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1. INTRODUCTION 

Suppose that a stratified random sample of size n is 
drawn from a population of size N in order to estimate 
the population mean or total. In its "classical" 
implementation (Cochran 1977) the sampling units are 
selected at random within each stratum independently 
of selections within other strata. Therefore, there is no 
correlation across strata. 

Of course, the stratified sample mean in this 
classical setting is an unbiased estimator of the 
population mean based on repeated sampling; 
nonetheless, in small or moderate samples the actual 
estimate from a selected sample could severely 
underestimate or overestimate the population mean, 
especially for a widely dispersed population. An 
extreme example of such a situation occurs when the 
sampled units are all on the lower side or all on the 
upper side within their respective stratum. These 
combinations of n units in our formulation would be 
called "nonpreferred" and could not arise. Here is 
how. 

Assume that a covariate is available. Our proposed 
median balanced sampling design is a modification of 
the conventional stratified sampling design that 
employs this covariate. The key motivation is to reduce 
the sample space of all possible stratified samples to an 
identifiable subset of "preferred" samples-- while still 
keeping unchanged the selection probability of each unit 
in the population. Unlike the conventional stratified 
sampling design, our design introduces a negative 
correlation across the strata and therefore results in a 
smaller variance of the mean estimator. It also decreases 
the probabilities of selection for "nonpreferred" 
combinations, so that the mean estimate from a selected 
sample is "not too far" from the population mean. The 
proposed balanced sampling design will be shown to be 
an improvement over the conventional stratified 
sampling design. 

Throughout this paper, the parameter to be estimated 
is the population mean. The main goal is to show the 
advantages of median balanced sampling over 
conventional stratified sampling. We focus initially on 

the setting of two strata and sampling with replacement; 
then, extend the results to more strata and without 
replacement situations. 

Organizationally, this paper is divided into 6 
sections. The current Section 1 is a general 
introduction. In Section 2, we describe two sampling 
procedures under the proposed median balanced 
sampling design. There we also compare the variance of 
the mean estimator under the median balanced sampling 
design with the variance under the conventional stratified 
sampling design. In Section 3, a sample estimator of the 
variance under the median balanced sampling is 
proposed. The stability of this estimator is also 
compared to its counterpart in conventional stratified 
sampling. Section 4 presents some asymptotic results 
and applications. First we show an efficiency gain when 
the strata are set by the covariate. Then we use Taylor's 
series expansions to prove that the median balanced 
sampling results in a smaller mean square error in ratio 
and regression estimation. In Section 5 we look at 
several simple but important extensions- e.g., to three 
and more strata and to the without replacement setting. 
Section 6 is a very brief summary. Proofs are available 
upon request or can be found in Liu (1999). 

2. MEDIAN BALANCED SAMPLING DESIGN 

To start the discussion, we will operate just like in 
most sampling texts (e.g., Cochran 1977) by assuming 
that we can actually stratify on the values of y, the 
variable of interest. Later in Section 4 we will discuss 
the more realistic case when the strata are based on a 
covariate x or on geographic units. Here, we only focus 
on sampling with replacement in the two strata setting - 
leaving to Section 5 the general case. 

2.1 Two Sample Selection Methods 

Divide the finite population of N units into 2 strata 

--N~ units in stratum 1 labeled as Yl~,Y12 ,'",YlNI and 

N 2 units in stratum 2 denoted as Yzl,Yzz,'",YzN2" 

Suppose further that N 1 and N 2 are even numbers; 

hence N~/2 and N 2 /2  are integers. Later, in Section 

5, we will deal with the case of N~ or N 2 odd. 
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Let M~ be the median of stratum 1 and M 2 be the 

median of stratum 2. Without much loss of generality, 

assume further that no units in stratum 1 are tied to M~ 

so that all N~ units are separated by M 1 into two 

equal groups; in particular, that the first half of the units 

in stratum 1 are below M~ and the second half of the 

units are above M~. We will further presuppose that 

the same mild condition applies in stratum 2 with 

respect to its median M 2 . This requirement can be 

relaxed, however. All that is really needed, in say the 

first stratum, is to divide the N l units into two equal 

groups such that the first N~//2 units are not larger than 

the remaining N~/2 units. This is true because our 

proposed median balanced sampling design does not 
depend on the actual value of the unit; it only depends 
on whether a unit belongs to the first half or the second 
half of the stratum it is in. 

The proposed design requires the sample size n be 
even and that an equal sample size be allocated to each 
stratum. For example, the strata boundary can be 

chosen such that N~cy 1 = N2(3  2 approximately, where 
2 2 ~1 and ~2 are the variance in each stratum. 

Therefore the sample size of each stratum can be taken 
as equal under Neyman Optimum Allocation. 
Sometimes, of course, strata cannot be created this way, 
for example, when geographic units are used as strata. 
But the proposed design is still applicable as long as the 
sample size is equally allocated. 

Figure 1 . -  Illustration of Notation in Two Strata Case 

Stratum 1: 

y l i ( i=l ,2 , ' " ,N1)  

F, 
1 

(b) 

N1 ~2 T '  

Stratum 2:Y2 

Y2j ( J  = 1,2 ,---, N 2 ) 

D 

(d) 

2 , *22 " ~  

B 

M~ M 2 

In the two strata setting just described, the population 

in each stratum can be equally divided by M1 and M 2 . 

A sample of size n is then composed of m = n / 2  units 
from stratum 1 and m units from stratum 2. Thus, 
under the conventional stratified sampling with 
replacement, a sample of size n = 2 m  is obtained by 

selecting m units randomly from N~ units in stratum 1 

with replacement and selecting another m units 

randomly from N 2 units in stratum 2 with the 

selections in the two strata being independent. 
Figure ! pictures the population we are sampling and 

in Cochran's notation the parameters in this two strata 
case. Notice, also, in figure 1 that for later use we have 
labeled the four parts of the population created by the 
combination of the stratum boundary and the two 
medians into the four cells: (a), (b), (c), and (d). 

We now describe two selection methods that each 
employ median balanced sampling. As before the 
selections are all done with replacement. 

Method 1: Unit Selection. -- A median balanced 
sample of n=2  m can be obtained by first randomly 

selecting all m units with replacement from the N~ 

units in stratum 1. The sample selection from stratum 2 
would then be dependent on the outcome of the 
selections from stratum 1. Suppose the selection results 

of stratum 1 turn out to include m~ units below the 

median M 1 with the other ( m - m~ ) above M~ ; then we 

would randomly select m~ units with replacement from 

stratum 2 units that are above M 2 and randomly select 

the remaining (m-m~ ) units with replacement f r o m  

stratum 2 units that are below M 2 . This sampling 

process is equivalent to first determining the value of 

m~ using a binomial distribution B(m,1/2)and then 

randomly drawing m~, ( m -  m~ ), ( m -  m~) and m~ 

units independently from cells (a), (b), (c) and (d) 
respectively. 

Method 2: Pair Selection. -- A median balanced 
sample of n =2 m can also be obtained by drawing m 
pairs, one at a time. The process starts from randomly 

drawing a unit from the N 1 units of stratum 1, i.e., from 

Y~i (i = 1,2 ,--., N~ ). If the selected unit is above M~, 

then select a unit Y2j in stratum 2 from N 2/2 units that 

are below M 2 . Conversely, if the selected unit is 

belowM~, then select a unit Y2j in stratum 2 

from N 2/2 units that are above M 2. The selected two 

units or pair (y~i, Y2j ) can be considered as a replicate 

or subsample. To complete the selections, we would 
simply place the first pair back into the population, then 
draw a second pair according to the same sampling 
p r o c e s s -  repeating the selection process until all m 
independent pairs are obtained. 

An equivalent pair selection process is to first define 
the "preferred" combinations or pairs so that the 
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combinations of Y~i and Y2j a r e  either 

{ (Y,,Y2j): Yli ~(a) and Yzj ~(d)} or 

{ (Y~, Y2:): Y~ ~(b) and Yzj ~(c)}. There are a total of 

N1N2/2 such preferred combinations. The sample 

would then consist of m pairs randomly selected from 

the N 1N 2/2 preferred combinations with replacement. 

The remaining N~N 2 / 2  combinations - those with 

both units y~ and Yzj above their medians or both 

below their medians -- are called "nonpreferred" 
combinations and not subject to sampling. 

For each pair (Yu, Yzj )selected from the population 

of N 1N 2 / 2  preferred pairs, define a replicate estimator 

0~ as 

1 (  ) N, N 2 
0 ~ = - ~  N~Yli+Nzyzj  , c t=1,2 --- 

' ' 2 

(2.1) 
Each c~ corresponds to a preferred pair uniquely, i.e., 
c~ ~ ( i , j ) .  Then the population consists of N~Nz/2 
replicates and a sample from the pair selection method 

consists of a simple random sample of m replicates 0~ 

randomly selected from all N1N2/2 replicates with 

replacement. 

There are a total of N~N 2 pairs of (Yli,Yz./)-- 

preferred and nonpreferred. If we define a replicate /'~ 

for each pair as 

) ta =-~  NlYli + N2Y2j , ~ = 1,2,---, N1N 2 

(2.2) 

then half of them are the same as 0~. A conventional 

stratified sample, comparable to the above pair 
selection, would mean selecting a simple random 

sample of m replicates /'~ from all N~N 2 pairs with 

replacement. 
In what follows we will confine further attention just 

to Method 2, which we will designate as the pair 
selection method. 

2.2 Sample Mean as an Unbiased Estimator 

We know that under conventional stratified sampling 
designs (with replacement)the unit selection probabilities 
at each draw are 

P (Yu selected) = 1/N 1 , for i = 1,2,...,N~ (2.3) 

P (Yzj selected) = 1/N 2 , for j = 1,2,..., N 2 (2.4) 

The unbiased estimator of the population mean Y is 

Ys, = (X~y~ + N z ~ z ) / N  (2.5) 

where ~ =  1~- ,  1 ~  m Yli and Y2--m YZj 
m ~=1 m • . _  

Under the median balanced sampling design, the sample 
mean is 

1 
Y-mb=-~(Nl~l + NE.Y2 ) (2.6) 

which has the same functional form as fist. The 

difference between (2.5) and (2.6) is that y~ and ,v2 

are independent in (2.5) and they are dependent in 
(2.6). The unconditional selection probabilities are still 
the same as those in conventional stratified sampling 
design, as defined in (2.3) and (2.4). It is straightforward 

to show that for Yzj < m2 , J = 1, 2,..., N 2/2,  

P (Yzj selected) 

= P { Y2j below Mz] First draw is above M~ } 

x P {First draw is above M~ } 

= (2 /U 2 ) x  (1/2)= 1/N 2 . 
Similarly, 

for yzj> M2, j=(~-~-L2 + 1 ) , ( - ~ + 2  / , . . . ,  N 2 ,  

P (Yzj selected) = 1/N 2 . 

Therefore, it follows that Ymb is an unbiased estimator 

of Y. 

2.3 Efficiency Gain Due 
Sampling 

to Median Balanced 

We are familiar with the variance of Ys, " 

N~2 Var(~ ) + N22 Var(y 2) Var(fist) = - ~  - ~  

where 

- -  (Yl, - ~ )2  Var(yl ) = m ,=1 

and 

= - -  (Y2j - Y2 )z Var(Y2 ) m j=l 

Now, it can be shown that under both selection methods 
of median balanced sampling, 

Var(fimb ) = Var(fist ) +2 (N, Nz /NZ )COVmb (fil , fi2) 

where 

COVr,,b (Y~, Y~ ) 

_ l . . . .  

2m 

(2.7) 
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_ 1 ( ~  _ ~2)(Y22 - ~ )  < 0 (2.8) 
4m 

[ See proof (A)]. Note the parameters Y~I, Y~2 , Y2~ and 

Yz2 are the four cell population means pictured in 

figure 1. 

The implication from the expression (2.8) above is that 

Var(~mb) < Var(~,,). So, we conclude that the median 

balanced sampling approach is superior to the regular 
stratified approach because of the negative covariance 

introduced between strata. Note that Cov,t(~,y2)=0 
under the conventional stratified sampling design 
because of the independence of sample selection 
between two strata. 

To see how much efficiency can be gained when 
balanced sampling is used we bring out four important 
special situations of potentially practical interest. These 
distributions (rectangular, symmetric triangular, right 
triangular, and triangular skewed to the right), when 
taken together, can often describe an empirical 
population distribution fairly well, despite the 
simplicity that each has alone. 

To give a specific idea of potential efficiency gains 
due to balancing on the median, we set the boundary of 
two strata using Neyman allocation approximately and 

calculate the ratio Var(Ymb) . A summary of the 
Var(fist ) 

Var(Ymb ) 
remarkable efficiency gains in terms of is 

Var(ys, ) 
presented under each of the distributions: 

0.25 0.43 0.33 0.33 to 0.43 

0 SAMPLE ESTIMATE OF VARIANCE AND 
ITS STABILITY 

We have shown that Var(fimb)< Var(fi,,). This is 

important in choosing a good survey design but not 
enough by itself. At the analysis stage where only 

sample data are available, the variance of Ymb will not 

be known; it must be estimated from sample data. So a 
stable and easy-to-calculate sample estimator is needed. 
To discuss this issue we will employ the notation 

V(Ymb ) for the sample estimator of Var(Ymb); and 

v(Y,t ) for the sample estimator of Var(Ys , ). 
Now v(y,,) is well known from conventional 

stratified sampling to be 

NI  2 N2 2 
V(Ys,) = - 7  v(y~) + N~ v(y~) 

where 

V ( y l )  - - ' ~  

v(y:) = - -  

m 
1 Z (y'' - -~' )2 

m(m- 1) i=1 

1 m )2 
m(m- 1) Z (Y2j - .v2 

j=l 

In this section, we propose an unbiased estimator 

V(~mb) for the sample obtained by the pair selection 

method (Method 2), and show that the stability of 

V(~,,,b) from the balanced sampling design is at least as 

good as V(~s,) from the stratified random sampling 

design. For another proposed unbiased estimator and 
its stability for the sample obtained by the unit 
selection method (Method 1), the same conclusion can 
be reached and the details can be found in Liu (1999). 

Suppose the sample is obtained by the pair selection 

method, then the sample consists of m replicates O~ 

defined by expression (2.1), (x ~ (i, j )  and 

c~ = 1,2,.--,m. Hence 

£ , 
Ymb-- : lm ot=l O0t : -~-(N,~, + N2.~2) 

a ~-->(i,j) 

The proposed variance estimator of fimb is 
m 

l ~~1 (O°t -- Ymb)2 V(Ymb ) =  m(m- 1------~ = 

-l(U~ ) U~ ~ V(Yl)+U~v(Y~)+ZU~U~ COVm~(y~,y~) 

where 
1 m 

COVmb (Y~, Y2 ) = m(m - 1) 2_, (Yu - .V~ )(Yzj - .V2 ) 
~ 1 = 

et <-->(i,j) 

Comparing v(.~s,) and V(~mb ) the only differences 

are the covariance terms, with 0 for v(.~,, ),  a nonzero 

term COVmb (.~ ,-V2) for the paired selection method. 

Furthermore, both v(~,, ) and V ( Y m b ) a r e  known to be 

unbiased. 

The functional form of Var{V(Ymb)} and 

Var{v(~,,)} can be derived. But it is complicated to 

compare Var{V(Ymb)} and Var{v(y,,)} through their 

analytic forms. So we will next show a better stability 
of the proposed variance estimators by looking at the 

ratio of IIar{V(~mb)} under the four theoretical 
Var {V(f s, ) } 

distributions. The number of replicates m has a minor 
impact on the ratio, so we show our results for two 
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specific values of m. The following summary of the 

simulation results shows a smaller Var{V(Ymb)} 
compared to Var{v(y~,)}" 

m =15 

m =500 

! /--. . , .  
0.20 0.35 0.23 0.23 to 0.35 

0.22 0.37 0.24 0.24 to 0.37 

From above results along with the results in Section 
2.3, the median balanced sampling, in special cases at 
least, has not only a higher precision at the design 
stage, but also its sample estimator of the variance has a 
better stability at the estimation stage. 

0 SOME RESULTS AND APPLICATIONS IN 
THE LARGE SAMPLE SITUATION 

In practice, the limiting results when the sample size 
n =2m ~ oo are often used as approximations when 
the sample size is large. For example, confidence 
intervals are based on the normal distribution. The 
accuracy of an asymptotic approximation is difficult to 
evaluate, but measures, such as asymptotic variance can 
be compared. In this connection, central limit theorems 
are a powerful tool in deriving properties of estimators 
without knowing the distribution of the original data. 
Perhaps most importantly, when the sample size is 
reasonably large, limiting results can be applied in the 
situations that exact results are impossible or too 
complicated to be of practical use. 

4.1 Gain in Efficiency When Stratifying on a 
Covariate 

So far we have assumed that the strata are set using 
the values of y - -  the variable of interest. We have also 
supposed that the sample selection also depends on the 
values of y. In other words, that the preferred 
combinations are determined by at least knowing which 
units of y are below or above strata medians. 

As we have shown if we could stratify by the values 
of y, the median balanced sample has a smaller 
variance, regardless of the sample size. In practice, of 
course, we rarely know the values of y in the 
population; instead, at best, we may have knowledge of 
values of a covariate x -- a variable we hope is closely 
related to y. 

In this section we explore the benefits on estimating 

Y with a median balanced design based on x. It is clear 
that we cannot specify the preferred combinations of y 

through (x~ ,x2 , - - - ,  x N); we can only specify the 

preferred combinations for x itself. But if x and y are 
closely related, we expect that a median balanced 
sampling design based on x to produce a better 

estimator of Y than the regular stratified random 
sampling design does - p r o v i d e d  the sample size is 
large enough. In examining this assertion, we use the 
fact that the relationship between sample means of y 
and x is asymptotically bivariate normal to show that 

V.ar(fimb ) <_ Var(fist ) [proof (B)]. 

If the strata are set by geographic units, we can still 
balance on the covariate x as long as the sample size is 
the same in each stratum. The conclusion that 

Var(Ymb)< Var(fis,)still holds under large sample 

assumption. 

4.2 Applications to Ratio and Regression Estimation 

Naturally, we expected that the median balanced 
sampling would result in a smaller bias and a smaller 
variance for these estimators; and, indeed, this turns out 
to be the case, under fairly general conditions. To 
examine the performance of ratio and regression 
estimators under the alternative sampling designs being 
considered, we will be using Taylor's series 
expansions, with all the necessary regularity conditions 
implied. 

The combined ratio estimators of R = Y/X  and the 

population mean Y from classical stratified random 
sampling are 

m 
^ 

/~s, = .V~, and YR-st = Ys___z, R =/~s,-Y 
Xst Xst 

respectively. 
The corresponding estimators from median balanced 

sampling are 

Rmb = Y__mb and ~n-,,b =Y____mb y = ~ r n b ~  
Xmb Xmb 

The combined ratio estimator is in general biased for 
both the sample designs under consideration. To 
quantify the bias, at least approximately, we employ a 
Taylor series approach as is commonly done in ratio 
and regression estimation. The first order 
approximation is believed to yield satisfactory results in 
large complex survey. 

When stratifying and median balancing are done on 
x, to a first order approximation [proof (C)], 

or equivalently, 

s,). 
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The combined linear regression estimators of the 

population mean Y from stratified sampling and 
balanced sampling are 

fi,r-s, : fis, + ~ ( X - x - - , , )  

Y~r-mb = Y--rob + ~ ( X -  X--rob ) 

where [3 is the estimate of regression coefficient from 

the sample. Here, the subscript /r stands for linear 

regression. Ylr-s, and Y~r-mb are not unbiased 

estimators of Y, but the biases under both designs are 
negligible. Their first order approximations of MSE 
[Proof (D)] are 

mgE(Ytr_st ) = Var(Ys, ) + ~3 2 Var(Y,, ) - 2~3Cov(~,, , Ys, ) 

MSE(Ytr_mb ) = Var(Y,,b ) + ~ ZVar(Ymb ) - 2[~CoV(Xmb, Ymb ) 

The comparison of above two equations leads to that 

M S E  (fi,r-,,,b ) < M S E  (Ylr-s, ) " 

5. EXTENTIONS 

We have avoided certain details so far to derive the 
results under the setting of (a) selection with 
replacement, (b) population size N a convenient 
multiple of the number of strata, and (c) two strata. As 
we will see, all these constraints can be relaxed. 

Sampling Without Replacement- -  In practice, 
sampling without replacement is often used. The 
estimated variance under without replacement sampling 
is always smaller than that under with replacement by 
introducing some form of finite population correction 
(pfc). However, the estimated variance for with 
replacement is often used even in the without 
replacement sampling situation because of its neater 
functional form. The effect is a slight overestimation 
when the sampling proportion is low and the fpc can be 
ignored. But fpc can be an important factor in some 
circumstances and so without replacement median 
balanced design must be taken up directly. It can be 
derived that under sampling without replacement (see 
Liu (1999)), 

2N1N 2 
Var(fimb ) = Var(y, ,  ) + COVmb (Y~ YZ ) + e 

N 2 

where 

COVmb (Yl '  Y2 ) -- 

and 

e = o (1 /N)  < 0 

1 N ' - m ( ~  _~2) (~22_~2 , )<  0 
4m N~ - 1 

Therefore, Var(Ymb ) < Var(Ys, ) .  

Population Size Not Conveniently Divisible -- When 
population size N is odd, a minor adjustment of the 
sampling process ensures the same first and second 
order selection probabilities. One operationally 
straightforward adjustment is provided here. The strata 

boundary can be chosen such that N1 is odd and N 2 is 

e v e n -  with equal sample sizes m in both strata. The 
sampling process follows what is described in Section 
2.1 with one exception. If the middle unit in stratum 1 
is selected, the matching unit from stratum 2 will be 

selected from all N 2 units without balancing on the 

median of stratum 2 as we would do for non-middle 
units. The variance of the sample mean is very close to 
the general result in Section 2.3. See Liu (1999) for 
details. 

More than Two Strata -- In generalizing the results 
obtained so far to more than two strata, we first 
consider the three strata case. Similar to the two strata 
case, divide the finite population into 3 strata such that 
a sample of size n (assume n is an integer multiple of 
3) allocated to each of the three strata with m =n /3  

units. Assume N~, N 2 and N3, the population sizes 

of 3 strata, be even numbers. Define z / as 

NlYli  + NEYEj 
z /=  , l = 1,2,---,N1N 2 

N 1 + N 2 

and let M z be the median of the z t . We first select 

units from strata 1 and 2 using balanced sampling 
method, then conditional on whether the corresponding 

value of z t is above or below M z , we select units 

from stratum 3. 
This selection pattern can be used for more than 

three strata. When the number of strata is even, we can 
use the two strata balancing technique for every two 
adjacent strata. 

6. BRIEF SUMMARY 

In summary, we believe we have provided a better 

estimator than .vs, of the population mean through the 

use of our proposed balanced sampling designs and the 

corresponding proposed estimators such a s  Ymb and 

V(~mb). Median balanced sampling design thus can be 

seen as generally an improvement over conventional 
stratified sampling design. We have had considerable 
experience in its use and are pleased with how well 
practice bears out theory. 

Proofs and references are available upon request. 
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