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1 Introduction 

Service Based Enumeration (SBE) is the statistical 
program that the Census Bureau uses to estimate the 
population of persons without usual residence who use 
services. The methodology selected to measure this 
population is a multiplicity estimate of the number of 
times they use service facilities. This paper first presents 
the justification of the estimator and a derivation of its 
variance. The estimator of this variance then follows in 
a straightforward fashion. We examine the behavior of 
the multiplicity estimator and its variance. An important 
specific case is the one in which usage is assumed to 
follow a Bernoulli distribution. Results are presented that 
show what happens to the variance when the probability 
parameter for the Bernoulli distribution is varied. 

2 SBE Methodology 

2.1 The SBE Estimator 

Multiplicity estimation is the methodology selected 
for use in the SBE program. Part of the population is 
enumerated on a specified day and asked about their use 
of services during a recent reference period. This 
information allows us to estimate the size of the total 
population using services. There are many multiplicity 
estimators, each relying on a different multiplicity rule. 
The SBE estimator relies on two usage questions to 
obtain the data. One question asks about shelter usage, 
while the other, directed at people who do not use 
shelters, asks about usage in soup kitchens and mobile 
food vans. 

This paper reports the results of research and analysis 
undertaken by Census Bureau staff. It has undergone a 
more limited review than official Census Bureau 
publications. This report is released to inform interested 
parties of current research and to encourage discussion. 

One day is selected, and everyone is counted on that day. 
A multiplicity estimator for the shelter component of the 
estimator is given by 

1~ = ~ 7__, (1) 
k--~ A k 

where n represents the number of persons enumerated at 
a shelter on the selected day, and Ak represents the 
number of days person k used a shelter during the shelter 
reference week, that is, the current day and the six prior 
days. 

Enumeration at soup kitchens and mobile food vans 
took place the day after enumeration at shelters. The 
soup kitchen and mobile food van component is given by 

m 

% = E& , (2) 
h = l  B h 

where m represents the number of persons enumerated 
the next day at a soup kitchen or a mobile food van 
during the soup kitchen reference week, which consisted 
of the next day and the six prior days. Bh represents the 
number of days person h received a meal from a soup 
kitchen or mobile food van. This summation does not 
include people who used a shelter during the shelter 
reference week. The combined estimator is then 

n m 

I~ E 7 E 7 

k:l Ak h--l Bh 
(3) 

For more information on this estimator see Kohn and 
Griffin (1999). 

2.2 Justifying the Estimator Statistically 

In order to justify our use of the estimator in (3), we 
describe circumstances under which it is appropriate. In 
this section and the next two, we examine the properties 
of the shelter-only estimator, as given in (1). The results 
will then be extended to the combined estimator for the 
shelter and soup kitchen populations in section 2.5. To 
start we make the following assumptions: 

(a) The entire population of shelter users can be 

523 



divided into eight mutually exclusive groups Go, 
Gl, ..., G7, where G~ includes all those who used 
shelters i times in the reference week. 

(b) Each person in G~ used the shelter on i days 
randomly selected during the reference week. 

(c) Users in the population visit shell~ers 
independently of each other. 

(d) There is no response error. That is, the number 
of days given as the frequency of shelter use 
during the reference week is the true number. 

Obviously, these assumptions do not hold in reality. 
For example, consider (b). It is likely that shelters 
experience heavier usage certain days of the week or 
different times of the month. Indeed, weather may be an 
important factor. Assumption (c) ignores the clustering 
effect of companions and of mothers with children. The 
most questionable assumption is (d). It is likely that 
many users will simply not recall how many times they 
have visited shelters over a week's time. However, there 
are few inferences we can make without these or other 
such assumptions. 

It is worth mentioning what these assumptions do not  

imply. (1) They do not  assume that each person in the 
population behaves the same way with respect to the use 
of shelters. That is, the probability that a person falls in 
G~ can vary from person to person. (2) For any 
individual, the mechanism for determiningwhether a visit 
is made to a shelter need not be independent over the days 
of the week. 

Note that this population does not include people who 
never use shelters. The goal of SBE is not to estimate all 
homeless people, but simply those who use shelters (and, 
in section 2.5, soup kitchens). The set of people in Go are 
those who sometimes use shelters but did not use a shelter 
during the reference week. Among shelter users, only 
those in Go can be included in the soup kitchen and 
mobile food van estimate. That estimate therefore covers 
the people in Go, and those who never use shelters but 
sometimes use soup kitchens and mobile food vans. 

Let Ni be the number of people in group G~, and let N 
be the size of the shelter population, that is, 

7 

N = ~ N  i- 
i=0 

From equation (1) one sees that the shelter-only 
multiplicity estimator is the sum of 7 over Ak, where Ak 
is the number of shelter visits made during the reference 
week for the kth person, over the population enumerated 
at shelters. By grouping together the Ak'S corresponding 
to people with the same number of visits (that is, into 

their groups G~), we can rewrite the 

7 

estimator as ~ hi(7). , where, for i=  1, 2, ...7, ni is 
i=I  i 

the number of people coun ted  in the S B E  operation (out 
of N~ people in Gi) who visited shelters i times in the past 
week. 

It is easy to determine the conditional distribution of 
the n~. Under the assumptions above, given N~, n~ follows 
a binomial distribution with N i trials and probability of 
success equal to i/7. (One observes that n7 is equal to N7 
with certainty). 

Since hi(7), is an obvious estimator for N~, the shelter- 
l 

7 

only multiplicity estimator, ~ n,(7),, can be def'med as 
i"1  l 

/~. We see an immediate problem: with the shelter-only 
estimator, ~ ,  we have not included a component to 
estimate No, the number of people in Go. We leave the 
derivation of more complex methods to estimate No to 
another paper, but present a partial remedy in section 2.5, 
where we investigate the combined estimator for shelters 
and soup kitchens. 

2.3 Conditional Mean and Variance of /V 

Because each n~ follows a binomial distribution with 
parameters Ni and i/7, the derivation of the expected 
value and variance of the multiplicity conditional 
estimator is straightforward: 

E( n~ [ {No, N,, ..., N7} ) = N~ (i / 7),  and 
7 

E( /~ I{No ,  N, , . . . ,N7})  = ~ N ,  = N - N o .  
i=1 

Clearly,/'V is biased downwards by the amount No. 

Under assumptions (a) and (c), and conditional on the set 
{No, N1, ..., N7}, the random variables n~, n2, ..., n7 are 
stochastically independent. It then follows that 

Var ( N [ {No, N,, ..., N7} ) 
7 

= ~ Var( n i [ {S0, N,, ..., N7}) (7/i) 2 
i=1 

7 

= ~ Ni (i/7) (1-  i/7) (7/i) 2 
i=1 

7 

= ~ Ni (7- i ) / i  
i"1 

(4) 
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We obtain a straightforwardestimator for this variance by 
estimating the population components N i " 

V'ar (/V I {No, NI, ..., NT}) 
7 

= E ni (7/i) (7- i ) / i  
i=1 

7 

= ~ ni 7 (7- i ) / i  2 . (5) 
i=1 

Finally, we can obtain the conditional variance of this 
variance estimator: 

Var ( V~ar (/V I {No, NI, ..., N7} l{No, NI, ..., N7}) ) 
7 

= ~ Nm (i/7) (I-  i/7) [7 (7-i) / i ~- ]2 

= ~ N~ (7-i) 3/P. (6) 
i=l 

As one would expect, for a fixed total number of 
people N - No, the true variance increases as the people 
make fewer visits to shelters during the reference week. 
In that case, fewer shelter people tend to be enumerated, 
and the weights applied to their records, 7/i, tend to be 
larger. 

A simple estimator for the variance of "Car (~  I {No, 
N 1 ,  . . . ,  N 7 }  ) in (6)can be given by inserting estimates, ni 
(7//), for each N i . 

2.4 Uncondit ional  mean and variance 

The results in the previous section demonstrate what 
happens conditional on the population sizes N,, N2, . . . ,  N7 .  

But the behavior of the estimator N also depends on the 
stochastic mechanism that produces the values of the N~'s. 
After all, someone who visits a shelter four times one 
week may well visit twice in another week. How does 
this variability affect the distribution ot~ ? 

The unconditional mean 0f ?¢ is as follows" 

7 

E ()V) = E [ E ( ~  n~ (7/i) I {No, N,, ..., N7} ) ,  
i= I  

where the outside expectation is taken over the 
distribution of possible values of the vector {No, NI, ..., 
N7}. As the terms n~ (7/i) are conditionally unbiased for 
the N~, we can write 

7 

E(/V) = E [ ~ N ~ ]  = E [ N - N o ]  
i = l  

= N -  E [ No] .  

Thus the mean of N has a downward bias equal to the 

expected value of No, the expected size of the shelter 
population who do not make a visit in the reference week 
(Go). The unconditional variance can be derived 
similarly: 

7 

Var (/~) = Var [ E ( ~ n~ (7/01 {No, N,, ..., N7} ) ] 

+ E [ Var ( ~ n~ (7/i) I {No, NI, ..., N7} ) ] 
i = l  

7 7 

= V a r [ ~ N i ]  + E [ ~ N ~ ( 7 - i ) / i ]  
i=1 i=1 

7 

= V a r [ N - N o ]  + ~ E ( N ~ ) ( 7 - i ) / i  
i=1 

7 

= Var [No]  + ~ E ( N i ) ( 7 - i ) / i .  (7) 
i=1 

The leading component of the variance in (7), Var [No ], 
may be small if the term No tends to be small. Note that 
the result in (7) requires only the assumptions made in 
section 2.2. It is not necessary that different people in the 
population visit shelters in the same way or with the same 
probabilities. 

2.5 Extending to the combined shelter and soup 
kitchen est imator 

To this point we have investigated the distribution of 
the shelter-only estimator. The extension to the combined 
shelter and soup kitchen multiplicity estimator is 
important because we can account for (i) people who visit 
shelters at times, but did not during the reference week, 
and (ii) people who never frequent shelters, but who 
sometimes visit soup kitchens. 

Let us recall the procedure applied at soup kitchens: 
all people enumerated there are asked two questions: (1) 
how many times in the reference week they visited a soup 
kitchen, and (2) whether they visited a shelter at any time 
during the reference week. If the answer to (2) is "yes," 
their response does not contribute to the soup-kitchen 
component of the combined estimator, as they were 
representedin the shelterpopulation already--whether or 
not they were enumerated at a shelter. The idea is to 
represent each person, that is, give him or her a chance to 
be enumerated, but only once. If the answer to (2) is 
"no," they are assigned a weight equal to seven times the 
reciprocal of their response to (1), similar to the 
weighting used in the shelter-only estimator. The result 
is the combined estimator in equation (3). 

To justify the combined estimator, we first define the 
population more generally than before. We include all 
people who sometimes use a shelter or a soup kitchen or 
both, although they may have used neither in the 
reference week leading, to enumeration day. This 
population can be divided into 64 groups Gij of size N~j, 
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where G 0 includes all those who visited a shelter i times 
during the reference week, and also visited a soup kitchen 
j times during its week. In the groups Goj, j = 0, 1, ..., 7, 
are those people who did not use a shelter during the 
reference week, including those who sometimes use a 
shelter and those who never do. According to our 
definition of the population, those in Go0 sometimes use 
a shelter or a soup kitchen. 

Because we exclude from the soup-kitchen component 
of the estimator any census respondents who used a 
shelter in the reference week, we can limit ourselves to 
estimating the following componentsofN: N,, N:, ..., N7, 

No,, No2, ..., and No7. All persons in Gij, where i > 0, do 

not  contribute toward the second summation in (3), the 
soup-kitchen component, but are represen ted  in the 
estimation of N~ through the first component--whether or 
not they were enumerated at a shelter. 

We extend the assumptions given above in section 2.2 
analogously to the use of soup kitchens. Then the 
combined estimator can be written as 

7 7 

/V = ~ n i ( 7 / i )  + ~ n o j ( 7 / j ) ,  
1=1 j=l  

where the noi are the number of people in Goj enumerated 
in the SBE operation at soup kitchens. The results 
derived in the previous sections carry forward 
analogously. Conditional on the set of population sizes 
{N,, N 2 ,  . . . ,  N 7 ;  N o , ,  No2,  . . . ,  N o 7 } ,  

E( )V I {N,, N2, ..., N7; No,, No2, ..., No7}) 
7 7 

= E Ni + E Noj = N-N0o,  and 
~=1 j=l 

Var (iV I {N,, N2, ..., N7; No,, No2, ..., No7}) 
7 7 

= Z Ni (7- i ) / i  + ~ Noj (7 - j ) / j .  
i=1 j=l  

This suggests the following conditional estimator of the 
variance of N hat: 

Vat(/V I {N,, N2, ..., N7; No,, No2, ..., NOT}) 
7 7 

= E ni 7 (7- i ) / i  2 + Z noj 7 (7-j) / j2.  (8) 
~=I j=l 

As with the shelter-only estimator, the conditional 
variance of the variance estimator is easily obtained" 

Var (Var(/V) ! {N,, N:, ..., N7, No,, Noz, ..., No7}) 
7 7 

= ~ n~ (7-03/i  3 + ~ Nj (7-j) 3/33 
i=1 j=l  

Unconditionally, the mean and variance of N are 

(9) 

7 7 

E(IV) = E [ ~ N ,  + ~ N o j ]  = N - E [ N o o ] ,  
i=, j=l  

and 

7 

Var ()V) = Var [ N0o ] + ~ E(Ni) (7-i) / i 
7 i=I 

+ ~ E(Noj) (7-j) / j. (10) 
j=l  

Again we see that the estimator is biased downward, 
now by E[ Noo ] , the mean number of people who 
frequent shelters or soup kitchens, but who visit neither 

during the appropriate reference week. This number is 
generally smaller than E [ No ], the bias in the shelter-only 
estimator. If we are willing to apply information about 
the behavior of people in the target population, we can 
model the distribution of Noo and the set {N,, N2, ..., NT, 

No, , No2 , ..., No7}, and thereby predict the unconditional 
performance of the combined estimator, .~. In fact, under 
reasonable assumptions the unconditional mean and 
variance of Noo may contribute only a very small part of 
the total mean and variance. 

3 Constant Visit Probabilities Over the Population 

To investigate the behavior of the multiplicity 
estimator under actual conditions, we add one assumption 
to those made in section 2.2" 

(e) The probability, f~j, i = 0, 1, ..., 7, that a person 
makes i visits to a shelter and j visits to a soup 
kitchen during the respective reference weeks, is 
the same for each person. 

Note that we are not yet making any further claims about 
the day-to-day behavior of the individuals beyond what 
has already been assumed in section 2.2. 

Consider first the shelter-only estimator. Analogous 
to previous notation, for i = 0, 1, ..., 7, let f~ be the sum of 
the fij's as j runs from 0 to 7. Under (e) and the prior 
assumption of independent shelter use ((c) in 2.2), for a 
population of N people who sometimes use shelters, the 
set {No, N,, ..., N7} follows a multinomial distribution 
with N trials and probability parameters f0, f,, ..., fT. Thus 
each Ni has a binomial distribution with parametersN and 
fi. The conditional results of section 2.3 pertaining to the 
multiplicity estimator continue to hold. But now we can 
derive its unconditional mean and variance as well. 
Substituting into the equations in section 2.4, we 
conclude that 

E(/V) = (N -N-fo)  = N ( 1 - f o ) , a n d  
7 

Var ( .~ )  = S f o ( l - f o )  + ~ n f ~ ( 7 - i ) / i .  
i=1 
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7 

Var ( /~ )  = N foo (1 -  foo ) + ~ N,f ( 7 - i ) / i  
7 i=l 

+ ~ N foj (7-j)/ j .  
j = l  

(11) 

(f) 

4 The Bernoulli Model for Visit Behavior 

In this section we discuss the case where individual 
service usage follows a Bernoulli distribution. We make 
one last assumption: 

Thus for any person the number of visits to a shelter 
(soup kitchen) over the seven days is binomially 
distributed with parameters 7 and p~ (P2); the f~'s and foj'S 
above are replaced by values of the binomial probability 
function. It follows easily that 

On any day in the reference week, each person 
is assumed to use a shelter (soup kitchen) with 
probability Pl (P2), with behavior independent 
from day to day and over facilities. 

E ()V) = N (1 - foo) = N [ 1 - (1-pl)7(1-p2) 7 ] ,  

and from equation (11), 

V ar( ~ ) =  

+ N Pt ( l -p l  (7-i) / i 
i=1 

N [ (1-Pl)7(l-P2)7 ] [  1 - (1-pl)7(1-P2)7 ] (12.1) 

(12.2) 0.1 

+ ~7 N(1-p~)7(7)j P2J (l-P2)7-j (7-j)/j. (12.3) 
i=1 

We will make the simplifying assumption that usage 
at shelters and soup kitchens occurs with the same 

probability;that is, p~ = P2 = P. Different probabilities of 
service usage can produce very different estimates of the 
unconditional variance and of related statistics. These 
statistics are proportionalto N, but it is illustrative to hold 
N constant while varying p. The following graphs give 
the variance and other statistics as a function of p, while 
holding N constant at 2,500. 

The first graph gives the total unconditional variance; 
it reaches a maximum of about 10,200 at p - 0.13. As p 
is reduced from 1, the variance at first increases because 
the counts in the lower usage categories for the shelter 
and soup kitchen variances will increase, and, as we have 
seen, the lower usage categories have more of an effect 

12 

10~ 

t -  

¢/) 
• ~ =, 

0 

ITotal variance 

probability 

on the variance than do the higher usage categories. 
Eventually, however, as p is reduced further, so many 
people fall into the no-usage category that the variance of 
the other two components begins to decrease, so that the 
total variance will decrease. 

The no-usage variance also decreases once p becomes 
small enough. It does, however, assume a larger fraction 
of the total as p becomes smaller. The next graph 
presents that variance as a fraction of the total variance. 

If fo is small, the relative bias is small, and the first 
component of the unconditional variance is small relative 
to the other components. 

Extending these results to soup-kitchen enumeration 
is straightforward. The number in the population who 
make no visits to shelters or soup kitchens during the 
reference weeks, Noo, follows the binomial law with 
parametersN and foo. The bias in the combined estimator 
is E [Noo] = N .  foo, and the variance is 

IN .Usag_e._var/T°tal va . . . . . . .  

=, ............................................................................................................. -----~- 
0.15 

0.05 

l l l l  l l l l  l l l l l l  I I I I I I I I I I I I I I I  I I I I I I I  III It lf l I I I I I  I I I I I  l l l l l l l l l l  I 

Probability 
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It shows that the no-usage component of the variance is 
only significant when p is small. At p = 0.13, it is only 
about 3% of the total, and at p = 0.20, it has already fallen 
to approximately 1%. 

The next graph shows the relative bias of the estimator, 
E (Noo) / 2500 = ( 1- p )14. 

Relative B!asl 

0.8 

• 0.6 

~ 0.4 

0.2 

l I I I I  l l f l  I I I  I I I I  I I I I  l l l l  I I I I  I I I I  I I I  l l l l  l l l l  l l l l  l l l l  I I I  I I I I  I I I I  I I I I  I l L  

Probability 

It too quickly falls to insignificance as p increases, 
equaling, for example, approximately 0.02 at p = 0.25. 

Next, we see a graph of the relative mean square error. 

0.8 

0.6 

r~ 0.4 

0.2 

0 

Probability 

Finally, we see the bias as a fraction of the square root of 
the MSE. 

Bias / Root IVISE I 
......................................................... 

1.2, 

1 
_. 0.8 

..,., 

0.6 
-~ 0.4 

0.2 

0 I IIII IIII IIII IIII III IIII IIII IIII 11111111111 IIII IIII III 

Probability 

The relative bias is initially substantial. At p = 0.01, for 
example, it equals 87%. As one can see from the prior 
graph, it falls quickly; as long as p is equal to at least 0.3, 
it will be under 1%. The relative mean square error 
declines in a similar manner. Thus the bias is, at the 
lowest usage probabilities, a substantial fraction of the 
root MSE, making up essentially all of it for probabilities 
of about 0.1 or less. Once p has risen to 0.3, however, 
this fraction has fallen to approximately 23% and is 
declining rapidly as a proportion of the total. By p = 0.4 
it contributes only about 3%, and at p = 0.5 it has become 
negligible as a fraction of the root MSE. 

To make this analysis more realistic, we can let Pl 
differ from P2. The general results will be similar, but we 
can examine the effect of differences in usage at shelters 
and soup kitchens. Such results are not included here 
because of limited space. 

5 Continuing Research 

Currently we are pursuing several areas of research: 

Estimatingthe "no-usage" component of N, that 
is, No or N0o, from the enumeration data. 

Modeling the behavior of the individuals in the 
population allowing for different probabilities of 
service usage from person to person. 

Determining the distribution of {No, Nl, ..., NT} 

under various behavior models. 

Approximating the actual distribution of {No, 
Nl, ..., N7} by similar distributions whose 
parameters can be reasonably estimated. 

Evaluating the statistical ^properties of the 
derived estimators, that is, N and V ar (/~), by 
using simulations. 
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