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1. Introduct ion 

For simple random samples, one sometimes esti- 
mates the mean and standard deviation of a normal 
population from regression of observed quantiles on 
the corresponding standard normal quantiles. For 
some general discussion of parameter  estimation us- 
ing least squares methods applied to quantile plots, 
see, e.g., Chernoff and Lieberman (1954), Barnett  
(1975), Cran (1975) and references cited therein. 

This paper considers an extension of this idea to 
data collected through a stratified multistage sam- 
ple survey. Principal attention is devoted to fitting a 
parametric  model to the tail of an underlying super- 
population distribution. Wi th  design-based quantile 
estimators and associated covariance matr ix estima- 
tors proposed by Francisco and Fuller (1991), direct 
application of ordinary least squares and generalized 
least squares methods lead to point estimators of the 
superpopulation parameters and quantiles; associ- 
ated variance estimators; and related goodness-of-fit 
test statistics. We also consider methods based on 
constrained misspecification effect matrices, extend- 
ing covariance ma t r ix -  approximation ideas used in, 
e.g., Rao and Scott (1981, 1984). The proposed 
methods are applied to medical examination data 
from the U.S. Third National Health and Nutrition 
Examinat ion Survey (NHANES III). 

The  au thors  t h a n k  Drs. D. Brody,  A. Looker and V. L. 
Parsons  for providing the N H A N E S  III  d a t a  discussed here, 
and for helpful  comments  on related stat ist ical  and subs tan-  
tive issues. This  research was suppor t ed  in par t  by  the U.S. 
Nat iona l  Center  for Heal th  Statist ics.  The  views expressed 
here are those of the  au thors  and do not necessari ly reflect 
the  policies of the  U.S. Nat ional  Center  for Heal th  Statistics.  

@ Quantile Est imat ion and Related 
Variance Est imat ion for Complex  
Survey Data 

Consider a sequence of finite populations indexed by 
u = 1, 2 , . . .  Suppose that  the uth finite population 
with Nu ult imate units is a simple random sample 
selected with replacement from an infinite superpop- 
ulation. Also, assume that  population u has been 
partit ioned into Lu s t ra ta  with Nuh primary sam- 
pling units (PSUs). From the hth s tratum, rtuh ~ 2 
PSUs are selected with replacement using possibly 
unequal per-draw probabilities Puhi independently 
across strata,  i = 1 , . . .  ,huh. Furthermore,  PSU 
(h,i) contains Nuhi ultimate units, among which 
nuhi units are also selected by using possibly un- 
equal probabilities Puhij, j = 1 , . . .  ,Nuhi. Note 

N h  that  we have Muh -- ~-~-i'~ guhi ult imate units 

L~, Muh in the uth fi- in s t ra tum h and Nu - ~ h = l  

nite population. Also, nu - }--]L_~ 1 huh PSUs and 
L nvh 

- -  ~ i - - 1  Ttuhi nuT ~h~l  ult imate units are selected 
for the uth sample in the sequence. 

For the survey variable Y, assume that  the as- 
sociated superpopulation distribution function F(.)  
is continuous. For a fixed vector y = ( y l , . . . ,  yk) ~, 
let Xuhij -- { 1 , h u h i j ( Y l ) , . . .  , h u h i j ( Y k ) }  t and Wuhij 
denote, respectively, the observed vector and the as- 
sociated survey weight for each sampled unit (h, i, j)  
in the uth sample, where 5uhi j (Y l )  --  1 if Yuhiy <_ Yz 
or 0 otherwise. Then a set of k customary estima- 
tors of the distribution functions evaluated at yt, 
l = 1 , . . .  , k, are a vector of k ratio estimators given 
by 

P~ (y) - {P. (yl),..., P~ (y~) }', 

where /~v(Yz) = f (u , l+ l /Xu l  and ~ ' ,  = 

( ~  2~ ~+1)'- E~:I E ~  ~ ~ ' ' "  ~ , ~"~-j--l' Wuhi jXuhi j  

Asymptotic results regarding/%(y)  are available in 
Shao (1996, pp. 209-211) and Francisco and Fuller 
(1991, Theorem 2). 

Now we consider a set of k prespecified probability 
values 0 < 7rl < . . .  < 7rk < 1. For each 7rt, the 
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superpopulation quantile is given by 

q~r~ = inf{y : F ( y )  >_ 7ct} = F -1(7ct). 

The corresponding sample quantile estimator is de- 
fined by 

q~,:,D -- inf{y • /~, (y) > ~rt } -- /~-~ (~rt) 

For stratified single stage sampling, Francisco and 
Fuller (1991, Theorem 3) demonstrated under regu- 
larity conditions that  the Bahadur representation of 
the sample quantile q~:~D can be given as follows; 
as P ---} (X:), 

(brz.~,D -- qTr~ -- {f(qTrt)}-l{Fu(qrr~) - F(qTrz)} 
+Op(n-71/2), (1) 

where f (y) = F '  (y) is the density function of Y and 
the total number of selected PSUs, n~, is assumed 
to increase without bound. Using the above rep- 
resentation and the asymptotic normality of F~(y), 
Francisco and Fuller (1991, Theorem 4) established 
the asymptotic multivariate normality of the sample 
quantile vector of fixed dimension. Let q~ and q~:,D 
denote the vectors of the superpopulation quan- 
tiles and the uth sample quantiles, respectively, for 
7r = (7rl, . . .  , 7rk)'. Under suitable restrictions on the 
subsampling design, as v -+ oe, 

1/z 
n~, {q~:~D - q~-} - ~  Nk(0, Vy) ,  (2) 

where Vy -lim~,__+~n~,V{(t~:~,D} and Vy is positive 
definite. We may also show that,  as u --+ cx~, 

where 

I?(O~:~D) --/)~I){P.(O~:~D)}/)~. (4) 

In addition, I ) ( /~ , (~ : .D)}  is the estimated covari- 
ance matrix of F~ (y) evaluated at q~:~D such that,  as 

_2_+ 0. 
A l s o , / ) .  is the diagonal matrix whose lth diagonal 
element, given by (Francisco and Fuller, 1991, The- 
orem 4), 

- 1  ) 

is a design-based estimator of dl = {f(q~, )}- i  and 
z l - ~ -  - ' I ' - 1 ( 1  - ~ 2 y) such that  as u --+ oo, 

d-~l 1 - - ~  f ( Y ~r z ) . (5) 

Note that  I?{/5.(q.)} is a linearization estimator of 
the covariance matrix of the asymptotic distribu- 
tion of { /W,(q , ) -  F(q , )} .  See, e.g., Francisco and 
Fuller (1991, p. 459); and Shao (1996, pp. 207- 
8). Consequently, its degrees of freedom is at most 
~L~_ (huh -- 1) -- n ,  -- L 1 v. 

0 Model-based Est imat ion  of the 
Superpopulat ion Parameters  and 
Quantiles from Tails of Quantile 
Plots  

For the remainder of this paper, we assume that  the 
true distribution function may be written in the form 
F ( y )  - ¢ (Y-~) for y e IR, where ¢(.) is the stan- 
dard normal distribution function. Since ¢(x) is a 
strictly increasing continuous function of x, the pth 
quantile is uniquely expressed as 

qp ---- ].t + O'(I ) - 1  ( p ) .  (6 )  

For this discussion, we consider a set of k proba- 
bility values in one tail, say, 7r~ - 0.75(0.01)0.99, 
1 = 1 , . . . ,  k, instead of considering the entire in- 
terval (0, 1). Given complex survey data, a normal 
quantile plot can then be constructed by plotting 
q~:~D against vz, where v~ - ~-l(Trl). Under the 
normality assumption for the superpopulation model 
of Y, expression (6) becomes the pth superpopula- 
tion quantile. A straightforward application of the 
least squares method to expression (6) leads to ordi- 
nary least squares (OLS) estimators of p and a. In 
general, however, sample quantiles are correlated so 
that  V(~:~D) is not a scalar multiple of the iden- 
ti ty matrix. If the full covariance matrix is used 
to obtain a regression line, the resulting generalized 
least squares (GLS) estimators are anticipated to 
be more efficient. In addition, use of the diagonal 
elements, s a y ,  f ) ( q T r : v D )  - -  diag[lY(~:~D)] provides 
weighted least squares (WLS) estimators. Note that  
only the weighted least squares estimators would be 
available if V(~ : ,D)  is singular. Let #vM and O'vM 
denote the least squares estimators based on each 
method M = O L S ,  G L S ( D )  and W L S ( D ) .  For any 
7r* C (0, 1), the associated quantile estimator is then 
given by 

qTr*:vM -- f~vM + O'vMZ*, 
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where z* = ¢--1(71"*). Let z~ = (z~,... , z ~ ) '  and 
let Z~ = Ilk, z~], where lk is the k-dimensional col- 

umn vector of ones. Let 0 - (#,G)' a n d  0 u M  - -  

(/2uM, buM)' denote the parameter  vector and its es- 
t imator  associated with the least squares method M. 
Thus we have the following vector of est imated quan- 
tiles for ~r in the matr ix  form; 

where 

q~r:uM -- Z~r~uM , 

~uM ( Z t B ~ l Z l r ) - I  t --1 -- Z Tr B v M ~t Tr : v D 

and BuM -- I, IY(0~:uD) and b(0~r:uD) for M - 
OLS, GLS(D)  and W L S ( D ) ,  respectively. 

4. G o o d n e s s - o f - F i t  Test  S ta t i s t i c  

4.1 A s y m p t o t i c  D i s t r i b u t i o n  

Having obtained fitted quantiles, we can assess the 
goodness-of-fit of the parametric  superpopulation 
model by comparing the fitted quantiles to the cor- 
responding design-based quantile estimators. Let 
e~z:uM -- q~z:uD --q~t:uM be the /th residual of the 
chosen method M. Then the standardized residual, 
defined by, 

, eTrl "uM 

eTrl:uM-- s ' e ( eTr l : uM) '  

may provide a (standardized) deviation at t r ibuted 
to each fitted quantile, where g~e(eTr~.uM) is an es- 
t imated s tandard error of e~rz:uM. Hence, a sim- 
ple test of the goodness-of-fit of the proposed 
superpopulation model follows from the statis- 

,2 The k x t i c  X ~ o F ( q ~ : u M )  -- E/k=1 erz:u M. 
1 residual vector may be written as en:uM = 
(e:l .uM,. . .  , e~:uM)' -- RuMq~:uD for each method 
M, where 

- -1 1 , - -1 RuM -- Ik -- ZTr{Z~BuM Z~}- ZTrBuM . 

Under the normali ty assumption for the superpopu- 
lation distribution of Y, expression (6) leads to 

e l r :uM--RuM(q l r :uD--qTr ) .  

In addition, results (2) and (3) give that  under reg- 
ularity conditions, as u -+ cxD, 

RuM - - ~  RM 

where RM -- Ik -- Z~{Z~BM -1Z~} -1Z~BM -1 for 
M = OLS, GLS(D)  and W L S ( D ) ,  respectively. 
Thus it follows tha t  as u -+ ~ ,  

n l / 2  E u eTr:uM -'-+ Nk(O, VM),  

where VM - p l i m u - - + o c r t u ( / r ( e T r : u M )  - -  RMVyR~M 
and ~r(eTr:uM)- RuM~r(qTr:uD)R~M is a consistent 
estimator of V(eTr:uM). 

The goodness-of-fit test statistic can be repre- 
sented as 

X~oF(qTr:uM) 

-- ¢Tr:uM'[[)(e-.lr: uM)] - 1  e-.lr:uM 

- -  [r t l /2(~Tr:u D -- q~r)]'(?"t-~lAuM)[nl/2(~n:uD -- q~-)], 

(7) 

where D(eTr:uM) -- diag[~Z(eTr:uM)] and 

AuM -- RluM {diag[V(eTr:uM)]} -1 RvM 

{ }_1 
= R'uM diag[RuM~r(OTr:uD)R'uM] RuM. 

This alternative representation is of a quadratic form 
1/2 

in nu (q~:uD- q~). Note that  n-~lAuM --~ AM as 
v -+ c~, where AM -- R~M[diag(VM)]-IRM. Thus it 
can be shown that  as y --~ c~, 

k 

X~oF(qTr:uM) - ~  E ~ I :MX?,  
/=1 

w h e r e  /~I.M ~ . . .  ~ )kk:M ~ 0 a r e  t h e  eigenvalues 
vl /2  Vy/2 of the matr ix V¢/2AM . y  , is the symmetr ic  

square root of Vy, and Xt 2 are k independent X2(1) 
random variables. See, e.g., Graybill (1976, Theo- 

rem 4.4.4). Observe that  AuMV(q,:uD) --P--+ AMVy 
as u --+ ~ .  Thus, in practice, the weights AI:M can 

^ 

be replaced by consistent estimators Al:uM, which 
are the eigenvalues of (/((t,:uD)I/2AuMV(Ct~r:uD) 1/2. 

4.2 S a t t e r t h w a i t e  A p p r o x i m a t i o n  

In parallel with Rao and Scott (1981, 1984), we may 
consider some corrections to X~oF(q~:uM ). Suppose 

that  the matr ix  AuMV(O~:uD) is of rank k - ruM. 
In addition,^ suppose that  the associated positive 
eigenvalues IZ:uM are close to each other so that  

~Z:uM/~uM ~ 1, where ~uM denotes the mean of 
positive eigenvalues il:uM for l -- 1 , . . .  , k -  ruM. 
Then a first-order correction is, 

X ~ S I  (XuM) -- X~oF(q Tr :uM ) / XuM ,  

the asymptotic first moment  of which approximately 
equals that  of x2(k - rvM). If the variation among 

the positive eigenvalues ~Z:uM is not negligible, the 
Satterthwaite (1946) procedure may provides a more 
accurate correction to X~oF(q~:uM ). Let 6uM de- 

note the coefficient of variation o f  il:uM for I -- 
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1 , . . .  , k - ruM. 
given by 

Then a second-order correction is 

XgS (I M, a . M )  - 

the asymptotic first and second moments of which 

are approximately equal those of x2(duM),  where 
"2 duM -- (k - r u M ) l ( 1  + au M) and ~uM -- .~uM(1 + 

^2 
a u M ) .  

0 A n  A l t e r n a t i v e  C o v a r i a n c e  M a t r i x  

E s t i m a t o r  U s i n g  A C o n s t r a i n e d  

M i s s p e c i f i c a t i o n  E f f e c t  M a t r i x  

As addressed in Section 3, our attention will focus 
on the tail quantiles of a continuous survey variable, 
e.g., p - 0.75(0.01)0.99. Customary design-based 
estimation procedures including those of Woodruff 
(1952) and Francisco and Fuller (1991) may provide 
point estimators with a satisfactory level of preci- 
sion when they are applied to the central region 
such as [q0.25,q0.75]. This is because in many ap- 
plications, observations are relatively dense in the 
central region of the distribution. For some sur- 
vey applications, however, the performance of stan- 
dard design-based methods may be somewhat less 
satisfactory. In addition, the presence of relatively 
few PSUs may result in poor performance of infer- 
ence based on use of a design-based variance estima- 
tor such as a linearization estimator l){/wu(0~:~D)}, 
which has at most n u -  Lu degrees, as noted in Sec- 
tion 2. See, e.g.: Korn and Graubard (1990). From 
expression (4), VuD has the same degrees of freedom 
term. Also, the presence of relatively few PSUs in 
the survey data  (e.g., nu - Lu < k) will result in 
a singular ~ruD SO that  the generalized least squares 
method is not feasible. Although one may face pos- 
sible model misspecification issues, use of a paramet- 
ric model can reduce the number of parameters to be 
estimated, which in turn may make the generalized 
least squares method feasible. These considerations 
motivate use of the model-based approach in esti- 
mation for the tail of the distribution. 

Following the ideas used in Rao and Scott (1981, 
1984), consider a model-based alternative covari- 
ance matr ix  estimator for the vector of estimated 
quantiles. The superpopulation quantiles q~z,l - 
1, 2 , . . .  , k, determine k non-overlapping cells of the 
form It - (q~z-l ,q~] and the corresponding cell 
probabilities are given by rt -- Pr(Y E It) = 
z rz -  7r~_l, where 7r0 - 0 and q~0 - -oc .  Note 
that  the open interval (q~k, co) is excluded from 
consideration. Then one may rewrite F(q~) - A t ,  

where ~- - (7-1,... ,  Tk)' and A is a k x k lower tri- 
angular matr ix of ones. Next, suppose for the mo- 
ment that  a hypothetical with-replacement simple 
random sample of nuT ult imate units led to alter- 
native estimators FuI(q~) of the distribution func- 
tion vector and c~ of the associated quantile vec- 
tors. Under regularity conditions, as n u t  --+ co, 

1 / 2 { L I ( q ~ ) -  F(q~)} __C_+ Nk(0 A E ~ A ' )  where nu T , 
E~ - d i a g ( T ) -  T~-' (e.g., Agresti, 1990, Section 
12.1.5). Using the Bahadur representation of q~z:uI 
for IID data (e.g., Serfling 1980, p. 92), we may 

1/2 c 
show that,  as ~ --+ co, n ~ T { ~ : ~ Z -  q~} 
Nk(0, Vz), where Vz - D I A E ~ A ' D y  and D I  = 

d i a g { f ( q . x ) - l , . . .  , f ( q~k ) - - l } .  Note that  Ou,ocs is 
a consistent estimator, and the design-based estima- 
tor VuD is not used in computation of Ou,ocs. Thus 
a simple estimator of f (q~z) - f (q~z I 0) follows from 
direct substitution of Ou,ocs for 0 and c~.z.uz for q~z, 
that  is, 

dt.,z - { f ( ~ . ~ z l O , , O L S ) )  -x .  

Consequently, an estimator of V,x - V(qzr .uI)  under 

the specified IID assumption is given by 

^ ~ 

V~I - n u ~ , J E ) u l A ~ r A t D u i ,  

where /)uI - d iag(dl .u i , . . .  ,dk:ui). Then follow- 
ing, e.g., Skinner (1989, Section 2.11) and Rao 
and Scott (1981), we consider the first-order vari- 

ance approximation of YuD by ~uVui , ^*  where ~u = 
k-ltr(I?*i-11?,D). Therefore, the first-order adjusted 
model-based covariance matr ix est imator is given by 

^ 

Note that  the adjustment factor A provides a meau- 
rement of the effect of model misspecification. Thus, 

^ 

additional least squares fits are provided using VuI  to  

form the weighting matrix, denoted by BuM -- VuI 
a n d  f ) u I  - diag(Vux)for M - G L S ( I )  and W L S ( I ) .  

Our proposed methods using tail-fitting quan- 
tile estimation procedures are applied to data  from 
Phase 2 of NHANES III in the next section. 

0 A p p l i c a t i o n  t o  M e d i c a l  E x a m i n a -  

t i o n  S u r v e y  D a t a  

6.1 N H A N E S  III  D a t a  

This discussion will focus on analysis of the natural  
logarithm of blood lead, log(LEAD), measured for 
children of all races aged 1-5 covered by the Phase 
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Figure 1: Comparsion of Upper Tails of Normal 
Quantile Plots for p = 0.75(0.01)0.99, with Point- 
wise 95% Design-Based Confidence Intervals for 
~-:,D. log(LEAD) from the Phase 2 of NHANES 
III Data for Children of All Races Aged 1-5 
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2 (1991-1994) of the U.S. Third National Health 
and Nutrition Examination Survey (NHANES III). 
Analyses generally treat the Phase 2 data as arising 
from a stratified multistage design involving selec- 
tion of n,,h = 2 PSUs (usually counties) selected 
with unequal probabilities and with replacement 
from 23 strata. Additional subsampling was car- 
ried out to select area segments (e.g., parts of city 
or suburban blocks) within a selected PSU, house- 
holds (or certain types of group quarters) within 
a selected segment, and persons within a selected 
household. The data for children aged 1-5 were then 
collected through a medical examination from ap- 
proximatedly 2400 participants. 

Figure 2: Comparsions of Efficiency in Estimation 
of Quantiles from Upper Tails of Normal Quan- 
tile Plots for p = 0.75(0.01)0.99. log(LEAD) from 
NHANES III Phase 2 Data for Children Aged 1-5 
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Table 1" Parameter Estimates from Upper Tails of 
Normal Quantile Plots for p - 0.75(0.01)0.99 from 
the Phase 2 of NHANES III Data for Children of All 
Races Aged 1-5. 

Method /2 a s%(~) g~(5) 
OLS 0.9405 0.8047 0.0861 0.0468 

GLS(D) . . . .  
WLS(D) 0.9403 0.8059 0.0858 0.0425 
GLS(I) 0.9844 0.7737 0.0733 0.0437 
WLS(I) 0.9545 0.7918 0.0816 0.0517 

Note: The generalized least squares method for estimation 
of sample quantiles using the design-based covariance matrix 
estimate is not feasible since only 23 strata are available with 
the Phase 2 data. 

6.2 C o m p a r i s o n s  of  E s t i m a t o r s  a n d  
G o o d n e s s - o f - F i t  S t a t i s t i c s  

Figure 1 presents a plot of the upper 25 design-based 
sample quantiles for p = 0.75(0.01)0.99 against the 
associated standard normal quantiles accompanied 
by connected pointwise design-based 95% confidence 
intervals and the ordinary least squares fitted line. 
Lines fit by the WLS(D), WLS(I) and GLS(I) 
methods were very similar to the OLS line and are 
omitted here to avoid graphical clustter. The close 
fit of the OLS line indicates that  data are consistent 
with the baseline normality assumption on the su- 

perpopulation distribution. Related estimation re- 
sults for the superpopulation parameters are given 
in Table 1. The weighted least squares results ap- 
pear to yield more efficient estimators compared to 
the OLS method. Figure 2 displays standard errors 
of design-based sample quantiles and all associated 
least squares quantile estimates at the corresponding 
probability values. The goodness-of-fit test statistics 
reported in Table 2 again suggest that  the upper-tail 
data are consistent with a normal superpopulation 
model. 
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Table 2: Comparisons of Goodness-of-fit Statistics and the Associated Rao-Scott Type Adjustments for 
NHANES III (1991-1994) Data on log(LEAD) for Children Aged 1-5. 

Goodness-of-fit Statistics 

Method ~,M CtuM CuM duM Naive 1st Adj. 2nd Adj. 
DDO 1.08696 3.95428 18.08296 1.38252 20.23362 18.61493 1.11893 

(0.62778)" (0.75297) a (0.40475) b 
DDW 1.08696 4.02931 18.73408 1.33447 22.25095 20.47088 1.18773 

(0.50515) (0.61336) (0.37354) 
IDO 0.74983 4.33829 14.86213 1.16040 11.82175 15.76597 0.79543 

(0.97313) (0.86510) (0.42827) 
IDW 1.06111 5.20148 29.76988 0.81981 16.89322 15.92032 0.56746 

(0.81446) (0.85866) (0.37832) 
IIG 0.72633 4.28929 14.08933 1.18569 21.11306 29.06822 1.49851 

(0.57418) (0.17806) (0.26819) 
IIW 0.75590 3.23294 8.65652 2.00841 13.91843 18.41296 1.60786 

(0.92918) (0.73472) (0.44954) 

NOTES: Each goodness-of-fit test statistic is the sum of standardized residuals, as defined in Section 4.1. The first two letters 
in the method column represent the variance estimation methods for the numerator and denominator, respectively. The third 
letter represents the least squares method used for quantile estimation. The labels D and I represent the design-based and 
model/IID-based methods, respectively. The letters O, G and W represent OLD, GLS and WLS, respectively. The superscripts 
a and b indicate that the p-value calculation is based on 23 and dM degrees of freedom, respectively. 
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