
W E I G H T  T R I M M I N G  I N  A R A N D O M  E F F E C T S  M O D E L  
F R A M E W O R K  

Michael R. Elliott, Roderick J.A. Little, 
University of Michigan 

Michael R. Elliott, Department of Biostatistics, University of Michigan, 
1420 Washington Heights, Ann Arbor, MI 48109 (Email: mrelliot@umich.edu). 

K ey  W o r d s :  sample survey inference, sampling 
weights, unit nonresponse adjustments, random- 
effects models, non-parametric regression. 

A b s t r a c t :  

In sample surveys with unequal probabilities of in- 
clusion, units are often weighted by the inverse of the 
probability of inclusion to avoid biased estimates of 
population quantities such as means. Highly dispro- 
portional sample designs yield large weights, which 
can result in weighted estimates that have a high 
variance. Weight tr imming reduces large weights to 
a fixed cutpoint value and adjusts weights below this 
value to maintain the untr immed weight sum. This 
approach reduces variance at the cost of introducing 
some bias. An alternative approach uses random- 
effects models to induce shrinkage across weight 
strata. We compare these two approaches, and intro- 
duce extensions of each: a compound weight pooling 
model that allows Bayesian averaging over estima- 
tors based on different tr imming points, and a weight 
smoothing model based on a non-parametric spline 
function for the underlying weight strat.um means. 
The latter method performs well in sinmlations when 
compared with alternative estimators. 

1 Weight Pooling Models 

Many survey samples yields units that have unequal 
probabilities of inclusion. In these settings, estima- 
tors like sample means that assign the included units 
the same weight are biased when there is an associa- 
tion between the probability of inclusion and the val- 
ues of the sampled data. Unit i is usually weighted 
by the inverse of the probability of inclusion to re- 
move this bias. For example, the Horvitz-Thompson 
estimator of a population total T - E~V=l ffi frolYl 

a sample is given by T - Y~-ie.~ wiYi, where wi = 
1/rri, rri is the probability of inclusion and s is the 
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subset of the population units sampled. Through- 
out this paper, we assume the primary quantity of 
interest is the finite population mean Y. Our mod- 
els also assume normally-distributed data, although 
extensions to non-normal distributions are possible. 

Suppose the population can be divided into H 
weight strata by the set of ordered distinct values of 
the weights wh. Let nh be the number of included 
units and Nh the population size in weight s tratum 
h, so that wh - N h / n h  for h - 1 , . . . , H .  We assume 
here that Nh is known, as when the weight strata 
come from a stratified or post-stratified random 
sample. The untrimmed (design-based) weighted 

mean estimator is then Yw = }-~-h }-~.,~,h - 

Eh(Xh/N+)~h. 
The weighted mean estimator Yw, while unbiased, 

has greater variance than the unweighted mean es- 
t imator ft. This increase can overwhehn the reduc- 
tion in bias, so that the mean square error actu- 
ally increases under a weighted analysis. This is 
particularly likely when the weights are highly vari- 
able, when the association between the probability 
of inclusion and the data is weak, or when the sam- 
ple size is small. Perhaps the most common ap- 
proach to dealing with this problem is weight tr im- 
ruing (Potter 1990, Kish 1992). Weight trimming 
typically proceeds by establishing an a prior i  cut- 
point, say 3 for the normalized weights, and multi- 
plying the remaining weights by a normalizing con- 
stant 7 -  ( n - E  ~ i W o ) / E ( 1 - ~ i ) w i ,  where ~i is an 
indicator variable for whether or not wi > w0. The 
tr immed mean estimator is thus given by 

1-1 H 
- + - 

h--1 h'-I 

(1) 

l - 1  ~ H  
WO 2~h=l nh ) 

h--1 N +  

H 1-1 
w h e r e  "f - (J~+ - wo E h - - I  r t h ) / ( E h - - l  J~V-h) a n d  

if(l)  _ ( 1 /  H H -- ~-~'~h=l nh) Y~'~h--t nhYh. The choice of cut- 
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point w0 is often ad-hoc. Potter (1990) discusses 
systematic methods for choosing w0. 

Weight t r imming effectively pools units with high 
weights by assigning them a common, t r immed 

weight. The choice of w0 - ~;-; Nh _ h=l yields 7 - 1 
E "  h - ' l  ~ h  

l -1  H - + 

which corresponds to the estimate for a model that 
assumes distinct s t ra tum means for the smaller 
weight s trata  and a colnmon mean for tile larger 
weight strata,, that  is" 

, 0  .2 Yhi I lZh "" JV(P,h ) h < 1 

I h > l  (2) 

P h, ~l (:X: const. 

We call (2) the simple weight pooling model. 
Equation (2) call be extended by treating the 

pooling level 1 as a realization of the random vari- 
able L with support ( 1 , . . . ,  H).  Assuming that  the 
location of pooling level L is a priori  equally likely 
across the H weight strata,  we obtain the compound 
weight pooling model: 

2) Yhi [ tZh ~ N ( # h ,  (7" h < 1 

Then 

p ( L - 1 )  - 1 / H  

E ( Y  ] y)  - E ( E ( Y  I Y, 1)) - 

_ \h=l  N+ + h=lNh N+ -9 (l) p(L  - 1 1 U )  ( 4 )  

That  is, pooling is conducted at every possible 
level and the weighted average computed, where the 
weighting is based on the posterior probability for 
the model that  pools from t h e / t h  s t ra tum onward. 

To derive p(L  - 1 I y), we note that  (3) is a spe- 
cial case of a Bayesian variable selection problem 
(Halpern 1973, Atkinson 1978) with y l /3 t , l , o  2 ,-~ 
N ( X l / 3 l , o 2 I ) ,  where Xl is an n x / m a t r i x  consisting 
of an intercept and dummy variables for each of the 
first, l -  1 weight strata.  Utilizing priors of the form 
p(cr2 ]l) - (1/~r2) 1/2+1 (Dempster et al. 1977) and 
p(C~z I / ) -  (27r) -t (Ualpern 1973) yields 

p ( L - l  l Y ) -  
HI-1 H ] -1/2 

h=l Tth ( E h = l  rth ) Qi 
[H/--1 n )] -1/2 

h=X r l h ( E h = l  ?zh 
Q / n  

(5) 

2 Weight Smoothing Models 

Instead of mimicking the idea of weight trimming, 
we can simply model the weight-stratum means di- 
rectly as random effects. The general form of the 
weight smoothing models we consider is 

ind 2) 
Yhi I tth ~ N ( # h ,  cr (6) 

tt ~ NH(O, D) 

where pt - -  ( /- t l , . . . ,#H),  (/)-- (~1, . . . ,  OH), 0, D, 
and ~r 2 all have non-informative priors, and h in- 
dexes the "weight strata",  with constant inclusion 
probabilities. Unlike the weight pooling models, 
there is no need for the weight strata, to be ordered 
by inclusion probability; a more natural ordering 
may be used if available, e.g., if the weight strata 
represent a disproportionately stratified sample by 
age. Under the model (6), 

h 

where (~h -- E(}--Th [ Y) -- E(Oh lY)" 
The unweighted and fillly weighted means are ob- 

tained as estimators of E(Y ] y) as D --+ 0 and 
D -+ co, respectively. We consider four other spe- 
cial cases of the model: 

Exchangeable random effects (XRE)" (Holt and 
Slnith 1979, Ghosh and Meeden 1986, Little 1991, 
Lazzaroni and Little 1998) 

Oh - p for all h, D -  r'2IH (8) 

Autoregressive (AR1) (Lazzaroni and Little 1998) 

8h # for all h, D -  r2{p l i - j l } ,  (9) 

i , j  e ( 1 , . . . , H )  

Linear (LIN)" (Lazzaroni and Little 1998) 

Ch - a +/3h,  D - r2IH (10) 

Nonparametric  (NPAR)" 

Oh. - f ( h ) ,  D - O, (11) 

where f ( h )  is a twice differentiable smooth func- 
tion of h, where f and f '  are absohltely continuous, 
f [ f " ( u ) ] 2 d u  < co, and f ( h )  minimizes the residual 
sum of squares plus a roughness penalty parameter- 
ized by A: 

E E (yhi - f(h))2 + A  
h i 

(1:2) 
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(Wahba 1978, Hastie and Tibshirani  1990). 
All of these models can be wri t ten in the mixed- 

effect form (Laird and Ware 1982) 

y - N X ~  + N Z u  + e (13 )  

where N is an H x n "incidence" mat r ix  relating 
the distinct weight s t ra ta  to the da ta  (n jk  - 1 if yj  

is in s t r a tum k and 0 otherwise), X is an H x p 
fixed-effect design matr ix ,  /3 is a p x 1 vector of 
fixed-effect parameters ,  Z is an H x q random-effect 
design matr ix ,  u ..., Nq(O, G), and e .-~ N(O,(r2I,~).  
The replacements for X, Z and G in (13) are ob- 
vious for (8), (9), and (10); for (11), the NPAR 
model,  X - (1 h); ZHx(H_l)  such that  Z Z '  - f~ 

where f~hk -- fo ( ( h -  1 ) / ( H  - 1) - t)+ ((k - 1 ) / ( H  - 
1 ) - t ) + d t , ( x ) + - x i f x _ > 0 a n d  ( x ) + - 0 i f z < 0 ,  
h, k -  1 , . . . , H ;  and G -  ( ~ r 2 / H A ) I H _ I  where A is 
the penalty parameter  in (12) (Speed, in discussion 
of Robinson 1991). 

Under these formulations, 

[ h -  X f3  + Z i t ,  (14) 

where ~ - ( X ' ( 7 - 1 X ) - I X ' f / - I ~  and /t = 

G Z t g - l ( ' y  - X ~ ) .  Here V - Z G Z '  + ~rZE, where 
E -  d i a g ( 1 / n h ) ,  and 9 -  (Yl , . - ' ,YH) ' -  In the case 
of XRE,  AR1, and LIN, est imates of G and cr 2, and 
thus of ~ and u, may be obtained by m a x i m u m  
likelihood (ML) or restricted m a x i m u m  likelihood 
(REML) methods.  In NPAR the REML likelihood 
given by model (13) and the likelihood given by (i 1) 

/ " / 

differ by only a constant when ] ( h )  - X h ¢ t  + Z h i ,  
is a natural  cubic spline with knots at ( 1 , . . . , H )  
(Wahba 1985, Green 1987); hence we utilize ML es- 
t imates  for the XRE, AR1, and LIN models and 
REML estimates for the NPAR models to obtain 
mean and variance component  est imates and thus /3  
a n d / t .  

These weight smoothing models allow compro- 
mises between weighted and unweighted estimates.  
As an example, note that ,  under the XRE model, 
A ~ T 2 n h  

Ch -- whYh + (1 -- wh)[l, where Wh = r~h+G -~ 
and ~ is an overall weighted mean given by 

( E  )-1 n h g'~ h 
h ~,#~q-o~ ~ h  ~h~¥o2Yh" As r 2 -+ oo, 

A 

Wh -+ 1 so that  Ch -4 Yh. Thus a flat prior for 
#h recovers the fully-weighted est imator ,  which can 
then be viewed as a fixed effects ANOVA model. 
On the other hand, as r 2 -~ 0, wh -+ 0 so that  
A 

Ch -+ 9 I~=0 - Y, which est imates the excluded 
units at the pooled mean since the model now as- 
sumes that  Yhi are drawn from a common mean.  
The AR1 model extends the XRE model by adding 
autocorrelat ion in the variance structure,  allowing 

more borrowing of strength from s t ra ta  that  are 
close than from s t ra ta  that  are distant.  This fea- 
ture should somewhat  degrade performance when 
the means are truly exchangeable but provide in- 
creased protection again model failure. Similarly for 
NPAR, ,~ -+ 0 implies-YNPA.R -~ Yw and A -+ ,c~ 
implies -YNPAR ~ -Ylinear IT2=0, SO NPAR should be 
somewhat  less effective than LIN when the means 
are linear, but should have reduced bias when the 
mean structure is nonlinear. 

3 Simulation Study 

A populat ion of N - 36,000 was constructed con- 
sisting of 10 s trata ,  where Nh--(800, 1000, 1200, 
1500, 2000, 3000, 4000, 5000, 7500, 10000). The 
values of Yhi were generated as 

yhi - O'h + ehi 

where 

5 c - (22 5 14.4, 9.0 4 8, 1.8 -1 2,-1 8, _9 16,-1.99 
-1.s). 
5 D --  (- 1 .8  , - 1 ..99,., _9... 16,  - i .8, - 1 ...'7 1 .8 ,  4 .8 ,  9 .0  , 1 4 . 4 ,  

22.5). 

5 E - (10.88, 10.88, 10.88, 10.88, 10.88, 10.88, 10.88, 
10.88, 10.88, 10.88). 

5 L -- (-12.09, -8.64, -5.20, -1.75, 1.70, .5.14, 8.59, 
12.03, 15.48, 18.93). 
and ehi ~ N(O,  or2). Disproportional samples of size 
500 (90, 80, 70, 60, 50, 50, 40, 30, 20, 10) were then 
drawn (max inmm normalized weight=13.9).  

The mean structures 5 C and 5 D are best- and 
worst-case scenarios for weight t r imming,  with C 
= close and D - distant  means in the high-weight 
strata.  The E=equa l  mean structure 5 E provides 
the best-case scenario for the XRE and AR1 mod- 
els, and the L - linear structure 5 L provides the 
best-case scenario the LIN model; parameters  are 
chosen so tha t  E(V[5  D) - E ( V I 5  E) - E ( V I s L ) .  

The two pr imary  outcomes of interest are root 
mean squared error (RMSE) and coverage of non> 
inal 90% confidence intervals. RMSE is est imated 

V/ 1 p200(0  i _ 0)2 where 0 is the population as ~ A..~i= 1 
mean and 0/ is the es t imate  fi'om the i th  of the 200 
samples. We leave out the details of variance cab 
culations required for confidence interval coverage 
because of space l imitations.  

3 . 1  S t r a t u m  P o o l i n g  M e t h o d s  

For the mean structures 5 C and 5 D we considered 
est imates from five weighting schemes: unweighted 
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Figure 1: Average RSME (200 simulations) relative to fully weighted estimator of unweighted (WT=I) ,  
crude trimming (WT<3), mininmm MSE (MSET), and compound weight pooling (CWP) estimators, and 
90% nomimal coverage of all estimators, when stratum means favor trimming [(a) and (c)], and when stratum 
means do not favor trimming [(b)and (d)] 

(WT=I) ;  fully weighted, 9,u (FWT); "crude" trim- 
ming, ~wt, where the maximum normalized weight is 
3 (ww<3); the posterior mean from the compound 
weight pooling model given by (4) and (,5) (CWP); 
and the MSE trimming method (MSET). The MSE 
t, rimming procedure (Potter 1990, Cox and McGrath 
1981) estimates MSE at a variety of trimming lev- 

A 

els and chooses the one at which MSE is minimized. 
Here the trimming points are selected from all pos- 
sible pooling values (in these simulations described, 
10 distinct cutpoints are possible). 

The left panels of Figure 1 compares the RMSE 
ratio of the unweighted and three other trimmed 
estimators to the flllly weighted estimator [panel 
(a)] and nominal 90% coverage of all five estima- 
tors [panel (c)], for the stratum mean configuration 
8 c that favors pooling of the high-weight strata. 
The unweighted estimator (WT=I)  is poor when 
log(r < 2 and some form of weighting is need to 
counteract bias. "Crude" weight trimming (WT<3) 
is an improvement, but fails badly when log(r < 0. 
The compound weight pooling estimator (CWP) 
works well in this setting: when (r is small and 
weighting is needed to counteract bias, CWP mim- 
ics the fully weighted estimator, and when (r is large 
and variance is of primary concern, CWP behaves 
more like an unweighted estimator. The coverage 
of the crude trimming estimator (WT<3) is very 
poor when log cr < 0, and the method has tin- 

acceptable bias. CWP suffers coverage problems 
When the between- and within-variances are approx- 
imately equal. The coverage of MSET is markedly 
below the nominal level, because Var(~wt ) does not 
account for the variability in estimating the cut- 
point. 

The right panels of Figure 1 gives the RMSE rel- 
ative to the fully weighted estimator [panel (b)] and 
nominal 90% coverage [panel (d)], when the mean 
structure is given by d7 D. This is an unfavorable sce- 
nario for trimming, since the highest weight stratum 
has a mean substantially different from the other 
strata. The unweighted and crude trimming meth- 
ods perform very poorly unless ~r is large. The CWP 
estimator behaves well for small or large values of 
the variance. However, it is less satisfactory for in- 
termediate values of (r, tending to overpool. The 
MSET estimator is more protective of overpooling, 
although it is less effective than CWP at reducing 
RMSE for large values of (r. The CWP interval esti- 
mates have below nominal coverage when cr is mod- 
erate. The MSET estimator displays coverage rates 
closer to nominal levels, but also has poorer coverage 
than the FWT estimator when variance is moderate. 

3.2 Weight Smoothing Methods 

For weight smoothing models, mean structures ~i ~, 
8L, and 8 D were considered. Five weighting schemes 
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were considered: the fully-weighted estimator ~ 
(FWT), and posterior estimate of Y from (7) where 

^ 

Ch is obtained under the XRE, AR1, LIN, and 
N PA 1-1 models. 

Figure 2 compares the RMSE for YXRE, YAR1, 
YLIN, and YNPAR relative to Yw. As expected, the 
XRE and AR1 estimators do well when the means 
are equal. Both these estimators perform poorly rel- 
ative to Yw when the means are unequal, although as 
expected the AR1 estimator is more robust than the 
XRE estimator. The LIN estimator works well for 
both equal and linear mean structures, although as 
expected it is less efficient than XRE or AR1 when 
the s t ratum means are equal. For the non-linear 
mean structure 8 D, LIN perforins poorly relative 
FWT for moderate cr 2. Since YNPAR --+ :Y~ as the 
roughness penalty A --+ 0 and YNPAR ~ rOLIN as 
A ~ ec, NPAR can be viewed as a comprolnise be- 
tween LIN and FWT; the silnulations suggest that 
this compromise works well. Specifically, NPAR per- 
forms nearly as well as LIN for equal and linear inean 
structures. When the s t ra tum means are non-linear, 
NPAR mimics FWT for small to moderate values of 
cr 2, a.nd mimics LIN as cr 2 increases and the RMSE 
of LIN is lower than the RMSE of FWT. 

Figure 2 also shows the coverage of the vari- 
ous weight smoothing estimators for different mean 
structures and variances. All estimators have good 
coverage properties when the true superpopulation 
lneans are equal, since all models allow equal means. 
The XRE and AR1 models yield intervals with poor 
coverage when the means follow a linear trend and 
variallce is moderate. The LIN model has moder- 
ate coverage problems when the trend is non-linear. 
The NPAR and FWT procedures are close to noini- 
nal levels for all mean structures and all values of ~r 
considered. 

4 D i s c u s s i o n  

Survey weights are generally tr immed in an ad-hoc 
manner, with little attention given to the opt imum 
degree of trimming. We have considered a number 
of methods that use the data to determine adjust- 
ments of the weights that involve appropriate bias- 
variance trade-offs. One approach is to obtain an 
estimate of root mean squared error and then choose 
a tr imming point that minimizes this estimate. This 
method performed reasonably well in our simula- 
tions, although model-based methods were more ef- 
ficient for some problems, and confidence intervals 
that fail to reflect uncert.ainty in the trimming point 
did not achieve nominal levels of coverage. 

Our model-based procedures are divided into two 

classes, weight pooling models and weight smoothing 
models. The compound weight pooling model is pro- 
posed as a model-based analogue of weight tr imming 
that allows Bayesian averaging over estimates based 
on different tr imming points. Bayesian methodol- 
ogy also allows the uncertainty about the choice of 
tr imming point to be included in the inference. In 
our empirical studies, this model did well in terms of 
RMSE when the mean configuration was favorable 
towards trimming, but tended to over-pool for some 
regions of the parameter space when the mean con- 
fgurat ion was not favorable towards trimming. The 
over-pooling is even more problematic when confi- 
dence coverage, rather than MSE, is of interest, since 
the resulting bias results in intervals that  are system- 
atically shifted away from the population mean. 

We also consider weight smoothing models that 
treat the unknown weight s t ra tum means as random 
variables with their own mean and covariance struc- 
ture. Choosing between models in this class involves 
trade-offs between robustness and efficiency. In par- 
ticular, assuming exchangeable means and includ- 
ing between-stratum variance components to induce 
shrinkage, as in the XRE and AR1 models, yields es- 
t imators that have good properties when the sample 
design is highly disproportional and the data. highly 
variable, but that are vulnerable to model mis- 
specification when the between-stratum and within- 
st.ratuna variances are approximately equal. In con- 
trast, adding parameters to the mean structure, as 
in the LIN a.nd NPAR models, reduces the problem 
of misspecification at. some cost in efficiency. The 
NPAR model has the advantage of being more "be- 
lievable" when the strata are nominal rather than 
ordinal, so there is less reason to believe a linear 
trend exists in the data. It yields estimates that be- 
have somewhat like the MSET estimator, but with 
more efficiency and better confidence coverage prop- 
erties. Indeed, this model was nearly as robust to al- 
ternative mean configurations as the fully-weighted 
estimator in simulations, yet approximates the ef- 
ficiency of the LIN model estimator when variance 
overwhelms bias. 
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