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1. INTRODUCTION 
Populations studied in social research, public health, 
environmental or educational research are usually 
hierarchical with easily recognizable levels and nested 
structures. Different types of variables are available at 
different levels. For example, at the group level usually 
there are group identifiers, aggregates of lower level unit 
variables (means, totals, counts, percentages, etc.), and 
the global variables for the groups. Some data may come 
from a survey, some, especially for higher level units, 
may come from a census or administrative files. Variables 
that are available as aggregates at the group level may not 
be available at the unit level, etc. 

By disaggregation of all higher order variables to the 
individual level one can ignore the hierarchical structure 
and analyze data using simpler statistical techniques 
assuming independence of the observations. On the other 
hand, if all the individual level variables are aggregated 
to the higher level, one can analyze data on the higher 
level. In the first scenario, if the data structure is 
hierarchical, the observations within the groups are 
correlated; and therefore, the assumption of independence 
of observations is untenable. In the second scenario, 
important information is lost, and an interpretation of the 
results of aggregate analysis at the individual level is 
usually fallacious. Thus, aggregating and disaggregating 
may not be completely satisfactory for the analysis of 
hierarchically structured data. 

The appropriate modelling combines the different 
levels of the hierarchical data in the form of hierarchical 
models. The main interest is to model the relationships at 
the unit level taking into account the impact of higher 
level units on these relationships. For an excellent 
presentation of hierarchical models, known also as 
multilevel statistical models, the reader is referred to Bryk 
and Raudenbush (1992) and Goldstien (1995). 

A motivating example considers the data from Cycle 
1 (1994-1995) of the Canadian National Longitudinal 
Survey of Children and Youth (NLSCY) - an initiative to 
develop a national database on the characteristics and life 
experiences of children and youth in Canada. The target 
population is children aged 0-11 years living in 
households across Canada. Children were identified using 
a stratified, multistage probability sample design based on 
area frames in which dwellings (residences) are the 

ultimate sampling units. As a consequence, the data set is 
inherently hierarchical: children are nested within 
families and families are nested within geographical areas 
or places. In a multilevel study of the neighbourhood 

influences on children behavior, Boyle and Lipman 
(1998) considered at the individual level the following 
dependent variables: score measures of conduct problems, 
hyperactivity and emotional problems, then the 
independent variables: age, sex, and school attendance. 
At the family level (level-2) the independent variables are 
family type and a variety of socio-economic measures for 
families. At the geographic level (level-3) the 
independent variables are taken from the 1996 Census 
such as the percentage of families led by one parent, the 
percentage of families below the poverty line, urban/rural 
type of the area, etc. 

When data come from surveys the estimation of the 
model parameters has to take into account the sampling 
design used for selecting the respondents. Recently, 
Pfeffermann, Skinner, Holmes, Goldstein and Rasbash 
(1998) addressed the problem of weighting in the 
multilevel models using the probability weighted iterative 
generalised least squares method. 

The goal of this paper is to show how to incorporate 
the design information into the inference about the model 
parameters when modelling a finite hierarchical 
population. A method that we are proposing relies on 
ideas of pseudo maximum likelihood estimation 
(Gourieroux, Monfort, Trognon, 1984) to provide the 
finite population estimating equations which are then 
estimated using an available hierarchical (multi-stage) 
sample. These estimated equations lead to the consistent 
estimates of the model parameters under very general 
conditions as in Binder (1983). The proposed method 
seems to be simpler than the probability weighted 
iterative generalised least squares method considered by 
Pfeffermann et al. (1998). Some other sampling 
considerations are also tackled in the paper: how to 
approximate the weights for units at different levels in 
hierarchy when only a limited information on design is 
available, and how to provide the weights for the higher 
level units when they were not the design units. 

The second section contains the basic theory of 
hierarchical linear modelling. Section 3 shows how the 
model parameters can be defined as finite population 
parameters. A proposed method for estimation of the 
variance is given in this section. In section 4 the finite 
population parameters defined in section 3 are estimated 
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using data from a complex survey. A small simulation 
study was used to empirically confirm the consistency of 
the resulting estimates under several realistic scenarios. 
Section 5 deals with issues of necessity and availability of 
the weights for different model levels. Section 6 contains 
a summary of the proposed method. 

2. A TYPICAL M U L T I - L E V E L  M O D E L  
We begin this section with a description of a simple linear 
two-level model which can be specified with two 
equations. The first one is a "within-group" equation and 
is designed to describe the relationship between unit-level 
dependent variables and the unit-level covariates within 
each group. Some or all of the parameters of the "within- 
group" equation are viewed as varying randomly across 
the group-level population. Then in the second equation, 
"between-group" equation, these parameters are modelled 
as dependent variables in a model with the group-level 
variables as covariates. 

Let Ygi be the value of a dependent variable for 

individual i ( i= 1 ..... Ng) in group g (g = 1 ..... G),  and let 

there be P+Q independent variables, Xpgi, Zqgi, p = 1 ..... P 

and q - 1 ..... Q that describe an individual. Then, the unit 

level within-group regression equation is 

y~,- bo~+E ~%,+E bqgzqgi+egi 
P q 

(1) 

where 13p are fixed regression coefficients, bqg are 

within-group regression coefficients that vary across the 
groups, and eg i are the random disturbances independent 

f rom bqg. A more convenient matrix expression is 

= +e (2) yg Xg[~+Zgbg g 

Here, y g is N x  1 vector of dependent variable, the 

parameter vectors are column vectors, and the covariates 
are given as matrices, N g x P  and N g x ( Q + I ) ,  

respectively. The random intercept b08 is a part of the 

random vector  b g assuming that the first column of the 

Z is a vector of l's, 1. g 
The group level regression equation relates the 

random within-group coefficients, bqg to group-level 

characteristics, Urg, r = 1 ..... R and g = 1 ..... G" 

R 

: + , =0 .... Q (3) bqg YqO + Z ~[qr U rg dqg q . 
r=l 

The dqg are group level disturbances independent from 

e i and represent the contribution of each group that 

remains unexplained by model (3). Written in a matrix 
form, equation (3) is 

b g =Fg 7 +dg, (4) 

where b g is a Q+I by 1 vector, Fg is a Q+I by R(Q+ 1) 

matrix obtained as a direct product Ug ® IQ÷I, Ug is a 

row vector of length R, 7 is a R(Q+I) vector of the 

unknown but fixed parameters, and dg is a vector of 

group random effects. 
The standard assumptions about the disturbances 

apply at both levels: E(eg) = 0, E ( d  8) : 0, i.e., the 

disturbances are centered at 0, the within group variability 

is expressed by o~) and is constant across the population 

of groups, and the variance of d is captured by E~2 ), the 

(Q+ 1) by (Q+ 1) covariance matrix at the group level, and 
the level disturbances are not correlated with each other. 

If there is no covariate available other than a group 
identifier, model ((1), (3)) reduces to one-way ANOVA 
model with random effects: 

Ygi = bog + egi (6) 

bog : 700 + d (7) 

or written together 

Ygi = YO0 +dg  + eg i ( 8 )  

Here 700is an unknown fixed grand mean, dg is a g-th 

2 is an individual effect group effect-- (0, ace )) , and eg i 

--(0, o~)). 
The generalization of two-level model ((1), (3)) to fit 

a multi-level hierarchy is straight-forward. 
In the motivating example the family level is critical 

for estimation of the residual parameters due to a small 
number of children per family, frequently only one. 
Because of that it is reasonable to express the family level 
variables as the individual characteristics with an extra 
variable introduced to indicate if there are other 
individuals in population that share the same family 
characteristics. Ignoring completely the family level, the 
family clustering effect may cause some of the 
coefficients to appear more significant than they actually 
are. 

3. F INITE P O P U L A T I O N  E S T I M A T I N G  
EQUATIONS F O R  M O D E L  PARAMETERS 

In this section we define the model parameters as 
functions of the finite population data. 

Equations (2) and (4) are written jointly so that a 
two-level model is expressed by one equation 
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Y s = Xg [~ + Zg Fe, 7 + Z s d  s + eg 

( X  s I Z g F s ) ( ~ )  - + Z d  +e 
T g g 

: I-i s lr I + a s 

(12) 

where Hg : (Xg I ZgFg ) is a known N 8 by P+(Q+I)R  

matrix of observed covariates and their products at both 
levels, 11 is a P+(Q+ 1)R vector of unknown fixed effects, 

and ag is an Ng by 1 vector of random effects with 

ag i = Z gi dg + egi . Here Z g i represents a row vector of 

values of z variables for the ith individual in the gth 
group. Evidently, E (a g) - 0, and 

/ 2 
Var (a g) = Vg=Zg ]~(2) Z g + G(1 ) I s . (13) 

2 
We assume that there is a single parameter O(1 ) that 

describes the variability between level 1 units, and that 
there are (Q+l)(Q+2)/2 unknown parameters in the 
covariance m a t r i x  •(2)" 

Stacking of the G vectors y g into a block vector 

y /  [y /  / = 1 .... ,Yo], then creating a block matrix 
/ / 

a = [U/~ I-.. I Hc ]  , and stacking of the G vectors a g 

into a block vector a / [a / / - ~ ..... a c], equation (12) can be 

written for all levels jointly as 

y : H q + a  (14) 

where a is an N by 1 vector of random errors, assumed 

to be centered at 0 and with a covariance matrix 
V - Var(a).  While matrix H represents total information 

available on covariates in the population, matrix V 
represents the complete correlation structure of the 
hierarchical population under study. For the population of 
groups it is reasonable to assume that V is a block 

diagonal matrix with the blocks defined by (13), and 

Cov (ag,ag/) = 0 ,  for g~g /. 

The unknown finite population parameters q,  X~2 ) 

2 have to be expressed as functions of finite ando<l) 

population data. Assuming that V is known, using the 
method of generalized least squares (GLS), the unknown q 

can be expressed as: 

fi6hs : [H/V-1H] -1H/V-Iy  

( ) , -  E / -1 -1 Z H g V g l y g  = l 'IgVg Hg  
g g 

(15) 

The covariance matrix of fi OLS is given by 

Var (ficLs) : [ H/V-1 H] -1 

: HgV s Hg 
(16) 

Estimator (15) coincides with the maximum 
likelihood (ML) estimators under the assumption of 
normality of the vector y, y N M V N  (H 11, V),  and 

assuming that V is a known block-diagonal matrix. 

Since V is not known and has to be estimated, a 

procedure like the iterative generalised least squares 
where one iterates between estimating q and V until a 

convergence criteria is met, is usually used. The problem 
with such method is in computational intensity due to the 
number of parameters that need to be estimated in an 
iterative procedure. A good review of the method and its 
application is given in Goldstein (1995). Also a weighted 
version of the method is examined by Pfeffermann et al 
(1998). 

Here we suggest a pseudo maximum likelihood 
estimation of q by replacing parameter V by its estimate 

V (obtained elsewhere) in the likelihood equation and 

then solving it, so that 

flpML [H/9-1H]-1H/9-1  = y 

: HgVg  Hg Hg  yg 
(17) 

with the corresponding covariance 

Var (fieML) = [H/V-1H]-IH/V-1V V-IH [H/V -1 H] -1 

= Z Hg  g g Hg  g g . 
g 

H g  Vg H s (18) 

Proposed  Est imat ion of  V 
Equation (12) can be rewritten in a way that 

combines fixed and random parameters in the same vector 

y g = H 8 q +Zgdg+ eg. 

- + e  - ( H g l Z g )  dg 

= Kg ~g + eg 

(19) 
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/)/ The unknown vector ~g = (q/ [ dg is random since one 

of its parts, dg, varies across the groups. However the 

size of the vector remains fixed P+(Q+ 1)R+(Q+ 1) over 
all groups. 

Note that assuming that {g is fixed, its ML estimate 

is 

^ ( /gK)-' ' g=l, ,G, (20) ~g= K g Kgyg . . . .  

2 
due to a constant variance Var(eg) = ~(~)Ig. 

The variance Vg, given by (13), can be expressed as 

Vg = Var(y g) 

= E~ Var(yg I {g)  + Var~gE(yg[{g) 
(21) 

2 and E(y I ~ g ) -  K ~g where Var(yg ] ~g) = a(1 )Ig g g 

Then V can be unbiasedly estimated as 
/ 

^2 + K Var (~ )Kg  (22) ]'~g - G ( 1  ) lg g 

where 

.2 1 / ^ - K  ~g)/1 /(Ng-1) 6(1) = -~ ~,  lg(yg - Kg~g)(yg g g 
g 

(23) 
and 

Var(gg)= G_i ~(~ G ~ G g 

(24) 

/ V h r ( d )  / Note that Kg Var(~8) K g reduces to Z Z g, 

w h e r e  Var(dg) is obtained from (24) using the 

appropriate part of ~g vector. 

4. ESTIMATION BASED ON C O M P L E X  
SAMPLES 

If we observe the complete populations of individuals and 
groups the estimates (17) and (22) are the finite 
population values of the model parameters. The variance 
(18) can be treated as a finite population parameter as 
well. Having only observed a sample taken from the finite 
population we need to estimate these parameters. Here we 
present the estimation based on a complex sample. 

Without loss of generality, we assume a simple 
scenario where the sampling design hierarchy is the same 
as the model hierarchy, meaning that the groups (level 2 
units) are the primary sampling units and that the 
individuals (level 1 units) are the second stage units. 

Let a sample of m out of G groups be selected, and 
let from gth selected group a sample of ng out of N 8 

individuals be selected. Also, we assume that the final 

individual weight Wg i is a product of the known 

components" the group weight Wg and the conditional 

individual weight Wilg, thus Wg i = Wg Wilg. The weights 

satisfy the usual unbiasedness criteria: 

(g~ln/~l) ( ~ ) ( n/~ 1 ) E Wg i =N, E w 8 = G, and E Wilg =Ng 
-- "= g=l '= 

(25) 

L e t  W.lg be a diagonal matrix of order ngXng with 

the conditional weights WiLg on the diagonal. Then the 

sample based estimate of the vector ~g (20) is 

( ; )-1 / , (26) ~g: K W.lgKg Kg W.igyg 

where K is a known matrix of size g 
ngx[P +(Q + 1)R +(Q + 1)] and y g is a vector of size n .  To 

,,2 estimate the variance component c~, given by (23), which 

has the form of the population mean of the values 

1 / (y - K ~) (y - K ~)/1 !(Ng - 1) we use the sample g -  g ~ g g g , 

mean 

.2 1 ~ w 1 / -Kg~g) (y - K  ~g)/1 
G1 = ~-,gWg = (~_,iWilg - 1) g (y g g g g 

(27) 
Variance (24) is estimated by appropriate weighting 

as 

Var(~g) = ~w-lg_l g ~ W g ( ~ g - ~ ) ( ~ g - ~ ) /  (28) 

where ~ =~sWg~g / ~Cgw 8. 

The matrix of the random components is estimated 
by v / 

.2 + K Var(~g) Kg (29) Vg = c 1 18 g 

The finite population parameter (17) is estimated by 

)_~ ,~-~ 
/ I~-IH ~ w y (30) 

g g 

and its variance is simply estimated by 

2 ,~ -1  ,) 
w 8 Hg 8 Hg . g 

E / "-I ) -1 wgH gV 8 H 8 
g 
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(31) 
Simulation Study 
In this subsection, we present the results of a limited 
simulation study on the finite sample properties of the 
proposed method for inference about the model 
parameters. We consider the following simple model for 
simulation study 

Ygi = bog+egi 

w h e r e  bog : rl+dg. 

The first-level error distribution is assumed to be 
normal with mean zero and standard deviation % - 1. The 

error associated with level-2 is also assumed to be 
normally distributed with mean zero and five known 
values of standard deviation G 2 such that the variance 

2 2 
ratiool/u 2 takes values {0.1, 0.2, 0.5, 1, 2}. Their values 

reflect the respective within and between groups 
variabilities. Without loss of generality, we assigned 0 
value to r I in generating Ygi " For three values of sample 

sizes for groups and three ranges of sample sizes in each 
group, the data are generated. For each set of distributions 
and each combination of number of groups and group 
sample sizes, we generate 1000 independent sample runs 

2 2 
of Ygi" The mean and variance of Ygi' rl, ~2 =G 1 + G2 , are 

estimated from each generated sample. The Monte Carlo 

standard errors of fl and ~2 a r e  calculated based on these 

1000 samples. Results are summarized in Table 1. 
The simulation study confirmed that the applied 

estimation resulted in a negligible relative bias for both fl 

and ~2, and for all combinations of sample sizes and 

ratios of "between" and "within" variances. It is also 

evident that stability of the variance estimate ~2 depends 

mostly on the number of groups in the sample and very 
little on the size of the subsample of level-1 units. This is 
a typical situation in a survey. Stability of the variance 

2 2 
estimate also depends on the ratio ~l/G2. The smaller 

variability between groups in comparison with the within 
variability leads to a more stable variance estimate. The 
most important finding is that the sizes of the group 
subsamples ng have very small impact on the stability of 

the variance estimates. 

5. SOME SAMPLING CONSIDERATIONS 

Design and model hierarchies are the same 
Analysts have usually access to the final weights 

Wgi, g=l,2,..-,m; i~Sg w h e r e  m is the number of 

groups (PSU's) selected from total G groups and sg is 

the collection of units (n 8) selected from the gth group. 

Also they know the total number of groups (PSU's) G, 
the number of selected groups m, and the number of 
selected individuals from the selected groups ng, n=~ng. 
Usually, the group weights (%) and the conditional 

weights (Wilg) are not readily available to analysts, but are 

needed for analysis. Based on the available information 
mentioned above, one can approximate the weights Wilg 

and wgby ~iigand~g, respectively, so that 

m ng 
Z ~g = G, ~ V~ilg = Ng a n d  1,~,g l, Vilg = Wg i (32) 

g=l i=1 

Details on this will be given in a subsequent paper. 

Design and model hierarchies are different 
So far we assumed that the sampling design hierarchy is 
the same as the model hierarchy meaning that the level 2 
units are the primary sampling units and the level 1 are 
the second stage units. See Fig.la. When the multilevel 
structure of the model is different from the hierarchy used 
in sampling we suggest a conditional "retrospective 
sampling" approach. Conditioning is done according to 
the realized sample sizes. The retrospective sampling that 
we are considering using the ideas of Neuhaus and Jewell 
(1990), makes the selection of a model group dependent 
on the realization of the sample obtained by the applied 
sampling design. Consequently, the retrospective 
probability of selecting the model group becomes the 
function of the probability of selection of the design 
groups. Details will be given in a subsequent paper. 

6. S U M M A R Y  
In this paper we showed how to model a hierarchical data 
set coming from a finite population. 

When population is hierarchical it can hardly be seen 
as an iid sample from the universe due to the intraclass 
correlations found within the groups and because of 
between groups variability. Consequently when finite 
population parameters are defined as ML estimates, the 
covariance structure of the finite population has to be 
accounted for, and since it is unknown it has to be 
estimated using the same data. 

Here we used the method of the pseudo ML to define 
the finite population parameters of the hierarchical model. 
It is pseudo because we used an estimate of the variance 
obtained outside of the ML estimation process. The 
resulting estimates have ML estimates properties since 
the variance is estimated unbiasedly, meaning that the 
finite population parameters are well defined. For a given 
sample from the finite population we showed how to 
obtain the consistent estimates and calculate their 
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standard errors. A small simulation study showed that 
even small subsamples from the groups give the stable 
variance estimates. Also a problem of obtaining 
appropriate weights for the different levels of the 

hierarchy is pointed out. 
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Table 1. Results of the simulation study averaged over 1000 simulations and multiplied by 100. Standard errors are 
the Monte-Carlo standard errors. 
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22.0 

12.0 t 

8.0 5.0 1087.0 0.3 1.6 1105.9 6.4 

1.0 4.0 599.0 1.1 1.1 608.6 3.2 

2.0 2.0 298.0 5.0 0.1 0.7 303.2 1.3 
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0.3 0.7 310.9 1.4 
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a) Hierarchies are the same 

Figure 1. A two-level model of a two-stage sample 

b) Hierarchies are different 
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