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Introduction 
This paper summarizes the 1994-1996 small area 

estimation project completed recently for the Substance 
Abuse and Mental Health Services Administration. The 
main purpose of this project was to correct deficiencies in 
the previous NHSDA small area estimation exercise 
which used the penalized quasi-likelihood (PQL) 
estimation approach. In the current project, hierarchical 
Bayes estimation methods employing Gibbs sampling 
were used. A secondary purpose was to test the new 
methodology on pooled 1994-1996 data. This 
methodologicaltest was not designed to published small 
area estimates but to begin preparation for the 1999 
NHSDA. Beginning in 1999 SAMHSA will require that 
small area prevalence estimates be produced on a tight 
schedule for states and age groups for up to 20 drug use 
related binary outcomes. 

In the current test, we produced prevalence estimates 
for sixteen drug use related outcomes by age group for all 
50 states and the District of Columbia. Our new pseudo- 
Bayes estimation methodology retains the innovative 
features for our previous approach. These innovations 
include fitting Logistics mixed models with f ixed 
predictions a four levels of hierarchy; namely, 
• person level demographics, 
• Census Block group level demographic population 

projections for 1996, 
• 1990 Census Tract level demographic and 

socioeconomic status (SES) variables, and 
• Intercensal County level variables including drug 

related arrest, treatment and death rates. 
Microdata modeling of the 1/0 binary outcomes also 
allowed for the efficient inclusion of interactions between 
the person level demographic indicators and the block 
group, census tract, and county level predictors. This 
microdata modeling of prevalence at the block group 
level for our 32 age by gender by race/ethnicity 
demographic domains allowed the State SAEs to be built 
up from their block group level contributions. Finally, 
our method of employing survey weights in the PQL 
estimation equations yielded SAEs for States and their 
national aggregates that were design consistent. For 
States with large samples and for national aggregates of 

SAEs, this made our results self-calibrating to the robust 
design based estimates. 

Pseudo-Hierarchical Bayes Estimation 
Our new pseudo-Bayes estimation methodology was 

designed to remove the limitations of our in 1991-1993 
approach that were noted in the Methodology Report 
produced by Folsom and Judkins (1997); namely 
• Computational limitations of our PQL algorithm 

required the assumption that the age group specific 
random effects were independent of each other. 
Specifically, if 

logit [Prob(y,~jk:l [~,,v0) ] : Xaijk~a+]]ai + Vai j 

is the logistic mixed model for the probability that age 
group-a member-k of PSU-j in State-i has y ... = 1, then 

a t j x  

to speed up convergence we were obliged to subset the 
data by age group to minimize the size of the associated 
[3 vector. 
• Our 1991-1993 approach to survey weighting was 

also not robust against unequal selection 
probabilities that are informative in the sense of 
being correlated with the survey outcomes in a 
fashion not fully accounted for by the model 
specification. 

• The first order PQL solution method we employed 
relies on the random effect variance components 
being small for its estimates of the components to be 
accurate. Otherwise, the associated variance 
component biases lead to biased SAE point and 
interval estimates. 

• Perhaps most importantly, our 1991-1993 approach 
to SAE interval estimation ignored the uncertainty in 
the variance components. Malec, et. al (1993) show 
that this source of inflation in SAE interval estimates 
can be sizable. 
To overcome these limitations, we developed a 

survey weighted full hierarchicalBayes (FHB) algorithm 
(PROC GIBBS) for fitting our large logistic mixed 
models. PROC GIBBS has the following benefits 
relative to available FHB software for the logistic model 
like BUGS and MLwiN. 
• Uses survey weights so that SAE point estimates 

closely match direct survey weighted prevalence 
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estimates for areas with large samples, like 
California and the entire USA. 

• PROC GIBBS's survey weighting also causes the 
associated posterior predictive density intervals for 
SAEs to match fairly closely the design based 
confidence intervals for large sample areas or 
aggregates. 

• Unlike BUGS or MLwiN, our GIBBS procedure is 
able to fit our four age group specific models 
simultaneously. Note that these models can have 
upwards of 200 fixed effects, close to 1,000 random 
effects, and 20 variance/covariancecomponents. We 
never got BUGS or MLwiN to complete a single 
gibbs cycle on such models. 
To specify our GIBBS algorithm we assume that the 

State and PSU level random effect vectors rl~ and v~j with 
age group specific elements are four variate normal with 
null mean vectors and 4x4 covariances matrices Dq and 
Dv respectively. We assign an improper uniform prior to 
the age specific fixed coefficient vectors [3a, and use 
proper inverse Wishart priors for Dq and Dv. If we let 
vodefine the prior degrees-of-freedom parameter in the 
Wishart prior for D,. then we define Dqo as the prior 
mean matrix for Dq. With the prior degrees-of-freedom 
for Dq set to Vo=6 and p, the rank of Dq, equal to four, the 
prior density for T =D -~ is proportional to 

/ 2  TI rl  
det(T) ~ exp{-(0.5)tr(D T )}. Since the prior mean 
of (T~'t -I no is[D +(v - p - l ) ]  and (v - p - l ) -  1, we 

r i o  o o 

see that Dqo is indeed the prior mean for Dq. With 46 
states plus the District of Columbia in our sample and 
assuming that the associated T1; were observed for i-  1, ..., 
47, we can define 

" _ T D,.y~lq Z rl, rl, + 47 (1) 
i = 1  

and then specify the conditional (given the rl~) posterior 
mean for D as 

Therefore conditional on observing the rl~ state level 
random effects we see that the conditional posterior mean 
for D is the associated mle plus a term t hat contracts 
the ml~e matrix with the prior matrix all divided by one 
plus the number of states in sample (47). 

Note that I have def'med the conditional mle for D 
in equation (1) without using survey weights. Sin~ 
states were largely included with certainty in the pooled 
1994-1996 NHSDA weighting is not an issue for D 

' , ' ] ] "  

For the between PSU covariance matrix Dv we considered 
using the PSU weights to form the conditional pseudo- 
mle analog of equation (1). Since the (CV) 2 of our PSU 
weights exceeds 3 we decided that the associated loss in 

effective sample size for estimating Dv would be too 
serve; that is, for our example, the elements of Dv would 
have covariances with sample size divisors of 49 
effective PSUs instead of 196. Using the unweighted 
priors for our random effects and the inverse Wishart 
priors for the D matrices yields conditional posteriors that 
have the inverse Wishart form. Therefore, we can draw 
Gibbs samples directly from these inverse Wishart 
conditionals for Dq and Dr. 

For the age group specific fixed coefficient vectors 
[3 we have assumed a flat prior. We can therefore sample 
from the conditional posterior given the survey weighted 
pseudo-role that SUDAAN would produce by 
conditioning on the random effects from the previous 
Gibbs cycle. Since our age group specific sample sizes 
were quite large (13.5k) we used the asymptotic normal 
version of the conditional posteriors to select Gibbs 
samples for these parameter vectors. Note that 
conditional on the random effects, these age specific [3 
vectors are independent of each other and can be sampled 
independently. Taking advantage of this result speeded 
up our algorithm substantially. 

Conditioning on the state and PSU level random 
effects, we use the asymptotic covariance matrix for [~a 
that is produced by SUDAAN for an unequal probability 
single state sample from the age group. While this 
sandwich type asymptotic covariance matrix accounts for 
survey weight variation and lack-of-fit in the propensity 
model, it otherwise may not fully account for sample 
design induced clustering effects, particulary those that 
are not explicitly modeled by random effects. It is clear, 
for example, that our decision to give up on including 
area segment associated random effects in our NHSDA 
logistic models could result in some underestimation of 
SAE mean squared errors. Our sample sizes in these 
final stage clusters were small (m -9 or 10)and solutions 
typically could not be obtained for the low prevalence 
outcomes. In spite of this shortcoming, for California, 
the state with the largest sample where our SAE point 
estimates and the direct survey estimates are always close 
to each other, our pseudo-Bayes posterior prediction 
intervals were also close to the survey design based 
confidence intervals. This result will be illustrated in the 
subsequent validation section. 

Turning to the Gibbs Cycles for the random effects, 
I will illustrate our approach on the state level random 
effects. The basic idea is to use the survey weighted 
conditional pseudo-likelihood for r I along with its 
multivariate normal prior to form the kernel distribution 
for the Metropolis-Hastings step of the Gibbs sampler.  
For this to work properly we have to scale the survey 
weights in the pseudo-likelihood so that the correct 
asymptotic covariance matrix is achieved for rl. We then 

372 



use an adjusted form of the asymptotic normal 
conditional for r I to select the initial draws in the 
Metropolis-Hastings algorithm. Using the asymptotic 
covariance for the conditional pseudo-role as a guide, the 
required effective sample size adjustment to the age 
group weights uses the 6 and cap A quantities defined in 
Figure 1. The A 

Figure 1. Effective Sample Size Adjustment Factors 

W - ~ WokfCUk(1-~Uk ) +W++ 
jk 

~WWia =- Z W2 (I-~,ijk) -- Wok jk ijk#'ijk ( \ jk ~ / 

~WWia I ji47 W2(Yijk-'~ijk )(4i~1 ~jk~~ki!)] ( 
awwo = Z xww/o + 

i = 1  = 

-~ W Wia ) 

quantity involves a smoothed estimate of the informative 
weighting effect calculated as a combined ratio over all 
47 states. Given these definitions, the effective sample 
size for age group-a in state-i is given by equation (3). 

= + [(I+CVW]) (AWW +6W )] (3) e m ia m ia ia 

These effective sample sizes are used to produce scaled 
versions of the survey weights that sum to emma within 
state-i by age-group-a combinations. This weight scaling 
leads to the kernel log density definition shown in 
equation (4). The weight adjustments for the PSU level 
random effects follow the same prescription. 

Qn{F(rl,[)} = - (1/2)rinD -~ n rl; 

+ ~ wok {Yijk On [~ijk (Tli[)] (4) jk 

+ ( 1 -yqk ) Qn [ 1 - ~ijk (lq, I )] } 

Application of PROC GIBBS to the 1994-1996 
NHSDA 

Turning to our application of PROC GIBBS to the 
pooled 1994-1996 NHSDA survey data, we produced 
prevalence estimates for sixteen binary outcomes related 
to drug use, dependency, and treatment need. These 
three survey years of the NHSDA represented 46 states 

• plus the District of Columbia and included 196 MSA or 

single county PSUs and 4,030 area segments for a total of 
53,825 respondents. We fit age specific random effects 
for states and PSUs but not for segments. As indicated 
previously, the segment sample sizes of nine or ten were 
not large enough to support estimating segment level 
random effects since most of our binary outcomes have 
small prevalences, less than 5%. 

For independent variables we had four major groups. 
The categorical variables included the personal level 
demographics along with several categorical 
classifications of the PSUs, segments, or tracts that the 
respondents lived in. The 36 county level variables were 
intercensal values obtained from various sources. We 
also used 26 tract level variables from the 1990 decennial 
census and 12 block group level variables based on 1996 
intercensal population projections purchased from 
Claritas, Inc. 

For variable selection, we group our independent 
variables into six initial groups and used SAS logistic 
with sample size sealed weights and backwards 
elimination to identify individual variables significant at 
three levels; i.e., 1%, 3%, and 5%. We then looked at 
measures of fit related to concordance and discordance 
for user and nonuser pairs. Most of the selected models 
were the 1% significance versions with the total number 
of fixed predictors ranging from 60 up to 175. We then 
ran PROC GIBBS on each of the sixteen outcome 
specific models. To speed convergence to stationary 
chains we only updated the fixed coefficient vectors 13 a 
every eighth cycle. By examining the D n and Dv matrices 
we determined that long run chains with a burn in of 500 
cycles and a sample run of 10,000 yielded good 
comparability between the posterior distributions 
observed in the first and second halves of the chain. 
These results led us to use the 1,250 PROC GIBBS 
sample cycles with distinct 13a vectors to produce our 
small area estimates. Specifically, with 0¢ denoting the 
set of fixed and random effect estimates from PROC 
GIBBS cycle-c and-b indexing census block groups in 
state-i, we formed prevalence estimates 7"Cibd(Oc) for 
each of the thirty-two age by gender by race/ethnicity 
subpopulations indexed by-d. Since the NHSDA 
sampling rates within block groups are negligible, these 71: ,bd 
predicted prevalences can be weighted by associated 
population projections N b d and aggregated to yield state 
level SAEs for the numbers of persons with the attribute 
and for the associated prevalences. For block groups-b 
that are not in NHSDA sample PSUs, we sampled a 
value of v~j from the conditional posterior for vii which is 
four variate normal with null mean vector and covariance 
matrix Dv(C) at cycle-c. We purchased the block group v 
level population projections N b d from Claritas, Inc. 
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Validation of SAEs 
To validate our small area estimation methodology 

we first examined the extent to which our survey 
weighting approach was successful in causing the 
regional and national aggregates of our SAEs to be close 
to their associated Horvitz-Thompson prevalence 
estimators. Figure 2 displays, for the indicator of past 
month any illicit drug use, a set of signed relative bias 
estimates for weighted and unweighted SAE regional, 
national, and California aggregates by age group. In this 
figure, the Horvitz-Thompson prevalence estimate is 
treated as the benchmark. It is clear that the survey 
weighted versions are, as a rule, substantially closer to the 
Horvitz-Thompson benchmarks than their unweighted 
counterparts. 

To compare our state level SAEs against external 
benchmarks, we secured a set of 1993 person level food 
stamp participation rates for States. Using the NHSDA 
questionnaire reports of food stamp participation to 
derive a person level indicator, we then produced state 
level SAEs using our modeling approach.  When we 
contrasted our SAEs with the benchmark we obtained a 
correlation of 0.91 whereas the direct Horvitz-Thompson 
prevalence estimates had a correlation of 0.67. 

Finally, we conducted a bootstrap subsampling 
exercise to create five subsamples from California that 
mimic the design of the 1999 NHSDA as it applies to the 
42 small sample states and the District of Columbia. In 
the 1999 NHSDA, these small sample states will have 
samples of 96 area segments drawn in sets of eight from 
each of twelve substate regions referred to as field 
interviewer or FI regions. Dwellings will be drawn from 
these segments and persons selected from the dwellings 
so as to yield 900 interviews from each small sample 
state 

with 300 responses targeted from each of three age 
groups; namely 12 through 17 year olds, 18 through 25 
year olds, and persons aged 26 and older. Having drawn 
five such independent subsamples from our pooled 1994- 
1996 California sample we then refit weighted and 
unweighted solutions to the past month any illicit drug 
use model with five replicated versions of the California 
data in the sample. We then used the PROC GIBBS 
parameter solutions to form separate SAEs based on each 
of the five California data sets as if California had split 
into five new States. Figure 3 shows that our SAEs 
performed well with the correspondingrelative root mean 
square error estimates (RMSQ) substantially smaller than 
for the design based estimates without an increase in the 
Rel Bias. The average interval width for the SAEs is just 
58 percent of the average Horvitz-Thompson estimator 
confidence interval. 
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Figure 2. Relative Bias of Weighted and Unweighted SAE Aggregates 

Total United States 

North East Region 

South Region 

North Central 

West Region 

California 

Relative Bias (Weighted) 

12-17 18-25 26-34 35+ Total 

-5.27% -2.14% -2.31% -5.12% -3.55% 

-10.83% 3.05% -0.44% 8.65% 3.50% 

-10.16% -5.94% -6.50% -7.45% -6.54% 

5.91% 2.35% 2.30% -5.80% 0.13% 

-6.20% -4.10% -2.51% -10.18% -7.66% 

-3.50% -3.53% 2.90% -7.94% -4.44% ! 

Relative Bias (Unweighted) 

12-17 18-25 26-34 35+ Total 

-1.70% 7.49% 11.61% 37.60% 15.66°A 

-7.94% 15.21% 21.37% 84.65% 33.86°A 

-8.02% -2.15% 5.69% 26.02% 7.87% 

3.45% 19.87% 18.57% 34.95% 20.67% 

5.86% 4.53% 6.43% 27.1"2% 9.55°A 

2.76% 3.46% 8.20% 20.28% 8.00°/, 
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Figure 3. Relative Root Mean Squared Errors (RMSQ) and Relative Biases (Rei Bias) for California 
Bootstrap Sample* 

Age Group 

Total 

Total 

Total 

Total 

Total 

Total 

State 

CA 

CA1 

CA2 

CA3 

CA4 

CA5 

Rel RMSQ 

Rel Bias 

Design Based Estimate 

P d L95 U95 Width 

7.08% 6.17% 8.11% 1.94% 

6.64% 4.91% 8.93% 4.02% 

6.92% 4.78% 9.91% 5.13% 

9.09% 6.41% 12.75% 6.34% 

7.09% 4.79% 10.38% 5.58% 

8.30% 6.25% 10.94% 4.69% 

Avg Width 5.15% 

15.17% 

7.52% 

SAE Based Estimate 

P m L95 U95 Width 

7.00% 6.20% 7.88% 1.68% 

7.05% 5.74% 8.55% 2.81°A 

6.58% 5.33% 8.03% 2.70% 

8.03% 6.53% 9.74% 3.22% 

6.97% 5.60% 8.54% 2.94% 

8.05% 6.51% 9.82% 3.31% 

9.18% 

3.65% 

Avg Width 2.99% 

*These RMSQ and Rel Bias calculations use the full sample Horvitz-Thompson prevalence estimate of 7.08% as the 
benchmark. 
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