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Abstract :  

A unified framework has been attempted to address 
the problem "How can complete auxiliary informa- 
tion be effectively used from survey data". The pro- 
posed model-calibration estimators can effectively 
handle linear or non-linear models and reduce to the 
conventional calibration estimators of Deville and 
Sgrndal (1992) and/or  the pseudo-empirical maxi- 
mum likelihood estimators of Chen and Sitter (1999) 
under linear models. 

1 I n t r o d u c t i o n  

In sample surveys, auxiliary information on the fi- 
nite population is often used to increase the pre- 
cision of estimators of the population mean, total 
or distribution function. In the simplest settings, 
ratio and regression estimators incorporate known 
finite population means of auxiliary variables. For 
more general situations, there have been three main 
methods proposed in the literature which can be cat- 
egorized as model-assisted approaches: the general- 
ized regression estimator (GR) (Cassel, S£rndal and 
Wretman, 1976; S/irndal, 1980); calibration estima- 
tors (Deville and S/irndal, 1992); and more recently 
empirical likelihood methods (Chen and Qin, 1993; 
Zhong and Rao, 1998; Chen and Sitter, 1999). All 
of these methods have only been discussed in the 
context of a linear regression working model and es- 
sentially incorporate the auxiliary variables through 
their known population means even when the auxil- 
iary variables are known for every unit in the popu- 
lation. 

In this paper, we consider the use of more complex 
working models in obtaining model-assisted estima- 
tors by generalizing the calibration method above. 
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We term the approach model-calibration for rea- 
sons which will become readily apparent. We argue 
that, under a general modeling process, complete 
auxiliary information should be incorporated into 
the construction of estimators through fitted values. 
How to do this properly is fairly straightforward in 
the case of a G R (see Section 3) but not so for cal- 
ibration. We introduce a general framework from 
which to do this that is simple, and reduces to the 
usual estimators under a linear model. 

Once this generalization is realized, some inter- 
esting relationships between a linear model and the 
use of complete auxiliary information become more 
obvious and are discussed. Also, some differences 
between the approaches become more distinct. For 
example it has been noted that the calibration esti- 
mator reduces to a GR. under a chi-square distance 
measure (Deville and Sgrndal, 1992), where an un- 
derlying linear regression model is used. This is 
no longer the case when the methods are general- 
ized to nonlinear models, and the proposed model- 
calibration method performs better. 

In Section 2 we briefly review the calibration 
method and discuss its implicit model-assisted na- 
ture and relationship to a linear model. In Section 3 
we propose a model-calibration method for incorpo- 
rating auxiliary information into estimation of the 
population mean under a very general model which 
includes linear and nonlinear regression and gener- 
alized linear models as special cases. We go on to 
show that the resulting estimator is asymptotically 
design-unbiased and reduces to the usual calibration 
method under a linear regression model. Also in Sec- 
tion 3, we discuss the extension of the Gl:t and the 
pseudo-empiricM maximum likelihood (EL) methods 
to the general model and demonstrate that unlike in 
the linear model case, the extended calibration and 
the extended G R do not yield the same estimator. 
We go on to demonstrate, through a small simula- 
tion study, that the model-calibration estimator and 
the EL are superior. 
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H o w  the  Usua l  Cal ibrat ion  M e t h o d  
Re la t e s  to a Linear M o d e l  

Consider a finite population consisting of N identi- 
fiable units. Associated with the i-th unit are, the 
study variable, yi, and a vector of auxiliary vari- 
ables, mi. The values ml, m2, ..., mN are known for 
the entire population but yi is known only if the 
i-th unit is selected in the sample, s. Assume the 
inclusion probabilities ri  = Pr( i  E s) are strictly 
positive. For the moment  we will restrict attention 
to estimating the population total Y - ~N=I Yi. 

Deville and S/irndal (1992) introduce the notion 
of a calibration estimator of Y which is constructed 
as lTc - ~iE~ wiyi ,  where the calibration weights 
wi's are chosen to minimize their average distance 
(I)s from the basic design weights, di - 1/71"/, that 
are used in the Horvitz-Thompson estimator, YHT -- 
EiEs diYi; m o s t  commonly 

iEs 

subject to the constraint 

E Wi~i -- X ,  ( 2 )  

iEs 

where the qi's a r e  known positive weights unrelated 
to di. The resulting calibration estimator is 

- - + ( x  - 

iEs 
(3) 

best be used. In fact, Deville and S£rndal (1992) 
show that,  for any (I),, ? c  is asymptotically equiv- 
alent to (3), which is the generalized regression es- 
t imator,  YGR, and the GR is motivated as a model- 
assisted estimator using a linear model (S£rndal, 
1980). Another point relates to the issue of com- 
plete information on the m variables (i.e. known for 
all units in the population) versus only knowing the 
value of their population totals, X .  The G R is mo- 
tivated by using the predicted values from a linear 
model for each mi. However, the resulting estimator 
in (3) only needs X to be implemented. As we will 
see, this is due to the use of a linear model. 

M o d e l - c a l i b r a t i o n  E s t i m a t o r  of the  
M e a n  

We will use a model-assisted approach. That  is, our 
estimator of Y will be design-consistent but will be 
particularly efficient under a working model. This 
can be accomplished by first using the (yi, mi) for 
i E s to build the model and then calibrating to the 
predicted values from the model using: i) a direct 
calibration argument such as was discussed in the 
previous section; it) using a pseudo-empirical likeli- 
hood approach (Chen and Sitter, 1999); or iii) using 
a generalized difference estimator (Cassel, S£rndal 
and Wretman,  1976; S~rndal, 1980). We will briefly 
discuss the modeling step first and then consider 
these three methods of calibrating on the predicted 
values. 

where 5f/-/T -- ~ i  E s di mi and /~ = 
{~--~ies d i q i x i x ~ } - i  ~~iE, diq ix iy i .  The uniform 
weights qi - 1 are used in most applications, but 
unequal weights can also be motivated as in example 
1 of Deville and S£rndal (1992). The calibrated 
weights, wi, give perfect estimates when applied to 
the auxiliary variables. Deville and S£rndal (1992) 
argue that  "the weights that  perform well for the 
auxiliary variable also should perform well for the 
study variable". However, it is an implicit under- 
lying assumption that  y and m are linearly related 
that  makes this a valid argument.  For example, in 

! __ the case of scaler x and m i (1, xi) is used in (2), 
it is clear that  yi - flo + f l lx i  implies ? c  - Y. If 
a curved relationship exists between y and x, the 
so constructed calibration estimator could be very 
inefficient. For instance, if log(y/) " fl0 + flxxi, then 
there is no compelling reason to use Yc .  

The point we want to illustrate is that,  it is the 
model structure (relationship between y and m) that  
determines how the auxiliary information should 

3.1 M o d e l i n g  

Assume the relationship between y and m can be 
described by a superpopulation model through the 
first and second moments,  

E~(yilmi) - / z ( ~ i ,  0), W~(yi[~i) - v?o "2, 

i -- 1, 2 , . . . , N ,  (4) 

where 0 = (00, ..., Op)' and (r 2 are unknown super- 
population parameters,  #(m,0) is a known func- 
tion of m and 19, the vi's are known constants for 
given mi's or/zi = /z(mi,0), and E~ and V~ de- 
note the expectation and variance with respect to 
the superpopulation model. We also assume that  
(yl, m l ) , . . . ,  (YN, my) are mutual ly independent. 

The model structure (4) is quite general and in- 
cludes two very important  cases: (i) the linear or 
non-linear regression model, 

Yi -- #(mi,  O) + viei, i - l , 2 , . . . , N ,  (5) 
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where ei's are independently and identically dis- 
tributed random variables with E~(ei) - 0 and 
V~(ei) - ~r 2, and vi - v(~i) is a strictly positive 
known function of ~i only; and (it) the generalized 
linear model, 

g (# i ) - -x}0 ,  ~ ( y i l ~ i ) - v ( # i ) ,  i -  1 , 2 , . . . , N ,  
(6) 

where #i = E((yilwi) , g ( ' ) i s  a link function and 
v(.) is a variance function. 

Consider a design-based method for estimating 
the model parameters. When a model-based ap- 
proach is employed, (yi, ~i) , i  E s is viewed as an 
lid sample from the superpopulation. The super- 
population parameters, 0, can then be estimated 
using standard procedures. Under the design-based 
framework, the sample data may not follow the same 
model structure as that of the whole finite popula- 
tion under a complex sampling scheme and 0 may 
be meaningless from the design-based point of view. 
In this case, 0 is replaced by ON, an estimate of 0 
based on the data from the entire population. ON is 
then estimated by 0, a design-based estimate from 
the sampled data (Godambe and Thompson, 1986). 

For illustration, consider two important cases. 
Case I. ON can be expressed explicitly as func- 
tions of population totals for properly defined pop- 
ulation variables. For example, under a linear re- 

gression model, ON is the regression parameter of 
the finite population: ON -- ( X t N X N )  -1XNyN,t 
where X N is the N x (p + 1) matrix with rows 

t (1, wi) f o r / - -  1 , . . . ,N and YN -- (Yl,. . . ,YN)'.  A 
design-based estimator 0 is obtained by plugging 
in design-based estimates for various population to- 
tals in O N 0 ( X t n I I  1 X  ) 1 x t  - • - - n - n I I  l y  n ,  w h e r e  

H = d i a g ( r l , . . . , r n )  and Xn and Yn in obvious 
notation. 
Case II. ON is defined by estimating equations. Sup- 
pose that the generalized linear model (6) is as- 
sumed. We define ON as the maximum quasi- 
likelihood estimator of 0 based on the entire finite 
population, i.e., the solution of the estimating equa- 
tion (Molina and Skinner, 1992): 

N 

0)] - 0 ,  
i=1 

(7) 
where X '  i - (1,~I) and g'(u) - dg(u)/du.  The 
estimating function on the left hand side of (7) is a 
population total, /} is defined as the solution of the 
design-based sample version of (7), i.e., the solution 
of the following estimating equation" 

E diXi[g ' {#(x i ,  O)}v{#(zi ,  O)}]- t[y i -#(~i ,  0)] -- 0. 
iEs  

The estimate 0 is then obtained by standard 
Newton-Raphson iterative procedures• Under cer- 
tain regularity conditions (similar to those used by 
Binder, 1983), it can be shown that in both Cases I 
and II, 0 - ON + Op(n-1/2). 

3.2 M o d e l  C a l i b r a t i o n  

Under model (4), auxiliary information should be 
used through the fitted values #(~i, 0), i -  1 , . . . , N .  
TO do this we define the model-calibration estimator 
of Y as YMC -- N - t  ~J-]~ies wiyi, where the calibrated 
weights, wi, minimize an average distance between 
wi's and di's, subject to 

N 
u - - 

iEs  i E s  i=1 

One should note that in the original formulation 
of the calibration estimator presented in the pre- 
vious section, the constraint N -1 ~ i e ,  wi - 1 is 
not present. If this constraint is added, the result- 

ing estimator under no auxiliary information is Y = 

E i e ,  diyi /  Y'~ie, di and not Y HT -- N -1 Z i e ,  diyi. 
It was illustrated in Rao (1966) and later in the more 
well known Basu (1971) elephant example that even 
though the first estimator estimates the population 
size N and the second uses its known quantity, the 
first has better properties. This is true for calibra- 
tion generally. This constraint arises quite naturally 
in the case of pseudo-empirical maximum likelihood 
estimators (Chen and Sitter, 1999). 

We will restrict our discussion to the chi-square 
distance given in (1). The resulting model- 
calibration estimator then follows directly from the 
development in Deville and Sgrndal (1992) by treat- 
ing the /;i - #(~i, 0) as a scalar auxiliary variable 
and is given by 

N 

~'MC - Y H T + { N  - 1 E f z i  - N - t  E difzi}B , (8) 
i=1 iEs  

where [3 - ~ i ~  d iq i ( f~ i - f z ) (y i -  ~)/ Y'~i~ diqi(f~i- 
_ / ; ,  = 

~ i e ,  diqif~i/ ~J-~'~ie, diqi. 
If constraint N - l Y ] i e ~  wi - 1 is dropped, 

the single calibration equation Y]ie, wi#(~i,  O) - 
EN=t #(~i, 0) yields 

N 

i=1 iEs  

(9) 
where/3" - Y]ie, diqifziyi/ Y]ie, diqifz~. 
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The important  properties of (8) and (9) are sum- 
marized in the following theorem. We assume that 
there is a sequence of sampling designs and a se- 
quence of finite populations, indexed by u. Both the 
sample size nv and the population size Nv approach 
infinity as u --+ c~. All limiting processes are under- 
stood to be as u -+ c~, but the u is suppressed to 
simplify notation. 
T h e o r e m  1. 1) Suppose (i) 0 -  ON + Op(n-1/2); 
(ii) ON ~ O; and (iii) for each wi, O#(mi, t ) /Ot  is 
~o~t i~o~ i~ t ~ d  Io~(~ , t ) /a t l  <_ h(~i, O) for t 
in a neighborhood of O, and N -1 ~-']~N=I h(~i ,0)  - 

0 (1). Then YMC and YMC are both asymptotically 
design-unbiased. They are also both approximately 
model-unbiased under the general model (4) if the 
design-based estimator 0 is close to O; 

2) I f  qi - 1/v~ in ~ , ,  then both YMC and ~zMC 
reduce to the conventional calibration estimator (or 
GR) under a linear model, where 

# ( ~ i ,  O) --  00 ~- 0 1 X i l  -~- " " " + OpXip,  (10) 

i~ (5). 
Proof." See Wu (1999). 

Thus, both Y MC and YMC are model-assisted in 
this sense and can handle any linear or non-linear 
models. That  is, they are both design-consistent 
irrespective of whether the model holds and par- 
ticularly efficient under model (4). Also, in the 
case of no modeling error, i.e. yi = #i, we have 

~,rMC __ f r M C  __ ~,r. In addition, both YMC and 
^ * 

]'MC reduce to the conventional calibration estima- 
tor' (Deville and S£rndal, 1992) (same as the GR) 
under a linear model. 

3.3 P s e u d o  Empir ica l  Like l ihood A p p r o a c h  

Chen and Sitter (1999) propose using a pseudo- 
empirical maximum likelihood estimator obtained 
by maximizing 

[(P) - E di log Pi, (1 t) 
iEs 

which is a design-unbiased estimator of the log- 
empirical likelihood one would use if one had the 
entire population: Ep(E,e ,  d, logp,) - EN:~ logpi. 
Here, Ep refers to expectation under the sampling 
design. For auxiliary information of the general form 
Y - 1 E  yi=l Ui -- O, with ui -- u(yi, ~i), the method 
then reduces to maximizing (11) subject to 

E Pi--  1, E p iu i - -O  (O < pi <_ 1). 
iEs iEs 

(12) 

Chen and Sitter (1999) then go on to primarily fo- 
cus on estimating Y with X known, i.e. u(yi, ~i) - 
(~i - XN) .  The resulting estimator is asymptoti- 
cally equivalent to a G R discussed in the next sec- 
tion (Note that  for vector valued ~ i -  X N  this needs 
a vector Lagrange multiplier to solve). Thus, much 
like the calibration method, there is implicit use of 
a linear relationship between y and ~. To extend 
to model (4) we merely define ui - u(yi ,~i)  - 
#(mi, 0 ) -  N - 1 E i N 1  #(aei, 0) and, replacing O by O, 
again maximize (11) subject to (12). 

Paralleling Chen and Sitter (1999), the Lagrange 
multiplier method can be used to show that for any 
finite population parameters that  can be written as a 
functional, T(FN),  the resulting EL is T, - T(/~,), 
where F, - ~-~ie8 PiSyi ' 8Yi is the point measure at 
Yi, the pi - wi/[1 + Aui] for i E s, and the scalar 
Lagrange multiplier, A, is the solution to 

w i u i  
E 1 + Aui = 0, (13) 
iEs 

where wi - di/~-']~iEs di. For instance, the EL for Y 

would be ~'EL -- ~']~ia, PiYi. Note that  no auxiliary 
information translates into ui - 0 and the resulting 

EL of 12 is Y" - ~-]~i~8 diyi/~-]~ie8 di. One advantage 
to this approach is that the resulting weights are 
positive, which may not be true for the other two 
methods. 

A theorem analogous to Theorem 1 of Chen and 
Sitter (1999) can then be proved. 
T h e o r e m  2. Under the conditions i) - iii) of 

Theorem 1 and iv) - vi) given below, if'EL, the 
pseudo-empirical maximum likelihood estimator of 
Y obtained by calibrating on fitted values under 
model (~), is asymptotically equivalent to the model- 

calibration estimator Y M C . 
Let ui -- Iz(xi, ON) -- g -1 EN:I  #(=i,  ON), hi - 

h(mi, ON), where h(~i, ON) is defined in condition 
iii) of Theorem 1. The conditions needed are: 

iv) u* -- max/e,  lull- 
v) E i e ,  diui /  E i e ,  diu2 - O p ( n - 1 / 2 ) ;  
vi) h* - maxie s [hi l -  op(n). 
Proof: See Wu (1999). 

3.4 Genera l i zed  Di f ference  Es t imator  

The well-known generalized regression estimator 
(GR) (Cassel, S~irndal and Wretman,  1976; S£rndal, 
1980) can be motivated as a model-assisted general- 
ized difference estimator (GD). Suppose we assume 
a linear model as in (5) with/z,  = #(x,,/9) given in 
(10). The GR can then be written (S£rndal, 1980) 
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a s  

N 

t"GD -- N - l {  E diy i -  E di#(~ei, O ) + E  #(x~i, 0)}. 
i6 s iris i-'-i 

(14) 
This estimator is obtained by choosing ai = 
#(~i,  0) in the usual design-based difference estima- 

tor ~DZF -- U-~{E,e .  diYi - Ei68 diai + EN=I ai }. 

The choice of ai - #(xi, O) in YDIF  is optimal in 
A 

that  it minimizes Ep{V~(YDiF--Y)} if ri (x vi (Cas- 
sel, S/irndal and Wretman,  1976). It is fairly clear 
that,  if we put in the form of #(~, 0) implied by (10), 

A 

(14) will depend on the x-values only through X H T  

and Jr.  It is also clear that  the motivation general- 
izes naturally to more complex models by allowing 
#(xi ,  0) to come from the development in Section 
3.1. However, in this case the resulting estimator 
depends upon the x-values in a more complicated 
way and in particular complete auxiliary informa- 
tion is necessary to apply the method. 

This generalization of YGR to }"GO using model 
A 

(4) shares many of the nice properties of YMC. In 
A 

particular" (i) Theorem 1 can be restated for YGD 

with similar proof; (ii)if yi - #i, f"aD -- Y; and (iii) 
under a linear model it reduces to the usual GR. 

It is interesting to note that  YMC and YGD are 
not the same under the general model, as they are 

under a linear model. The behavior of YaP is 
associated with the "goodness" of approximation 
yi " #(xi, 0). It depends largely on modeling vari- 

ation. If yi " #(~i,O), then Vp(IZaD) " O. On the 
other hand, if the relationship between y and • is not 

strong enough, we might have Vp (15 GD ) >_ Vp (f"HT), 

no gain by using f"aD. The model-calibration es- 
° 

t imator YMC, on the other hand, uses #(~i,  
as a tool of calibration while keeping as close to 

1%H7' as possible. It is arguable that  }"UC will 
A 

perform much better. Y MC can be viewed as a 
regression estimator based on an artificial model 

Yi bo + bl#(xi O) + q-;(1/2 - -  , e i .  Even in the case 
of model misspecification, this artificial simple lin- 
ear regression model might still fit reasonably well 
and the gain by using a regression estimator is still 
available. 

4 A S i m u l a t i o n  

We conducted a limited simulation study to investi- 
gate the finite sample performance of the estimators 
of Y proposed in Sections 3.2 through 3.4. A finite 
population consisting of N - 2,000 units was gen- 

erated as an iid sample from log(y) - 00 + 01x + c, 
where x ,-., Gamma(l,  1) and ¢ ,-~ N(0,~r2). We 
chose 00 - 01 - 1. Four different finite populations 
were used by choosing different values of ~r 2 such 
that  the correlation coefficient between log(y) and x 
are 0.9, 0.8, 0.7 and 0.6, respectively. 

For each fixed finite population, a simple random 
sample of size n - 100 was taken and a log-linear 
model 

log( ,) - + - 

was fit using pseudo maximum quasi-likelihood es- 

t imation. Estimators f"MC, YMC, f"EL and f"aD 
were computed using the sample data  and all the 
fitted values. We also included the GR based on a 
linear model in the simulation to compare to a rou- 
tine application without modeling. All estimators 

A 

were compared to the baseline estimator, YHT. The 
process was repeated B - 50,000 times. 

The performance of the various estimators was 
measured by the simulated Relative Bias (RB, in 
percentage) and Relative Efficiency (RE), defined 
by 

B 

R B  - × B ? ) 1 7 ,  
i = 1  

RE - v / M S E / v / M S E H T ,  (15) 

where M S E  - B -1 ~_,B=I(t" -- ~,')2 and MSEHT is 

the M S E  o f  ~rHT. 
Table 1 reports RB and RE for the estimators in- 

cluded in the simulation. Several interesting points 
are highlighted here" (1) the RB are all within a 
reasonable range, with the GR having the largest 

at 5%; (2) YMC, I~MC and IT"EL perform similarly 

and better in all cases; (3) YMC never outperforms 

}"MC, and YEL never outperforms YMC or YMC" 
The reason for the latter may represent the price to 

A 

be paid to achieve the positive weights; (4) YGD per- 
forms well when the relationship between y and x is 
strong (populations 1 and 2), but can be worse than 

Y HT, which does not even use the auxiliary infor- 
mation, when the relationship is weak (population 
4); (5) the gain from using the GR, which ignores  
the curved relationship between y and x, is always 
marginal. 

5 C o n c l u d i n g  R e m a r k s  

We have proposed a model-calibration approach to 
the use of complete auxiliary information in com- 
plex surveys to estimate totals and means. The idea 
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Table 1: Relative Percentage Bias (RB%) and Relative Efficiency (RE) 

Population 
Percentage Relative Bias (RB%) 

.9 .15 -1.23 -1.21 -1.12 - .22 -4.97 

.8 .14 -2.10 -2.14 -2.09 .18 -5.10 

.7 .07 -2.78 -2.95 -3.05 1.29 -5.27 

.6 - .33 -2.87 -3.32 -3.60 5.13 -5.71 

Relative Efficiency to ~ZHT (RE) 
.9 1.00 .30 .30 .32 .42 .84 
.8 1.00 .40 .41 .44 .58 .87 
.7 1.00 .49 .49 .54 .71 .89 
.6 1.00 .61 .61 .89 1.13 .90 

involves fitting a general working model and then 
calibrating on the resulting fitted values as opposed 
to on the auxiliary variables themselves. 

We can summarize the innovation in this work 
through the following points: 1) The relationship 
between an assumed model and the use of complete 
auxiliary information is highlighted by noting that, 
in the case of a linear model it is only necessary 
to know the mean of the auxiliary variables for the 
entire finite population to construct efficient estima- 
tors of 1>. Therefore, making complete use of aux- 
iliary information requires more complex modeling; 
2) The most obvious direction for extending to non- 
linear models is through the generalized difference 
estimator. However, as we demonstrate in the sim- 
ulation, unless the relationship between y and m is 
very strong, this approach can do quite poorly and 
in fact can perform worse than ignoring the auxil- 
iary information all together; and 3) it is not obvious 
that one can/should avoid calibrating on the vector 
of auxiliary variables directly. We argue and demon- 
strate that a simple and powerful way to do this is to 
calibrate on the fitted values either directly or using 
a pseudo-empirical likelihood approach. 

The use of model-calibration approach for esti- 
mating the finite population distribution function 
and quantiles was discussed by Wu (1999). 
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