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1. Introduction 

In many surveys, the finer details of the 
geographical sampling structures cannot be released to 
the public because of confidentiality concerns. For 
example, the National Health Interview Survey (NHIS) 
uses a state-level stratification and selects counties and 
metropolitan areas for the sample. If a state database is 
released, extreme care must be taken to ensure that the 
user cannot identify smaller geographical areas. If the 
geographical sampling structures are deleted, then 
confidentiality may be achieved, but the data become 
difficult to analyze using standard design-based 
methods. 

Recent work by Hinkins, Oh, and Scheuren (1997) 
has demonstrated that an inverse sampling algorithm 
may facilitate the dissemination and analysis of 
complex survey data. An inverse sample algorithm is a 
subsampling mechanism on the original sample data 
that generates a "new" sample that can be treated as a 
simple random sample from the population. Inverse 
sampling techniques may provide a useful means to 
allow the public to have access to micro-level National 
Center for Health Statistics (NCHS) data because the 
geographical identifiers would not be needed for the 
analysis from a simple random sample; a way would 
exist to estimate variances that would not require 
geographic data be retained. 

This paper is a progress report on how we intend to 
apply the inverse sample technique to a typical NCHS 
survey, the National Health Interview Survey. As will 
be evident, the presentation preserves much of the 
character of the original talk we gave in Baltimore. In 
particular, we have retained most of the headings in the 
transparencies used. 

For the talk there were seven slides and this is how 
we have organized these proceedings. We began by 
describing the talk's structure (Section 1). Then in 
Section 2 (Slide 2) we set out the analytic context that 
motivates our efforts. Section 3 addresses the conflict 
built into the need to create public use data sets that are 
valuable to researchers, while still affording the full 
confidentiality protection promised respondents. This is 
done specifically in terms of variance estimation for a 
multistage stratified area probability sample, like that 
for the NHIS (Section 4). The fifth part of the talk 

defines the approach we are using -- the particular 
application of an inverse sampling algorithm (Hinkins, 
Oh, and Scheuren 1997). How we intend to apply the 
inverse sampling algorithm approach to the NHIS is 
still being worked out but in the talk we provided some 
early ideas (Slide 6). Next steps, and there are lots of 
these, conclude the paper (Section or slide 7). 

2. Analytic Context 

On the slide used in the talk, we listed 3 topics that, 
taken together, defined our analytic context. These 
were (1) the role of government statistical agencies in 
free societies; (2) how important public use files are in 
achieving a statistical agency's role; and (3) the issues 
around preserving the analytic potential of the publicly 
available data -- while still preserving the 
confidentiality promised to respondents. The stage 
having been set, we ended this slide by applying the 
context developed to variance estimation in the NHIS. 

2.1 Role of Govemment. We take as given in a free 
democratic society, like the United States, that the role 
of a government statistical agency is to maximize the 
"openness" of its operations -- to the extent that this 
does not conflict with other equally held values, like 
keeping sacred the oaths made to respondents to 
preserve the confidentiality of any data respondents' 
entrust to the agency. It might be added that there is 
also an obligation to reduce such conflicts to the 
greatest extent possible so that confidentiality is not 
used as a shield against open access to data by 
organizations or individuals outside government. 

2.2 Public Use Files. For federal statistical agencies in 
the United States, since the early 1960's and the 
pioneering work of individuals like Jack Beresford and 
Joe Pechman, public use files have been one of the 
responses to achieving the goal of "openness." Last 
year at these meetings, there was a session on the 
possible need to modify current practice in releasing 
public use f i l e s -  to "morph" it. At least some of the 
speakers at that session (e.g., Mulrow and Scheuren 
1998) stressed that this need -- given the Intemet, 
advances in record linkage techniques plus the growing 
access electronically to data of all sorts, particularly in 
the private sector. 
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2.3 Preserving Analytic Potential. How to "morph" or 
change the data now being released so that it is 
generally safe is a topic well beyond the goal of this 
paper. Our task for the NHIS is the more limited one of 
describing how we intend to protect the analytic 
potential for calculating survey variances while still 
meeting the full confidentiality pledge given to NHIS 
respondents. It is only to this degree that we are going 
to describe how to do the needed "morphing." 

Don Rubin, among others, has advocated that 
wholly synthetic data be created (Rubin 1993). I 
believe we should follow his advice when and if it 
becomes practical. Indeed, we should try to make it 
practical as some already have (see Kennickell 1999). 
There are, however, partial solutions (like ours) that are 
worth considering. Even if our approach can be seen 
only as a stopgap, it may arguably be a useful stopgap. 

2.4 Variance Estimation. The issue in variance 
estimation on a public use file is that information on the 
nature of the sample selection must be provided, 
implicitly or explicitly, for design-based variances to be 
calculable. This information could be potentially 
identifying, especially in area probability designs, like 
the NHIS, where geographically linked information is 
essential to derive variance estimates. 

3. Confidentiality Protection in Area Probability 
Designs 

In the early days of public use file releases, the 
information needed to calculate variances was often 
just not provided. Sometimes, though, only obvious 
identifiers were removed, and deductively the primary 
sampling units (PSUs) in an area design could still be 
derived. These were the days, not that long ago, when 
PSU maps were on many office walls, including those 
of at least some of the authors of this paper. 

3.1 Recent Practice. Many surveys now employ 
replicates imbedded within the public use file that can 
be used to calculate variances. The Current Population 
Survey (CPS), for instance, has been doing this for 
some time. Effectively, the original geographic and 
other design information is being transformed into a 
series of replicates that each has been independently 
reweighted to estimate the total population. 

Consider the National Survey of America's Families 
(NSAF), for example, which now has released several 
public use files that allow researchers to calculate 
design variances using 60 specially weighted half 
samples (e.g., Leonard, Russell, and Scheuren 1999). 
These replicates are designed to be used with the 

generally available software package, Wesvar, to obtain 
variances. (See also Scheuren 1999.) 

3.2 Remaining Weaknesses. The replicate variance 
approach can still raise confidentiality concerns 
depending on the details of the underlying sample 
design. In an area probability design, like the NHIS 
(which does not now release replicates for variance 
estimation), the replicates might be chosen from all or a 
portion of a completely balanced set of half samples 
(e.g., McCarthy 1968). The replicates can be 
constructed by treating the design as having two 
primary sampling units (PSUs) per stratum for non-self 
representing PSUs. For self-representing PSUs, the 
secondary sampling units (SSUs) are divided up into 
the half sample replicates as well (as described in detail 
in Wolter 1984). 

3.3 Need for Further Changes. This would seem to be a 
good "solution" and it certainly helps greatly in 
preserving confidentiality. But it is possible to 
motivate why something more is needed and why an 
inverse sampling approach may offer another 
"solution" with conceptually both better confidentiality 
protection and better variance estimation properties as 
we l l -  a win-win, in fact. 

4. Balanced Half-Samples 

When Phil McCarthy, working as a consultant for 
the National Center of Health Statistics (NCHS), first 
laid out the theory of completely balanced half-sample 
replicates in 2 PSU per stratum designs, he made a 
great advance that all of those who have come after him 
have benefited from (McCarthy 1968). He, of course, 
was not trying to solve a confidentiality problem, even 
though one of the applications of his ideas, as we have 
seen, does at least partially do this. 

4.1 Remaining Confidentiality Problem. The remaining 
confidentiality problem depends on how many 
replicates are released on the public use file. Consider 
the possibility that the full completely balanced set of 
replicates is released. Then, select any sampled 
household and ask yourself, over all sets of half 
samples, what other households are always together 
with i t -  i.e., in the same replicate. It is only those in 
the same PSU. The records so grouped could be 
summarized and the summaries might first be 
compared to each other to put the self-representing 
PSUs back together by combining the SSUs. Then, the 
PSUs summaries could be compared to information 
from the previous census, say, to attempt to place the 
selected observations in a specific locale. If we already 
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know what state the observations are from, this might 
not be as hard as it might seem at first. Insider 
knowledge, like a list of sample PSUs, would, of 
course, greatly ease this challenge. We conjecture that 
in some cases at least, it might be possible to re-identify 
geography details, even without this aid. 

4.2 Grouping Half-SamPleS. Of course, public use files 
do not generally release the full set of completely 
balanced half samples. Just a subset of them is released 
- as, say, in the CPS. Releasing only a random subset 
(e.g., Gurney 1975) of the completely orthogonal half 
samples in the original McCarthy design, as seems to 
be the practice, affords an opportunity for protection of 
individual PSUs not available with complete balancing. 
This seems to be the way, for example, that the CPS 
replicates are set up (Fay, 1999). The replicates chosen 
are checked to see if the implicit disclosures possible, 
as described above, reveal geographic units that fall 
below the CPS disclosure rules. In the CPS these rules 
state that no geographic area of smaller than 100,000 
population can be revealed. 

4.3 Degrees of Freedom. Perhaps then there are no 
problems to be solved here. Just be careful when 
creating the half sample replicates. Well, this view is 
legitimate, at least to some extent, although we would 
argue that the choice of replicates can be messy and the 
fact that they may no longer be fully random is 
discomforting. 

There is another perspective that bears examination 
too and which motivated us as w e l l -  the loss in 
efficiency in estimating the variance that the failure to 
use a fully balanced set of samples entails. In the 
original paper that first introduced the inverse sampling 
algorithm (Hinkins, Oh, and Scheuren 1997), the claim 
was made (and a proof given) that inverse sampling 
variance estimates could potentially improve on even a 
completely efficient traditional approach, let alone one 
that used only a subset of the possible replicates. For a 
National survey estimate from the NHIS, considerations 
of efficiency might not be too important but at the state 
level they could be a major issue, especially in a small 
state with only a few PSUs. 

In the next section (Section 5) we introduce inverse 
sampling algorithms and in Section 6 sketch how we 
will apply the algorithm to the NHIS. 

5. Inverse Sampling Algorithms 

Hinkins, Oh, and Scheuren (1997) introduce a way to 
invert many complex sample designs so that simple 
random subsamples are produced. The approach is to 
resample the complex sample to obtain an easier to 

analyze data structure. Because any given resample is 
unlikely to contain all the information in the original 
survey, the original complex sample is repeatedly 
resampled. 

These "inverse sampling" algorithms, when feasible, 
make it possible to employ conventional techniques, like 
regression and contingency table analysis, with only 
minor adjustments. Taken together such subsamples can 
be nearly as efficient as the original sample. In this sense, 
the resulting data sets are "design-flee," since the original 
complexity of the selection process no longer stands in 
the way of the full use of standard tools. We also believe 
that, as has been mentioned, they have potential for 
preserving confidentiality at the same time as they 
achieve analytic goals. 

5.1 Basic Approach. Notice some things that this 
approach is -- and is not: First, it is extremely computer 
intensive. Second, it presupposes that practical inverse 
algorithms exist (which may not always be the case). 
Third, it also assumes that the original power of the full 
sample can be captured if enough subsamples are taken, 
so that no appreciable efficiency is lost. Fourth, as much 
as it may resemble the bootstrap (Efron, 1979), we are 
not doing bootstrapping. There is no intent to mimic the 
original selections, as would be required to use the 
bootstrap properly (e.g., McCarthy and Snowden, 1985) 
-- just the opposite; our goal here is to create a totally 
different and more analytically tractable set of 
subsamples from the original design. 

Suppose that we wish to draw a simple random 
sample, without replacement, from a finite population of 
size N. Suppose further that the population is no longer 
available for sampling, but we have a sample selected 
from this population using a sample design D; let SD 
denote this sample. Let Sm denote a second sample of 
size m that could be drawn from the population. An 
inverse sampling algorithm must describe how to select a 
sample from SD SO that for any given sample Sm 

Pr(select Sm ISD) Pr(Sm C SD) = / / ~ N  / . 

- a P  

/  ,mj 
The first step is to calculate the probability that an 

arbitrary but fixed sample Sm is contained in the sample 
So. Obviously, there are constraints on the size of the 
simple random sample (SRS) that can be drawn in this 
manner; the probability that SD contains S,, cannot be 
zero. Certainly, the SRS cannot be larger than the size of 
the original sample SD, and in fact the size of the SRS is 
generally required to be much smaller than the original 
complex sample. The second step is to devise an 
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algorithm to draw a subsample so that we get the correct 
probability, Pr(select Sm ISD). 

In the 1997 paper, inverse algorithms were provided 
for a number of common designs. For the problem of 
interest here, inverting stratified designs and cluster 
samples are a starting point. 
5.2 Inverting A Conventional Stratified Sample. 
Suppose that we have a stratified sample with fixed 
sample sizes nh in each stratum h, and known stratum 

population sizes, Nh, Z Nh = N. Because a given 

sample of arbitrary size m from the population might be 
contained entirely within one stratum, the largest simple 
random sample that can be selected from a stratified 
sample is of size m = mm{nh}. 

Specifically, assume we have a stratified sample with 
four strata. To select an SRS of size m from the stratified 
sample, one must first determine the number of units to 
be chosen from each stratum. Using a probability 
distribution generator, select the vector of sample sizes, 
(m~, mE, m3, m4), from the hypergeometric distribution 
where Pr(ml=il, m:=i:, m3----i 3, m4=i4) = 

( i N ' / ( N E / ( N 3 / (  iN41 

where Z ij = m and 0 < ij < m, j= 1,...4. 

After choosing the pattern of stratum sample sizes, 
(ml, m:, m 3, m4), select a simple random sample of size 
m~ from the n~ sample units in stratum 1, an SRS of size 
mE from the n: sample units in stratum 2, etc. 

With some algebra (Hinkins, Oh and Scheuren 1997) 
it can be shown that this procedure will reproduce a 
simple random sampling mechanism unconditionally, 
i.e., when taken over all possible stratified samples. 
This approach generalizes for any number of strata. 

5.3 Inverting a One-Stage Cluster Sample. In this 
subsection, we consider inverse algorithms for cluster 
samples where the clusters are sampled by a simple 
random sampling mechanism and without replacement. 
We summarize the algorithm for inverting cluster 
samples where the clusters are of equal size. The more 
usual case where the clusters are of unequal size is then 
briefly described; the detailed description for this case 
can be found in Hinkins, Oh, and Scheuren (1997). 

Assume we have a population of N clusters where all 
clusters are of size M and k of them are selected by a 
simple random sampling mechanism without 
replacement. The largest SRS of elements that can be 

selected is k; the cluster size is not a constraint on the size 
of the subsample. For a given sample Sk, let q denote the 
number of clusters represented in Sk; 0<q.<.k. Then the 
probability that Sk is contained in the cluster sample is 
equal to the number of cluster samples containing these q 
clusters divided by the total number of possible cluster 
samples, i.e. 

N - qr) 
k q 

Pr(Sk C S o ) =  ( k /  " 

As for the stratified sample, the algorithm first 
determines the number of units to be chosen from each 
cluster, (m l, m E, ..., rn 0. The probability distribution to be 
used to select the rni's is Pr(m~=i~,...,n~=i0 = 

(ilMI...(ikM) (qN) 

where 0< ij < k, Z ij - k and q denotes the number of 
J 

nonzero ij's. Unlike the stratified example, where the 

function for selecting the values of ~ was a known 
probability function, it is not immediately obvious this 
equation describes a probability distribution. It is shown 
in the Hinkins, Oh, and Scheuren paper (1997) that this is 
in fact a probability function. 

Once the rr~'s are determined, a simple random 
sample of size rni is selected from cluster i, i=1,2,...,k. 
Therefore the conditional probability of selecting Sk is 

1 
(; /" 

It is then easy to verify that 

Pr(SkISD)Pr(Sk C S o ) = / / ~ N k )  

and therefore this gives the correct probability of 
selecting an SRS. 

It would appear to be straightforward to generalize this 
approach in an obvious way to the case of unequal cluster 
sizes. However, the inverse sampling algorithm for a 
sample of clusters of equal size does not generalize 
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readily when a sample of unequal sized clusters is drawn. 
This difficulty can be fixed, although not perhaps in an 
entirely satisfactory way. One method is to employ a 
hypergeometric that assumes all the clusters were as large 
as the largest cluster in the population. The price paid is 
that the inverse sample size achieved is no longer fixed, 
and the resulting subsample is only conditionally SRS 
given the achieved sample size, denoted, say, as ko. That 
is, for a given sample size k0, ~ k, all samples of size k0 
have the same probability of being selected using the 
inverse algorithm. A complete discussion can be found 
in Hinkins, Oh, and Scheuren (1997). 

5.4 Multistage Cluster Designs. The design to be 
inverted is a multistage design. In many cases a 
multistage design can be inverted by using results from 
the single stage designs. For example, in the case of a 
multistage design with PPS sampling at the first stage 
and SRS sampling at the second, one way to construct an 
inverse would be to take a srswr sample of k clusters and 
then within each selected cluster take one observation at 
random. Other inverse algorithms may exist too. A 
systematic inverse seems reasonable, provided the 
probability of selecting the same cluster more than once 
is small to vanishing. In a similar manner, an algorithm 
for inverting the NHIS design will be constructed. 

What about the problem of having only two Primary 
Sampling Units? From previous discussion, it is 
immediate that if an inverse is to exist, then the sample 
size m cannot be any larger than m =2. Depending on the 
sampling within each stratum, we could employ one or 
more of the exact or approximate inverses to obtain two 
SRS selections within each stratum. The inverse 
algorithm would result in just two selections overall. 

How can a method that selects only a sample of size 
two be of any practical value in the NHIS case? One 
answer is repeatedly. The next section (Section 6) 
discusses this briefly, sketching the approach we plan to 
take. 

6. NHIS Application 

The NHIS is based upon a highly stratified 
multistage probability sample. But in order to estimate 
the variance of the estimators, a simplified design 
structure is assumed. For the purposes of inverting the 
sample, we will make the same simplifying 
assumptions that are used for the variance estimation. 
The variance estimates using the inverse samples will 
be compared to the reported variance estimates under 
these assumptions. The following is a description of 
this conceptual design based primarily on Chapter 3 of 
a draft of the NHIS Design Report (National Center for 
Health Statistics 2000). 

6.1 PSUs and Stratification. The survey is stratified at 
the state level, and the analysis we plan to make will 
also be at the state level. Primary Sampling Units 
(PSUs) are defined in a given state as territorial 
divisions, such as counties or metropolitan areas. The 
PSUs within the state are stratified where strata are 
def'med using MSA classification and poverty status. 
There are two types of strata defined: self-representing 
(SR) strata and non-self-representing (NSR) strata. The 
largest metropolitan areas are classified as SR strata; in 
SR strata all PSUs are included in the sample. For the 
NSR strata, 2 PSUs are generally selected without 
replacement with probability proportional to population 
size. (In the smaller states some strata have only one 
PSU selected. Provisionally, in our planning so far, we 
expect to employ a collapsed stratum technique before 
inverting the NHIS design.) 

6.2 Substrata and Secondary Sampling Units within 
PSUs. Each PSU is subdivided into density substrata 1 
to 21. Substrata 1 to 20 are defined by joint black and 
Hispanic concentration measures in block units defined 
by the 1990 Census. Substratum 21 contains new 
(post-Census) construction, defined by a continuously 
updated building permit frame. Most PSUs will not 
contain blocks in all possible substrata; in fact, most 
PSUs have only a few such substrata. 

Within each substratum, secondary sampling units 
(SSUs) are defined as clusters of residential housing 
units. The complexities of the within-PSU sampling 
require us to make some simplifying sampling 
assumptions about SSU selection. The SSU will be 
considered as a well defined population cluster and the 
SSU sampling treated as having been drawn with 
replacement sampling from a finite population of SSUs 
within a given substratum. All SSUs within a 
substratum will be treated as having the same selection 
probability, independently selected over substrata, with 
weights applied to units selected from the SSUs that are 
assumed to produce an unbiased estimator of the SSU 
total. 

For an SSU selected in the sample, there is then a 
sampling procedure to select housing units within SSU, 
collections of individuals within housing units, and 
finally to select persons within a collection of 
individuals within a housing unit. But these further 
details are not described here because they are not used 
in variance calculations and therefore will not be 
considered for creating an inverse sample. The unit of 
analysis will be the estimate for an SSU, which is based 
on the probabilities of selecting units within that SSU. 
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6.3 Conceptual Design. Recall that for the SR strata 
in the NHIS, there is no sample selection of the PSUs; 
all PSUs are included in the sample. Let i - 1,...N, 
denote the PSUs in SR stratum s; let j - l , . . .21  denote 
the substratum. We condition on Nsij. the number of 
SSU in SR stratum s, PSU i, substratum j, and the 
number of SSUs selected, n, ij. 

For the purposes of our study, the unit of analysis is 
/ 

Ysi jk = Ysso.k--EXsijk% where ~uk.sijis the 
/ ~uk.s0" u 

conditional probability of selecting unit u in SSU k, 
given that SSU k in stratum s, PSU i, substratum j, has 
been selected. For variance estimation, Y,~jk is treated as 
the population value for SSU k (in substratum j, PSU i, 
stratum s). In this case, the estimate of the total for 
stratum s is 

c,, Ns U ns O" 

~ - ~ i  ~ ~"~Ysi#= ~'~"~N~°'Ys°" 
• " ns~] k i j 

where % denotes the number of substratum within PSU 
i in stratum s. The estimated variance is 

= Sso. 
n s~i 

2 _ 1 
where Ss~i - ~'~ (Y~uk -- Y~O')2 " (Recall 

(ns U 1) k 

that it is assumed that the sampling of the SSUs is with 
replacement.) 

In summary, for a self-representing stratum, the 
design to be inverted is basically a design that selects rhj 
clusters from a total of Nij clusters from each 
PSU/substratum ij. The selection of the l~j clusters is 
with replacement with all clusters in the 
PSU/substratum having the same probability of 
selection. 

For a non-self-representing stratum the structure for 
the sample selection within a PSU/substratum is the 
same for the NSR. However, in a NSR stratum this 
selection is not performed in every PSU but rather to 
PSUs selected with sampling proportional to size. 

7. Next Steps 

Two states have been chosen for our pilot s tudy-  a 
large state and a fairly small one. We are now 
programming the inverse algorithm and conforming the 
NHIS sample cases for the two states selected to do the 
inversions. We plan to do the inverses multiple times 
since each SRS sample is so small (m=2). 

The theory for pooling these sample estimates and 
calculating the needed variances is all available from 
Hinkins, Oh and Scheuren (1997), albeit it can be 
predicted that we will need to develop more theory once 
we get into the details. For example, we will need to 
decide how to treat the nonresponse and missing data 
problems that arise. 

We are expecting to be able to demonstrate that the 
variance stability of our approach will be superior to that 
using balanced half-sample replicates. We also expect to 
alleviate the existing concerns about releasing files that 
can be analyzed by state will be possible -- without 
compromising respondent confidentiality. Wish us luck; 
we will need it. 
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