume tha t  the diagonal elements 
X~u are zero. The ordered pair (u, v) is referred to 
as a dyad of type (Y~,Yv;Xuv,Xv~). In the following 
assumed model the node variables Y1,..., YN are in- 
dependent, identically dis tr ibuted (i.i.d.) Bernoulli 
random variables with probabilities P(Yu -- i) -- Oi, 
for i -- 0, 1,and 00 4-01 -- 1. Condit ional  on the 
node values Y1, . . . ,Yg, the dyads (Xuv,Xvu)  are in- 
dependent, for 1 _< u < v < N,wi th  conditional 
distribution given by P [ ( X ~ , X ~ )  -- (k,l)]Y~ = 
i ,  Y v  - -  j ]  - -  /~ i jk l  for all combinat ions of i -- 0, 1; 
j -- 0, 1; k -- 0, 1;and l - 0, 1. For all combina- 
tions of i and j, the sums over k and 1 are de- 
noted Aij.. -- ~-~k ~-]~l )~ijkl and equal 1. In order 
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to get graph probabilities not depending on node 
identities, the  following symmet ry  requirements are 
needed: Al110 -- Al101, A1011 -- A0111, A1010 -- A0101, 
A1001 -- A0110, A0010 -- A0001 and A1000 -- A0100. Let 
Ni denote the to ta l  number  of nodes with value i in 
the graph so t ha t  No + N1 = N. Let further M i j k l  

denote the total  number  of dyads of type ( i jkl) ,  
tha t  is, the  total  number  of ordered node pairs (u, v) 
such tha t  ( Y u , Y v ; X ~ , X w )  = (i jkl) .  The likelihood 
for the full graph under the model with parameters  
(O,A) is 

1 1 1 1 1 
L ( O, A ; Y, X ) - ( YI o N~ ) (1-[ YI I I  1-[ A M;~ k ~ ) 

i=0  i=0  j =0 k = 0 / = 0  

(1) 

With the graph model described in the  previ- 
ous section, it then follows from Thompson  and 
Frank(1998) tha t  the likelihood with the  sample 
data  is given by: 

N 
L(0, A; d ) -  P(s ly ,  Xsov ) E (  I-I Oy~)( 1-I )~y=y~=) 

u = l  u<v 

where the sum is over all values of Yu and Xuv t ha t  
are not fixed by the  sample data.  

For the link-tracing designs in which all links, 
rather than a subsample from the initial samples are 
traced, all of the  elements in the submat r ix  X~o~ are 
zero. It has been shown by Thompson  and Frank 
(1998) tha t  the likelihood function can then be writ- 
ten as: 

3 Bayesian Inference from 
Tracing Designs 

Link- 

3.1 L i k e l i h o o d  F u n c t i o n s  f o r  t h e  S a m p l e  

A sample s from the graph is a subset of nodes and a 
subset of node pairs. The  sample da ta  d = (s, ys,x~) 
are a function of the sample selected and of the graph 
values y and x. For any design in which the selection 
of the sample depends on graph y and x values only 
through those values y~ and x~ included in the data,  
the design does not affect the value of est imators or 
predictors based on direct likelihood methods such 
as max imum likelihood or Bayes estimators.  

Consider a l ink-tracing design without subsam- 
pling of links. An initial sample so is selected and 
links out from nodes in so are followed to add the set 
sl of nodes not in so t ha t  are adjacent after nodes 
in so. The  whole sample is s -  So U Sl. The entire 
set of labels can be writ ten as the  union of three 
disjoint sets, U -- So U sl U ~ where N denotes the 
nonsampled nodes. Here, we only consider a design 
in which the decision to follow the links from node 
u depends on the node value y~. For example, in a 
s tudy on injection drug use, the initial sample may 
contain both  users and nonusers. If the investiga- 
tors choose to follow social links only from users, 
then the design depends adaptively on the node y- 
values as well as the  links. The  design then can be 
wri t ten P(s ly  ,xsoU), since the selection procedure 
depends on both  node and link values. The  data  are 
d = (s, Y~,Xsou) so tha t  the design depends on y and 
x values only through those in the da ta  and is thus 
ignorable. 

L ( O , A ; Y , X )  P(sly, X~o~ )(yI O~ ~(~)) 
i 

~ mijkt(So,  So) ) m i j k  (So,S1) 
(1-I ) (1-I " ) "'ijh. 
i jk l  i j k  

n~(so) ~(~) 
× 1-I ] (2) 

j z 

where n~(s), n~(So), and ni(~) denote the  numbers of 
nodes of type i in the full sample s, the  initial sam- 
ple So, and the nonsampled nodes ~, respectively. 
Also, mijkl(So,So),  mi jk l (So,Sl )  are the counts of 
node pairs in So × So and So × sl . 

For a symmetr ic  model, Aijkt = 0 for k =fl 1 so tha t  
arcs are always two-way or, equivalently, they can be 
considered as undirected edges. The  full symmetr ic  
model has parameters  )~ijkk ----- /~jikk for i, j ,  k -- 0, 1, 

with /~i joo-3t- '~i j l l  - -  1. Let ~i+j -~ /~ i j l l ,  

r i+ j , k+ l  - -  m i j k l ( 8 o ,  8) ,  r l , o  - -  m 0 1 0 0 ( 8 o , 8 )  + 

?TtlOOO(8o,8), r12  - -  ?Ytoii 1 ( 8 o , 8 )  ~- m l O i l ( 8 o , 8 ) , t h e  

above expression can be rewri t ten as" 

L(O, ~; d) 

P(sly, x:o~)on°(:)(1 -- Oo)~,(:)SoO,: 
(1 --/3o)r°,°/~1'2 (1 -- fl,)ra'°/~22'2 

(1 - Z2)~2,° [0o(1 - ~ o ) n ° ( s ° ) ( 1  - ~ 1 )  n l ( s ° )  

-t-/91(1 - / ~ l ) n ° ( s ° ) ( 1  - ~2 )n~(s ° ) ]  n(-~) (3 )  
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3 .2  C h o i c e  o f  P r i o r  D i s t r i b u t i o n s  

Since there are no specific constraints on 0o,/30,/31, 
/32 ,we may assume independent  priors on 0o, ~o,/31, 
/~2, all of which take values in the interval [0, 1]. It 
is quite common to put  a be ta  prior on a parame- 
ter  t ha t  takes values in [0, 1] because most smooth 
unimodal  distr ibution on [0, 1] can be well approx- 
imated by some be ta  distr ibution and the class of 
be ta  dis t r ibut ion is reasonably rich to model the un- 
certainty about  the parameter .  Also, the expression 
in (5) is quite complex but  beta  priors can yield a 
t rac table  posterior distr ibution.  Using beta priors, 
we obtain an analyt ic  formula for the Bayes esti- 
mates  and a computer  program in Mathemat ica  has 
been wri t ten to evaluate them. In addition, we 
wrote a F O R T R A N  program, employing the Markov 
Chain Monte  Carlo method  to evaluate the Bayes 
est imates.  The  M C M C  method is a simulation tech- 
nique which can be used to compute  Bayes estimates 
for general prior distr ibutions specified by an user. 
From the M C M C  method,  we obtain a random sam- 
ple from the  posterior distr ibution which is used to 
answer a large number  of inference questions simul- 
taneously whereas the analyt ic  formula can only pro- 
vide point estimates.  However, one can use results 
from the Mathemat i ca  program to check the accu- 
racy of the  MCMC method under the beta  priors 
since it may take a while for the MCMC results to 
converge. The  prior considered in this paper consists 
of independent  be ta  priors for the  parameters  • 

71"(0o,1~o, ]~1,1~2) C( 0o~-~ (1 _ O o ) b - 1 ] ~ ;  - 1  

(1 - / ~ o ) d - 1 / ~  -1 (1 -- ~1)  f - 1  

~ - 1 ( 1  -- ]~2) h-1 (4) 

In determining the constants  a and b it is often 
useful to equate  the mean 

For example, if one is interested in the  prevalence 
of injection drug use in a certain community ,  one 
may take an initial sample and t race links by asking 
the injection drug user in the sample to name the  
people they share needle with. If the  value y~ = 1 
represents a user of injection drugs, then 0o is the  
percentage of non-injection drug users in tha t  com- 
munity. Quite often an investigator may be able to 
provide an es t imate  of its central  location and the  
corresponding spread. 

In the case of complete ignorance, noninformative 
priors will be appropriate .  There  are three com- 
monly used noninformative priors. The  first one is 
the uniform prior, which corresponds to Beta( i ,1) .  
The second one, Beta(0 ,0)  has an improper  den- 
sity. It is equivalent (by the usual change of vari- 
able argument)  to a prior uniform in the log-odds 
l o g { 0 o / ( 1 -  0o)}. A possible compromise between 
Beta(i ,1)  and Beta(0,0) is B e t a ( I / 2 ,  1/2),which has 
a proper density. This prior implies a uniform prior 
for sin -1 x/~o. In this paper,  we are going to con- 
sider all of these three priors and provide a compar-  
ison of the resulting Bayes est imates.  An excellent 
discussion on the noninformative priors is given in 
Berger(1985, p.89-90). 

3.3 P o s t e r i o r  D i s t r i b u t i o n  a n d  B a y e s  es t i -  
m a t e s  

In the Bayesian framework, one takes prior beliefs 
about  the unknown parameters  and then modifies 
these prior beliefs in the light of relevant da ta  which 
one has collected to arrive at  posterior beliefs. The  
posterior distr ibution of 0o,/3o,/31,/32 given da ta  d will 
be denoted 7r(Oo,/3o,el,e2ld ). It combines the prior 
beliefs about  the unknown paramete rs  with the in- 
formation about  the parameters  contained in the 
data  to give a composite picture of the  final beliefs 
about  them. In our problem, the  posterior distribu- 
tion corresponding to the be ta  priors is given by: 

E[Oo] = a / (a  + b) 

of Beta(a ,  b) to a value which represents your belief 
about  the location of Ooand the variance 

Var[Oo] = 
ab 

(a + b)2(a + b + 1) 

of Beta(a ,  b) to a value which represents the uncer- 
ta in ty  you put  on your specified Oovalue. Similarly, 
the  values of c, d, e, f ,  g and h can be determined. 

C~ 

Let 

~(Oo,Zo,Z~,Z2ld) 
P(sly,X~ov )O:o(~)+~-a (1 - Oo)n l  (8) "~'b-] 

~o,2+~-1(1 _ ~o)~O,o+d- l Jal, 2+~-1 
o 

(1 - 9 , 1 ~ , ° + ~ - ~ 9 ;  ~ ,~+~- '  (1 - 921 ~ , ° + ~ - ~  

[0o(1 - Bo)n°(s°)(1 - ~1) nl(8°) + 

01(1 -- [3,1n°(~°)(1 --/321nl(s°)] n(~) (5 / 
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3.4 M a r k o v  chain  M o n t e  Car lo  m e t h o d  

07o~O(s)+a-1(1 _ Oo)nl(s)'+'b-1/~:o,2 "+'c-1 

(1 -/~o)r° '°+d-1/~ll '2+e-1 (1 - ~1) rx'°+y-1 
~r2,2 "+'g-- 1 +h- 1 2 (1 -/32) '.2,0 

[Oo(1-- flo)n°(s°)(1-- fll) n'(so) 
-t-01(1 -- ~l)n°(s°)(1 -- ~2)nl(s°)] n(~) 

Since fo 1 xa- l (1  -- x)13-1d x -- B(OL,~) is the beta 
function, we have: 

~ 0 1 / 1 ~ 0 1 J o l q ( o 0 , ~ o , ~ l , ~ 2 )  dOod~od~ld~  2 

The Markov chain Monte Carlo (MCMC) method 
is essentially Monte Carlo integration using Markov 
chains. Monte Carlo integration draws samples 
from the required distribution, and then forms sam- 
ple averages to approximate expectations. MCMC 
draws these samples by running a cleverly con- 
structed Markov Chain for a long time. There 
are many ways of constructing these chains, but 
all of them, including the Gibbs sampler (Geman 
and Geman, 1984), are special cases of the general 
framework of Metropolis et al. (1953) and Hast- 
ings (1970). The work of Geman and Geman (1984) 
led to the introduction of MCMC into mainstream 
statistics via the articles by Gelfand and Smith 
(1990) and Gelfand et al. (1990). The book by Gilks, 
Richardson and Spiegelhalter (1995) is an excellent 

_ reference for using M CMC techniques in Bayesian 

- -  ~ ( n ~ ) ) B ( n o ( s ) + a + i  n ( - g ) + n l ( S ) + b - i )  c°mputati°ns" 
' For the problem of computing the posterior distri- 

B(ro,2 + c, i no(So) + ro,o + d) bution of 7r(Oo,~o,/31,/321d) given in (6), we perform 
a Monte Carlo simulation analysis, combining as- 

B(rl ,  2 + e, i nl (So) + (n(~) - i)no(So) + f)  peats of Gibbs sampling (Gelfand and Smith 1990) 
B(r2,2 + g, (n(-s) - i) hi(So) + h) and sampling-importance-resampling (Rubin 1988) 

to evaluate the posterior estimates. 

and 

~01 ~01J0"l ~010o q(Oo ,~o ,~ l ,~2)dOod~od~ld~2  

E ( n ~ ) ) B ( n o ( s ) + a + l + i ,  
i=0 
n(~) + nl(s) + b -  i) 

B(ro,2 + c, i no(So) + ro,o + d) 
B(rl,2 + e, i TL 1 (80) .4_ (n(8) -- i) no(8o) -~- f )  
B(r2, 2 -~- g, (n(8) -- i) n I (8o) -4- h) 

The Bayes estimate for 00 can thus be evaluated 
by the quotient of the right-hand side of the above 
two equations since: 
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