
BUSINESS OBJECTS AND THE CORPORATE METADATA REPOSITORY

Gregory J. Lestina, Jr., Daniel W. Gillman
Gregory J. Lestina, Jr., U.S. Bureau of the Census, Washington, DC 20233

Key Words: metadata, object-oriented, Java,
ODBMS, database, CORBA, object model

Introduction

As the year 2000 approaches, organizations
have been preparing for possible effects on their
computer operations. Organizations also need to
look beyond 2000 and perhaps understand what
changes will take place in software development that
will affect information processing for statistical and
scientific systems. In 2005, for example, we must
ask ourselves what new technologies will help us
collect and display statistical data. How can we
improve our existing software and computer systems
to provide statistical information more easily and less
costly? Certain leaders in the technology field
believe that organizations will concentrate on
developing network capacity and connections,
accommodate the communications needs of mobile
workers, and design more object-oriented
applications to improve operations (Burden, 1999).
If these areas prove successful in 2005 we may see
more data collection being done using smaller hand-
held computers and transmitted by wireless
technology. Statistical processing software may be
object-oriented, that is, software will need to be
written once and then reused on a number of other
applications. This paper discusses our experiences
and possible impacts that object modeling and design
have on the Census Bureau corporate metadata
repository.

Statistical Metadata is descriptive information or
documentation about statistical data, i.e. microdata
and macrodata. Statistical metadata facilitates
sharing, querying, and understanding of statistical
data over the lifetime of the data.

The two types of statistical data (electronic or
otherwise) are described as follows (see Lenz, 1994):

Microdata - data on the characteristics of units
of a population, such as individuals, households,
or establishments, collected by a census, survey,
or experiment.
Macrodata - data derived from microdata by

statistics on groups or aggregates, such as
counts, means, or frequencies.

The extensive nature of statistical metadata
lends itself to categorization (see Sumpter, 1994)
into three components or levels:
_ Systems - the information about the physical

characteristics of the application's data set(s),
such as location, record layout, database
schemas, media, size, etc;
A p p l i c a t i o n s - the informat ion about the
application's products and procedures, such as
sample designs, questionnaires, software,
variable definitions, edit specifications, etc;
Administrative - the management information,
such as budgets, costs, schedules, etc.

Object Analysis

The Corporate Metadata Repository

The Census Bureau Corporate Metadata
Repository (CMR) was conceived in 1994 and was
implemented in 1997. It is a relational database that
contains statistical metadata for Census Bureau
surveys, censuses, and projects. It is a repository of
statistical metadata, pointers to metadata (such as
documents or images), and pointers to data. The
CMR contains statistical metadata that describes
survey designs, processing, analyses, and data sets
for all the surveys the Census Bureau conducts.
Using detailed models to organize the metadata
allows users to find specific types of information or
to compare similar kinds of information about
surveys, documents, products, variables, and data
sets. Generally, metadata is loosely defined as "data
about data" or "information about information".
Such a definition is somewhat imprecise and leads to
confusion. The Census Bureau has therefore
explicitly defined statistical metadata to distinguish
it from statistical data (Gillman, Appel, 1997):

Object analysis is a way of modeling an
organization or describing its business processes.
Like relational modeling, a systems designer needs
to first identify the business processes in the
organization. Then the designer identifies what real-
life or business objects exist in these processes. For
example, the Census Bureau collects, analyzes, and
disseminates data. The business objects that carry
out these processes include surveys, data elements,
questionnaires, datasets, and documents. A business
object, such as a survey, may be created or deleted or
updated. The act of creating a survey is an operation
or method of a survey object. Below are some more
precise definitions of terms used in object and
relational design (Lestina, Gillman, Appel, 1998):

Object - A n object is "an identifiable, self-
contained unit, which is distinguishable from its
surroundings". It can be described by a set of
attributes (properties) "and a set of operations
which defines its behavior" (Dabrowski, Fong,
Yang, 1990).

This paper reports the results of research and analysis undertaken by Census Bureau staff. It has
undergone a more limited review than the official Census Bureau publications, this report is released to
inform interested parties of research and to encourage discussion.

427

Business Objec t - An object that models a real-
world entity (Orfali, Harkey, Edwards, 1996).
Instance - A n occurrence of an object
(Dabrowski, Fong, Yang, 1990).
Method - A function, operation, or procedure
within an object that performs specified actions.
Methods send and receive m e s s a g e s (e.g., the
name of the object and the name of the
arguments being passed) which allow objects to
communicate with one another.
Class - A genetic description of an object

~mLi~
immttkr~

I ,

" l~lar~-dl v~lun

• I '~ 'L~a"-~tl ~ , , m ~.v~
1~ ~ dtrmin

da Figtre L Objea Modd using UML r~t~ion

consisting of instance variables and methods
(Dabrowski, Fong, Yang, 1990).

Inheritance -The ability for objects to acquire
methods and attributes from one or more
classes.

Table - In a relational database, a table is a two- m
dimensional data structure that holds data. It is
comprised of rows and co lumns (Cheu, Linden,
1990).
Row - In a relational database, a row represents
one occurrence of an entity (e.g., employee)
represented by the table (Cheu, Linden, 1990).
Column - I n a relational database, a column
represents one attribute (e.g., salary) of an
entity.
Referential Integrity - T h e property that
ensures specific relationships between tables are
maintained.

Object-oriented computer languages such as
C++ or Java are designed so that a user can write
code that implements the objects and classes in an
object model. Object-oriented languages work in
such a way that once an object is defined or created,
the code can be reused in applications around the
organization. That is, the code used to define a
survey object used in one application can be used in
another application or extended without extensive
modification. By reusing objects, developers will
find it much easier to develop applications that
design tables and charts, produce datasets, and
access detailed information.

Object-oriented design can be extended to
include the idea of having business objects (e.g. a
questionnaire object) being transmitted from system
to system to interact with, say, a document object.
These distributed objects allow computer
applications to be accessed across operating systems
and perform their assigned tasks no matter what
platform or system the object is on. Because Web
applications typically access many different

t
~ I:lmm~ :... ~.3. ~:i-~.J~-::

ll~l.Sl~OrlUll:l~~[.~"::!...!.!., i. " ..2i-: " [-'[~ ~ }

s ~

F~xe z ~ ~ tung n~ntrn~xaip ~

platforms and many different databases, distributed
objects would theoretically make Web development
and access much easier. Advancements in this
technology have been made possible by emerging
standards such as CORBA (Common Object
Request Broker Architecture), Microsoft 's
O L E / C O M (O b j e c t L i n k i n g a n d
Embedding/Common Object Model) and OpenDoc
(Orfali, Harkey, Edwards, 1996).

Census Bureau Objects and Classes

The Census Bureau has redesigned a section of
its Corporate Metadata Repository model from a
relational design to an object design. The purpose of
this redesign was to put object modeling into
practice, write software based on the model, and then
build a prototype application to demonstrate the
utility of object-oriented methods. This prototype
application creates survey, questionnaire, question,
data element, and response choice objects and allows
a user to browse through a Web application to obtain
useful information pertaining to the relationships of
these objects. For example, a user would be able to
browse all the questions for a particular
questionnaire and the data elements for a particular
question on a questionnaire.

Our experience from creating a relational
model for the CMR helped us in defining the classes,
objects, and attributes in the object model (see Figure
1). For example, a survey is an entity in the
relational model (Figure 2) and it is defined as a
class in the object model.

428

By comparing the two models, there is a
similarity in meaning between a table in a relational
schema and a class in an object schema. Likewise,
a column in the relational model is analogous to an
object's attributes.

But this is where the similarities end. The
relational model describes the world as two
dimensional, that is, the attributes of real-world
entities such as a Questionnaire are stored as rows
and columns. The object model, however, describes
real world entities such as Questionnaires as entities
that have responsibilities. That is, not only are the
attributes of a Questionnaire stored in an object
model, but the methods describing the
responsibilities of a Questionnaire are also stored.
For example, in Figure 1, a Questionnaire object has
responsibility for Question objects. Responsibility in
this context means that a Questionnaire object
defines what Question objects it accesses and
therefore has control over the methods that access
Question objects. Conversely, a Question object
does not have responsibility for what Questionnaires
it is associated with, but does have responsibility for
the Data Elements it accesses. A separate
relationship may need to be created for Question
objects to access Questionnaire objects. The object
model implements these relationships by using
pointers directly from the object-oriented
programming language. The relational model
implements these types of relationships by the use of
foreign keys, intersection tables, and table
constraints through SQL.

There are other implications that can be derived
from modeling the CMR as business objects. A
document object, for example, can be thought of as
a composition of word objects and heading objects.
These components can be used to perhaps create new
documents electronically or to classify existing
documents by just accessing the components. By
using components, a questionnaire can be designed
electronically by obtaining the correct question and
response choice objects and adding them to a
template. Similarly, publication tables and datasets
can be created by implementing data element objects.

Obvious differences between the models include
the fact that the object model has no intersection
tables and therefore allows many-to-many
relationships between classes. In object modeling,
many-to-many relationships are handled through the
programming language rather than in a database.
Object-oriented languages allow the developer to put
instantiated objects from the same class in a
"collection" or a logical grouping of objects (similar
to arrays in C language). Java or C++ objects use
collection classes such as Vector, Hashtable, and
Dictionary to store and index a collection of objects.
Storing collections for future use may be tricky if
using a relational database. The developer would
have to add SQL code to his or her application to
store the objects. The attributes of each object would
need to be mapped to the rows and columns of the
database.

The easiest way for objects to be stored in a
database is through an object database management
system (ODBMS). Instead of having to take

objects apart to store them, objects are stored using a
traditional object-oriented language. There is no
intermediary language needed such as SQL. Objects
are made "persistent", that is, they reside on the
database server until someone wishes to delete them.
To access objects, developers use the methods in the
collection classes in the traditional object-oriented
language. Such programming eliminates the extra
programming effort of accessing data through SQL
using complicated table joins. An ODBMS provides
tools for managing and viewing objects in a database.
They also provide query classes for accessing objects'
attributes. ODBMS's provide many of the
administrative features of relational databases such as
transaction protection, performance issues, referential
integrity, and backup and restore capabilities. The
Object Database Management Group (ODMG) is the
standards organization that administers ODBMS's.
The ODMG-93 standard suggests ways that ODBMS
vendors can define their databases to have common
functionality.

Distr ibuted Objects
One of the intriguing things about business

objects in an object-oriented environment is the
promise that business objects can access other objects
across networks and participate in applications on
different platforms. This means that a computer
application doesn't need to know what operating
system it is working with or what language an object
was written in. Users can theoretically access
applications without seeing what is going on in the
background. Therefore, it is possible that data from
non-object-oriented language such as COBOL could
access business objects from a metadata repository
application written in Java. COBOL applications that
provide data entry could communicate with C++
programs that produce reports and store datasets.
CMR applications could access large amounts of
legacy metadata on separate computer systems
without asking people to rewrite or convert code.

To achieve such interoperability, a standards
organization called the Object Management Group
(OMG) has been working on the problem. The OMG
has over 500 members (Orfali, Harkey, Edwards,
1996) and is the largest standards organization in the
world. It has been working on the Common Object
Request Broker Architecture (CORBA) since 1989 to
allow business objects gain access to legacy
information on different systems in different
programming languages. CORBA defines at least 16
computing services that provide a common way for
applications and objects to communicate (Orfali,
Harkey, Edwards, 1996). Products that provide
CORBA-compliant middleware (additional software
that allows the client and server to communicate) must
follow strict rules about how applications are prepared
and how objects are transmitted in a CORBA
environment.

Currently, there is commercially available
CORBA-compliant middleware for several languages
including Java, C++, and COBOL. That is, by using
CORBA middleware, we would be able to access

429

applications written in Java, C++ or COBOL without
being concerned about what platform the
applications are on.

For example, suppose we are interested in
obtaining information from a dataset created by an
application written in COBOL. We could of course
log on to the system that has this information and run
the application that creates this dataset. But more
often a user or researcher who needs this information
does not know where it is or how to get it. The user
is more concerned about getting the information
rather than knowing how or where it was obtained.
To access information from an existing COBOL
application residing on a remote server, CORBA
middleware can be used to make calls from an
application (written in, for example Java) on the
client computer which has the ability to access the
COBOL application on the remote server. Such
interoperability allows existing applications to
communicate with one another, making data access,
in theory, much simpler. This section of the paper
gives a general description of the components of
CORBA middleware and how it may work in a
statistical application.

CORBA middleware consists of an Object
Request Broker (ORB), Common Object Services,
and Common Facilities that provide the
interoperability of your business objects. Below are
definitions of some basic elements of the CORBA
architecture (Orfali, Harkey, Edwards, 1996):

Client - a computer that makes requests to or
m

consumes a service on another computer.
S e r v e r - an application or computer that shares
resources or provides services to other
computers.
I n t e r f a c e Def ini t ion L a n g u a g e (IDL) - a
subset of C++ that defines objects, attributes,
methods, and parameters in a client/server
application. It is a specification language only
and only references compiled code.
Stub - an application written in IDL that
defines how the client sends requests and
invokes methods on the server application.
S k e l e t o n - an IDL application on the server that
processes and returns requests from the client
application.

_ Object Request Broker (ORB) - software or
middleware that receives messages from a stub
application, determines a server application that
can process the messages, and sends the
messages to the corresponding skeleton
application.
C o m m o n Object Services - IDL applications
that assist and complement the functions of the
ORB.
C o m m o n Facilities - IDL applications that
assist and complement the business objects.

Interface R e p o s i t o r y - a built-in database that
contains metadata that describe stubs, skeletons,
and implementations.

Probably the most important aspect of the
CORBA architecture is the Interface Definition
Language (IDL). It is a computer language that looks
very similar to C++ and specifies the interfaces used
in a CORBA application. To implement CORBA
services, the programmer creates interface files that
describe the methods and objects used in the entire
application. The programmer then compiles the IDL
descriptions to create the client stubs and server
skeletons. Stub code allows a client application to
send calls or arguments to CORBA objects on the
server. The skeleton code creates CORBA objects
that allow the client and server applications to
communicate. IDL, then, is the standard language
used to allow applications written in different
languages to communicate on remote servers.

To build a CORBA application that accesses data
elements from a dataset produced from a COBOL
application, the programmer would first need to create
an interface definition file. The interface definition
file only gives a description of the classes and
methods used in the CORBA application. Below is a
sample interface definition file that may be used for
accessing certain data elements from a dataset:

module metadata {
interface data_element {

String getName();
};
interface dataset {

String getDatafile0;
};

The programmer then needs to create the code for
the client application and the server application. The
server application contains the code for executing the
original the need of the user, accessing datasets in this
case. The server application also needs to implement
the ORB and begin communication with the client
computer. Therefore, a call that instantiates the
skeleton classes is required in the server application.
The client application contains code for sending calls
to the server object (calling getName() or
getDatafile0 in the above example). It also
instantiates the stub classes which initializes the ORB
and establishes the communication network between
the client and the server. Figure 3 shows the elements
involved in compiling and executing a CORBA
application (Fowler, 1999 and Orbix 3 White Paper,
1999).

Probably the most important part of the
development process occurs when the client and
server applications are compiled. The compilation
process creates the stub and skeleton files for the

430

Client Flies Server Files

[c, nt j [J
Application Application

IDL

Declaratims

[Stub 1 [Skeleton I

Interface Repository I Interface Repository]

Figure 3. Sending Messages Using CORBA

client and server applications. Stubs and skeletons
are created on the client machine. The skeleton files
are then copied to the remote server. Once all the
applications are created on both the client and server,
all the applications need to be compiled and linked
together. If they are linked successfully, the ORB
service needs to be started on both the client and
server. The client then should access the server
application. This allows the data element and dataset
objects to be transmitted from the metadata
application (client) to the COBOL application
(server).

C o n c l u s i o n

Many statistical organizations have spent much
time and resources designing databases and
repositories that hold their data and metadata. These
databases communicate with applications that have
been developed years ago and are written in
languages that are rarely used to develop in today. It
can be very costly for a department to convert
software written in COBOL to Java or C++. Not
necessarily because of the man-hours to do the work,
but the risk involved in not converting the code to
precisely to meet computing requirements or the risk
of not having the experience to make all the changes.
For very large production systems, it is probably
very difficult to convert a relational system to an
object-oriented system.

But in large organizations, it is imperative that
legacy applications communicate with applications
currently being developed. OMG's CORBA
standard offers an opportunity to communicate with
legacy applications written in COBOL or C++ or
Java using ob jec t -o r i en ted technology .
Organizations have an opportunity to explore an
alternative to converting their legacy applications. It
may be a few years before CORBA products mature
and the technology penetrates the marketplace. But
in 2005, our need for object-oriented applications
will increase due to our need to move business
objects across the Web.

R e f e r e n c e s

Burden, Kevin, "Tomorrow's IT: The
Technology", Computerworld, April 12, 1999,
pp. 68-69.
Cheu, D., Linden, B., SQL Language Reference
Manual, Version 6.0, Oracle Corporation, 1990.

_ Dabrowski, C., Fong, E., Yang, D., Object
Database Management Systems" Concepts and
Features, U.S. Department of Commerce,
National Institute of Standards and Technology,
Special Publication 500-179, April 1990.

_ Fowler, Kim, Java for Enterprise Systems
Development: Hands-On (Course Notes),
Learning Tree International, Inc., 1999, pp. 472-
5-1 to 472-5-40.

_ Fowler, Martin, UML Distilled, Addison Wesley
Longman, Inc., Reading, Massachusetts, 1997

_ Gillman, D., Appel, M., Building a Statistical
Metadata Repository, Second IEEE Computer
Society Metadata Conference, Silver Spring,
Maryland, September 16-17, 1997.

_ Lenz, H. J. (1994), "The Conceptual Schema and
External Schemata of Metadatabases",
Proceedings of SSDBM-7, pp160-165,
Charlottesville, VA, September 28-30, 1994.

_ Lestina, G., Gillman, D., Appel, M., The Role of
Object Databases in Accessing Metadata at the
Census Bureau, Joint Statistical Meetings, Dallas,
Texas, August 10-14, 1998.
Martin, J., Odell, J., Object-Oriented Methods: A
Foundation, PTR Prentice Hall, Englewood
Cliffs, New Jersey, 1995.

_ Orbix 3 White Paper, Iona Technologies, PLC,
April 1999.
Orfali, R., Harkey, D., Edwards, J., The Essential
Distributed Objects Survival Guide, John Wiley
& Sons, Inc., 1996, pp. 47-105.

_ Sumpter, R. M. (1994), "White Paper on Data
Management", Lawrence Livermore National
Laboratory document, 1994.

431

