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A b s t r a c t :  

Some survey questions provide respondents with a 
list of possible answers and instructions to "mark 
all that  apply." This paper presents methods for 
determining when the responses to a mark-all- that-  
apply question are associated with the responses to 
a standard question whose answers fall in one of sev- 
eral mutually exclusive categories. Such data  origi- 
nate from many sources including large-scale social, 
political, and economic surveys; work place stud- 
ies; market research; and health care analyses among 
others. Recent approaches to the problem are briefly 
reviewed, a related alternative procedure proposed, 
and extensions that  allow for the proper analysis 
of multiple-response data  collected through complex 
sampling are suggested. 

1 I n t r o d u c t i o n  

Loughin and Scherer (1998) consider testing for as- 
sociation with multiple-response data. They study 
a survey of 262 Kansas livestock farmers who were 
asked to specify their education level (1. high school 
or less, 2. vocational school, 3. two-year college, 4. 
four-year college, or 5. other) and primary sources of 
veterinary information (1. professional consultant, 
2. veterinarian, 3. state or local extension service, 
4. magazines, and 5. feed company representatives). 
The 262 f a r m e r s -  who were instructed to mark one 
education level and as many information sources as 
appl icable-  provided 453 responses to the veterinary 
information question. The survey researchers were 
interested in determining if the proportion of farm- 
ers using each information source is constant across 
varying levels of education. 

In general, suppose X is a categorical random 
variable with I levels and Y - (Y1, . . . ,  yj)! is a 
random vector of binary responses, i.e., Yj E {0, 1} 
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for all j = 1 , . . . ,  J.  Suppose we have n independent 
observations, 

{(Xk, Y~)' - (Xk, Yk l , . . . ,  YkJ)')k=l .... ,,~, 

from the joint distribution of X and Y. The vector 
Y can take any of 2 J values, in general, or any of 
2 J -  1 values when ( 0 , 0 , . . . ,  0) / is not a valid re- 
sponse. For i = 1 , . . . ,  I and j = 1 , . . . ,  J; let mij 
denote the number of observations for which X = i 
and Yj = 1. In the survey of livestock farmers, I = 5, 
J = 5, Xk takes value i if the kth farmer reports ed- 
ucation level i, and Ykj would be coded as 1 if the 
jth information source is selected by farmer k and 0 
otherwise. The count ~Zij is simply the number of 
farmers who report education level i and indicate in- 
formation source j among their sources of veterinary 
information. The complete livestock farmer survey 
data  can be found in Loughin and Scherer (1998). 

Loughin and Scherer consider testing 

J Hoj against Hi " U j J _ = I H l j  (1) H0 -- ('lj= 1 

where, for j = 1 , . . . ,  J; 

Hoj: P ( X  = i, Yj = 1 ) =  P ( X  = i)P(]~ = 1) 

for all i = 1 , . . . ,  I and 

Hlj : P ( X  = i, Yj = 1) # P ( X  = i)P(Yj = 1) 

for some i. The null hypothesis H0 is equivalent 
to "X is independent of Yj for all j = 1 , . . . ,  J." 
Agresti and Liu (1999) refer to this null hypothesis 
as the hypothesis of multiple marginal independence 
which is conveniently abbreviated MMI. The alter- 
native hypothesis H1 is equivalent to "X and Yj are 
associated for at least one j E { 1 , . . . ,  J}." 

Recent approaches to testing MMI are sketched in 
Section 2. As indicated by Agresti and Liu (1999), 
a problem common to many of these proposals is a 
lack of invariance to the coding of 0 and 1 values in 
the components of Y. For example, it is possible for 
a procedure to suggest a departure from MMI when 
positive responses are coded as 1 but agreement with 
MMI when positive responses are coded as 0. This 
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problem is examined in detail in Section 3, and a 
simple invariant test statistic given by the sum of 
the J Pearson chi-square tests of independence be- 
tween X and each Yj is proposed. The asymptotic 
null distribution of the proposed statistic is derived 
in Section 4, and a simple procedure for carrying 
out an approximate test is developed. Extensions of 
these results that  include the analysis of multiple- 
response data collected through complex sampling 
are mentioned in Section 5. 

2 P r e v i o u s  W o r k  

Loughin and Scherer (1998) develop a bootstrap pro- 
cedure for testing MMI based on the modified chi- 
square statistic: 

I d _ F i j ) 2  

xl, - E E (m j 
i=1 j = l  

where Fij = n im+j  / n  

and ni denotes the number of observations for which 
X - i and m+j - >-]/=1 rnij. A with-replacement 
sample of size n is drawn from the observed data, 
X 1 , . . . ,  X,~. Likewise, a with-replacement sam- 
ple of size n is drawn from the observed vectors, 
Y1 , . . . ,Y ,~ .  The two samples are randomly paired 
and a bootstrap replication of X~t is computed with 
the resampled data. This process is repeated B 
times and the significance of the observed statistic 
is determined by comparison to the distribution of 
bootstrap values. A p-value, for example, is esti- 
mated by the proportion of bootstrap-replicated test 
statistics that  exceed the observed statistic. Loughin 
and Scherer apply the modified chi-square testing 
procedure to the data  from the survey of livestock 
farmers. The modified procedure provides signifi- 
cant evidence of association with an estimated p- 
value = 0.047 based on B = 5000). 

Umesh (1995) considers the analysis of multiple- 
response data  on gender and automobile preference 
using a "pseudo chi-square statistic". This pseudo 
chi-square statistic - which is equal to Loughin 
and Scherer's X 2 - is computed with observed 
data and compared to a. chi-square distribution with 
(I - 1)(J - 1) degrees of freedom. Umesh (1995) 
cautions that  the chi-square approximation is not 
valid since the multiple responses of a single indi- 
vidual are not independent of each other. Loughin 
and Scherer (1998) show that  X ~  is distributed as 
a weighted sum of independent chi-square random 
variables with weights that  depend on the unknown 
joint distribution of X and Y under independence. 
Loughin and Scherer (1998) also provide an exam- 
ple that  shows that  Umesh's procedure can be very 

conservative. 
Agresti and Liu (1999) discuss of variety of pro- 

cedures for testing MMI including fitting general- 
ized loglinear models of the type considered by Lang 
and Agresti (1994), a generalized estimating equa- 
tion approach based on the work of Liang and Zeger 
(1996), the weighted least squares method of Koch, 
et al. (1977), a likelihood ratio or Pearson chi-square 
test, and a Bonferroni approach. These approaches 
use approximations of the test statistic's null distri- 
bution based on asymptotic results. Agresti and Liu 
(1999) note that  Loughin and Scherer's bootstrap 
procedure is appealing because no asymptotic ap- 
proximation is necessary. They point out, however, 
that  resampling is done under the null hypothesis of 
independence between X and Y which is narrower 
than the MMI null hypothesis. 

Decady and Thomas (1999) consider testing 

J H l j  H0 - ["lJ= 1Hoj  against Hi " I.-Jj= 1 

where, for j = 1 , . . . ,  J; 

Hoj : P (Y j  = 1 I X = i ) =  P (Y j  = 1) 

for all i = 1 , . . . ,  I and 

H i j :  P(Yj = 1 I X = i) 7(= P(}5 = 1). 

This testing problem is similar to a test of MMI but 
different in that  the analysis focuses on the condi- 
tional distribution of Yj given X, rather than the 
joint distribution of Yj and X. MMH (for multiple 
marginal homogeneity) will be used to refer to this 
null hypothesis. 

Decady and Thomas (1999) a t tempt  to find a 
method of testing MMH that is computationally 
simpler than the bootstrap approach of Loughin and 
Scherer and the generalized-loglinear-model meth- 
ods described by Agresti and Liu. They emphasize 
the need for methods of analysis that  can be applied 
easily by practitioners to data  that  has been sum- 
marized from its raw form, 

{ ( X k , Y ; ) '  - (Xk ,Yk l , . . . ,Yk j ) ' }k= l  ..... ,~, 

to count data, '1-~, i and mij  (i = 1 , . . . ,  I; j = 1 , . . . J ) .  
Methods for analysis of count data  are necessary, 
Decady and Thomas argue, because the sparseness 
of observed Y data  in the 2J-dimensional set of pos- 
sible responses can lead to failure of the asymptotic 
approximations used in the direct analysis of the raw 
data. In addition, multiple-response data  is typically 
published in summarized form and raw data  is often 
publicly unavailable. 

Decady and Thomas (1999) advocate a test of 
MMH based on a first-order Rao-Scott correction to 

493 

, : . ,  



X ~  (see Scott and Rao, 1981; Rao and Scott, 1981, 
1984, 1987). The corrected test statistic is given by 

X ~ / ( 1  

I J 

m++)  where m + +  - - E E ? T z i j .  
n J  ' 

i - 1  j = l  

Significance is assessed by comparing the corrected 
statistic to a chi-square distribution with ( I -  1) J de- 
grees of freedom. This chi-square distribution often 
serves as a reasonable approximation to the distri- 
bution of the corrected test statistic under MMH, 
and the procedure should prove useful when com- 
putation must be kept to a minimum, raw data is 
unavailable, or sparseness issues in the raw data call 
into question the appropriateness of asymptotic ap- 
proximations used in more complex procedures. The 
main drawback to this approach is a lack of invari- 
ance to the coding of the Y data discussed in the 
next section. 

3 I n v a r i a n c e  I s s u e s  

Agresti and Liu (1999) argue that  a good procedure 
for testing MMI should be invariant to whether Zkj 
is coded as 1 if the j th  item is selected by the kth 
individual and 0 otherwise as opposed to 0 if the j th  
item is selected by the kth individual and 1 other- 
wise. Such invariance is clearly a desirable property 
since Yj is unassociated with X for all j = 1 , . . . ,  J 
if and only if 1 - 1~ is unassociated with 1 - Yj for 
all j = 1 , . . . ,  J.  It is easy to show that  none of the 
procedures mentioned in Section 2 based on the X ~  
statistic possess the invariance property. 

The statistic X ~  is closely related to the sum of 
the J Pearson chi-square statistics for testing the 
independence of X with }'~i (J = 1 , . . . ,  J).  For i =  
1 , . . . ,  I; j = 1 , . . . ,  J; and ~ = 0, 1; let Ciej denote 
the i, gth cell count in the I x 2 contingency table 
corresponding to the cross classification of X and 
Yj. Let Eiej denote the expected count (assuming 
independence of X and Yj) for the i, ~th cell in the 
j th table, i.e., 

Eiej = 
Ci+jC+i.j 

C++j 

I 
w h e r e  Ci+j - Cioj + Ci l j ,  C+gj - E i = I  Ciej, a n d  

C++j - }-~i l i (Cioj  + Ci l j ) .  Note that  Cii j  - mi j  
and Ei l j  - Fly. Thus, 

I J 

i=1 j = l  Ei l j  

J I 

__ -- j ~ l  C+°J i ~ 1 C + + j ( c i l j - E ' i l j ) 2  
._ C++j .= C+ojE, ilj  

J I 2 

• _ C++j ._ _ Eiej 

J 
2 

=  05x 5 , 
j = l  

(2) 

where 7)j is the proportion of observations for which 
1 ~  - 0 and X~ is the Pearson chi-square statistic for 
testing the independence of X and Yj. 

Let X ~ I  denote the modified chi-square statistic 
computed with the original data, and let X~u 0 de- 
note the statistic computed with 1 - Ykj in place of 
Ykj for all k -  1 , . . . , n ;  j -  1 , . . . , J .  Since X~ is 
invariant to recoding of the Y data, expression (2) 
implies that  

J 

Xgio - Z ( 1 -  oj)x  
j - 1 

and 
J 

j--1 

(3) 

In view of these relationships, it seems logical to base 
2 - -  J 2 a test of MMH on Xsu M ~ j = l  X j .  The statistic 

is invariant to the coding of the Y data  and provides 
an intuitive measure of the degree to which the data 
depart from MMH. Agresti and Liu (1999) compute 

2 
X S U  M - -  5.96 + 7.89 + 4.62 + 1.42 + 10.95 - 30.84 

for the veterinary data. Since each X~ term in the 
sum has an asymptotic chi-square distribution with 
degrees of freedom ( I -  1) = 4 under MMH, they 

2 compare the observed value of Xsv M to the chi- 
square distribution with ( I -  1)J = 20 degrees of 
freedom to obtain 0.06 as an approximate p-value. 

2 Of course X 1 , . . . ,  X~ are dependent, so Xsv M is not 
asymptotically chi-square with ( I -  1)2 degrees of 
freedom under the null. Realizing this, Agresti and 
Liu label the approach naive but note that  the ob- 
served test statistic for the veterinary data  (30.84) is 
quite similar to legitimate 20-degree-of-freedom chi- 
square statistics obtained through more computa- 
tionally complex maximum likelihood methods. The 
work of the next section explains why comparing 

2 Xsv M to a chi-square distribution with ( I -  1)J is a 
reasonable procedure supported by asymptotic the- 
ory. 

T h e  A s y m p t o t i c  N u l l  D i s t r i b u t i o n  

o f  X ~ U  M 

Following the notation of Decady and Thomas 
(1999), let 7-3. - P(Yj - 1 ) a n d  rij - P (Y j  - i I 
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X = i). Let "~j = rn+ j /n  and "hj = rn i j /n i  denote 
the corresponding sample estimates. Use r/in place 
of r to represent the Y) = 0 quantities. For example, 
Oj = ( n i -  rn i j ) / n i ,  the proportion of observations 
for which Y) = 0, as in the previous section. The 
definitions of X~0  and X21  along with expression 
(3) imply  

2 
X S U M  

I J 
= 

i=1 j = l  T]j 

I J 

i=1 j--1 ' 3  

= . ) ' i ' -1~ ,  

where ~ is a 2IJ-dimensional  vector with elements 

- 

and 
{X/f~-/(hj  --  7"j)}i=1 .... , I ; j = l , . . . , J ,  

and I" is a 2 I J  x 2 I J  diagonal matr ix  with diagonal 
elements 

~h, . . . ,  7) j , . . . ,  7h , . . . ,  7)j, ÷1, . . . ,  ÷ J , . . . ,  *1 , . . . ,  eJ. 

Note that  under MMH, ~/converges in distribution 
to a multivariate normal distribution with mean 0 
and rank ( I -  1)J variance-covariance matr ix E that  
has diagonal elements 

{(1 - 7ri)r/j (1 - r/j)}i=l .... , I  ; j =  l , .  . . , J  

and 
{ ( 1 -  7ri)wj ( 1 -  T j ) } i ~ -  1 . . . .  ,I;j=l,...,J 

where 7ri is the limit of n i / n  that  is assumed to exist 
for all i. Also note that  I '  converges almost surely 
to a diagonal matr ix  F with nonzero elements 

q l  , . . . , ? ] d ,  . . . , l ] l ,  . . . , l ] d ,  7 " l  , . . . , T j ,  . . . , 7 " 1 ,  . . . , 7 " j  

2 so that,  under MMH, X S U  M converges in distri- 
bution to the distribution of U~F-1U,  where U 
is multivariate normal with mean 0 and variance- 
covariance matr ix E. The following lemma leads 
to a useful characterization of the distribution of 
U / F - 1 U .  (For proof see page 36 of Mathai and 
Provost, 1992, for example.) 

L e m m a .  Suppose U ~ Nv(0 , E),  where E = B B '  
for  B, a p x r matr ix  o f  rank r. Let F be a 
p x p s ymmet r i c  matr ix  of  rank p. Then U~F-1U 
is distributed as ~-~t=l AtWt ,  where At are the 
nonzero eigenvalues o f  B~F -1B and WI , . . . , W~ 

are independent  and identically distributed single- 

degree-@freedom chi-square random variables. 

If we let B denote a 2 I J x  ( I -  1)J matr ix  such that  
BB '  = E, an application of the lemma shows that,  

2 under MMH, Xsu M converges in distribution to 
( I - 1 ) d  

~-~.t=l AtWt where A1, . . . ,  A(I-1)j are the nonzero 
eigenvalues of B ' F - 1 B  and W 1 , . . . ,  W(I-1)j  are in- 
dependent and identically distributed single-degree- 
of-freedom chi-square random variables. This 
asymptotic null distribution could be approximated 
through simulation. Estimates of r l , . . . ,  ra and an 
estimate of E could be used to obtain estimates of 
the eigenvalues, say A1,. . . , .~(I-1)a.  Observations 

( I - 1 ) J  from the conditional distribution of ~ t = l  At l/l/t 

given AI , . . . ,A( I -1 ) J  could be used to approximate 
the asymptotic null distribution and assess the sig- 

2 nificance of Xsw M. Such simulation approaches are 
seldom popular with practitioners, and a simpler and 
faster approach is desirable. 

An alternate strategy is to consider a first-order 
2 Rao-Scott correction to Xsu M of the type used by 

Decady and Thomas (1999) for the X ~  statistic. 
Note that  the average of A I , . . . ,  A(I_I)j is given by 

t r ace (B 'F-~B)  t r a c e ( r - ~ E )  
( I -  1)J ( I -  1)J 

~2(=1EsJ_-,( 1 - ~g)(1 - vj + 1 -  r~) 
( I -  1)J 

- - 1 .  
( ! -  1)a  

Thus, the Rao-Scott correction factor in this case is 
2 1. It follows that  Xsu M has an asymptotic null dis- 

tribution that  is approximately chi-square with ( I -  
1)J degrees of freedom whenever there is not large 
variation among the eigenvalues A1, • •., A(I_I)j. 
This suggests that  the naive procedure that  com- 

2 pares Xsu M to a chi-square distribution with ( I - 1 ) J  
degrees of freedom is actually a reasonable method 
of obtaining an approximate test of MMH that re- 
quires only summarized count data and simple com- 
putation. 

5 D i s c u s s i o n  

A simulation study conducted by C. R. Bilder 
2 (manuscript in preparation) indicates that  the Xsu M 

test exhibits type I error rates close to nominal in 
a wide variety of situations. There are cases where 
the test is too liberal, and further study is needed 
to characterize situations in which the test is unre- 
liable. A second-order Rao-Scott correction should 
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be considered as a possible means of improving the 
test's performance. An investigation of the power of 
the test for various alternatives is also needed. 

There are clearly limitations to the Xsu M test, but 
2 it possesses a many positive features. The Xsu M test 

is a simple function of chi-square statistics that are 
familiar to practitioners and requires little compu- 
tational sophistication. The test can be conducted 
with count data that is more likely to be available 
in secondary analysis than the raw data required by 
many other procedures. The distribution of Xsu M 
may be approximated by its asymptotic distribution 
for smaller sample sizes than are required by more 
complex procedures that make more complete use of 

2 the data. Xsu M should behave like a weighted sum 
of independent chi-square random variables when 
there is not sparseness in any of the tables cross- 
classifying X and ~ (j = I , . . . ,  J). When the 
hypothesis of MMH is rejected, the individual chi- 

2 square statistics that are summed to obtain Xsu M 
can provide specific information about which com- 
ponents of Y are associated with X. 

2 The Xsu M test can be extended to the analysis 
of data collected through a complex sampling de- 
sign. The first-order Rao-Scott correction factor is 
no longer 1 for complex sampling designs, but con- 
sistent estimates of the variances of the elements of 
x/ under MMH are the only variance estimates re- 
quired. For all i = 1 , . . . ,  I; j = 1 , . . . ,  J; let ~ij and 
~ij denote consistent estimates (under MMH) of the 
variance of x/~(r)ij - Oj) and x/~(~'ij - i-j), respec- 

2 tively. The first-order Rao-Scott corrected Xsu M 
statistic is given by 

2 ~-,iI1 Y'J~jJ=I (~ij/iIj + i~ij / i'j ) 
XSUM, where ~ . -  

2 The XSU M test can also be extended to situations 
in which Yj is a categorical variable with kj cate- 
gories (j = 1 , . . . ,  J). As an example, one might 
wish to test whether the distribution of responses 
is the same for males and females for all the ques- 
tions of a test that contains several multiple choice 
questions, each with a potentially different number 
of possible answers. Extensions that allow for the 
analysis of this type of data collected through com- 
plex sampling designs are also possible. 
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