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1 I n t r o d u c t i o n  

In spatial sampling, the research area often is di- 
vided into small rectangular grids and these grids 
are considered as the sampling units. Consider an 
adaptive cluster sampling type of design applied to a 
framed spatial population with N units, denoted by 
1, . . . . . .  , N. If the inclusion of unit i can lead to the 
inclusion of units j which is in the neighborhood of 
i, then we define an arc (directed) which starts from 
i and ends at j ,  denoted by the ordered pair (i, j ) .  
Therefore, we can consider our population as a graph 
which contains a vertex set V = {1, . . . . . .  , N}, 
which is the collection of all units in this popula- 
tion, and an arc set E = {( i , j ) l i ,  j E Y}, a set of 
ordered pairs describing the connection between the 
population units. 

V -  {1, . . . . . .  ,N}  

E - { ( i , j ) l i , j  C V} 

a - { V , E }  

Further, we can define an adjacency matrix A to 
represent this graph, where ,4 is an N by N matrix 
and the elements aij in A is (e.g. Foulds [1992]) 

1 if (i, j )  C E 
aij  -- 0 O t h e r w i s e  

Additionally, we also define aii -- O, Vi C V, that  is, 
the diagonal of A is 0. 

~S In the general setup of graph sampling, aij are 
considered as random numbers or unknown con- 
stants with possible values of 0 or 1. This can be 
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simplified in the framed spatial population because 
the natural  framed population structure. After the 
neighborhood has been defined in a framed spatial 
population, since the arc from i to j (and from j 
to i) exists only if i and j are neighboring to each 
other, therefore we can conclude that  

if i and j are not neighboring,aij - aji - O, Vi, j E V 

Notice that  this information can be gathered before 
any sample has been selected and observed. There- 
fore, generally most of the elements aij in A can be 
determined as 0 before the sampling procedure. 

The definition of in-degree of a unit i is the total  
number of units from which we can reach i. There- 
fore, the in-degree of unit i is the column sum of the 
ith column of ,4 

in-degree of i - 
N 

E aj i  -- a.i 
j - 1  

Similarly, the out-degree of unit i is the number of 
units which can be reached from i. Therefore, the 
out-degree of i is the row sum of the ith row of ¢4 

out-degree of i - 
N 

E aij  -- ai. 
j = l  

Additional information which can also be known 
after the neighborhood has been defined is the max- 
imum values of the in-degree and out-degree of each 
i, which are both equal to the number of units in the 
neighborhood of i. 

The out-degree of a unit which is in the final sam- 
ple of ACS can be determined exactly after the sam- 
ple has been observed. In ACS, all of the units in 
the neighborhood of a unit which have been observed 
and its associated value of variable of interest sat- 
isfies C, then all the units in its neighborhood are 
supposed to be included in the sample as well. The 
out-degree of the units which has been observed can 
be determined as 
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number of neighboring units of i, if yi E C 

ai. - 0, otherwise 

For the purpose of constructing a Horvitz- 
Thompson estimator for the population quantity of 
interest, on the other hand, the essential element in 
the graph sampling is not the out-degree but the 
in-degree of the sampling units. However, the in- 
degrees of the units that  does not satisfy C can not 
be determined in ACS with the final data. Con- 
sequently, the inclusion probabilities of these units 
can not be determined. Thompson [1990] discarded 
these units which are not initially selected and used 
the initial intersection probability instead of the 
actual inclusion probability to obtain a modified 
Horvitz-Thompson type unbiased estimator. This 
technique is effective only if every units in the ini- 
tially selected networks can be included into the final 
sample, though. 

Also, we can conclude the following lemma by the 
property of ACS 

L e m m a  1 (i, j)  E E ¢:~ Yi E C and i,j are neigh- 
boring. 

Incomplete Adaptive Cluster Sam- 
pling Design 

As in the usual finite population sampling, we con- 
sider that  the population consists of N units labeled 
from 1, . . . . . .  , N. For each unit i E {1, . . . . . .  , N}, 
there is a associated value of variable of interest Yi. 
An initial sample of size n < N is sampled by sim- 
ple random sampling without replacement, denoted 

(o) s(n o) by s (°) - (s 1 , . . . . . .  , ). Also, the collection of 
units which are not included in the initial sample is 
defined as s (°)' - {1, . . . . . .  , N} \ s (°). After s (°) 
has been observed, if any of ys~0) E C, then all the 

units which are in the neighborhood of s~ °) will be 
added into the sample and observed. Define the col- 
lection of such new sampling units which are not in 
s (°) as s (1). The same adaptive procedure will apply 
to s (1) as well to get another set of new sampling 
units which is denoted as s (2), and so on. Notice 
t h a t s  (i) Ms (j) = ~ i f i  ~ j a n d  

m 

s (m)' = {1, . . . . . .  , N }  \ U s(i) 
i--1 

The sampling procedure will be stopped if either 
of the following conditions happens 

1. No new unit can be added into the sample. This 
is the original stopping rule of ACS. 

2. s (M) has been sampled and observed, where 
M _> 0 is a pre-specified positive integer. That  
is, even if 3i E s (u) such that  yi E C, the 
units in the neighborhood of i which belong to 
s (M)' will not be added into the sample. 

The number M is the maximum number of steps in 
an IACS. Notice that  if M - 0, then it is the design 
which is the same as the conventional design that  
is used for the initial selection. The possible edge 
units and networks which would be encountered in 
this IACS are defined as what has been defined in 
the original ACS of Thompson [1990]. 

3 Properties of IACS 

In the general graph theory, a path is defined as a 
walk from unit (vertex) il to in 

[il, . . . . . .  , i n - l , i n ]  

such that  all the units in this walk are distinct. Con- 
sider there is an adaptive adding process which is 
initiated by unit io, that  is, io E s (°) and Yio E C. 
Suppose that  a unit j ~t s (°) is included into the 
sample because of this adding process which is ini- 
tiated by i0 and j E s (n). If the walk which starts 
from io to j under this IACS design is 

[i0, il, . . . . . .  , in-1 ,  j], 

then this walk is a path. 

L e m m a  2 Given the condition above, 

[i0, i l ,  . . . . . .  , i n -  1, j] 

, is a path 

Define the length of a path is the number of the 
units after i0 or before j .  For example, the length 
of the path [i0, il ,  . . . . . .  , i n - l ,  j] is n. In an IACS 
design with maximum number of steps M, we define 
the existence of a path as 

D e f i n i t i o n  1 A path [io,il, . . . . . .  , i n - l , j ] ,  n < M ,  
exists if and only if all of the following conditions are 
satisfied 

1. Yik E C , V k E  { 0 , . . . , n - I }  and 

2. ik and ik+l, V k -  0 , . . .  , n -  1 and i n - l ,  j are 
neighboring. 

3. io is selected into the initial sample. 
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A new variable lij which represents the length be- 
tween the units i and j as 

De f in i t i on  2 I f  the path [i, . . . . . .  ,j] exists, then 
l i j -  the length of the path from i to j .  

Obviously, lii -- 0 and the maximum value of jij  
is the pre-specified maximum number of steps M. 
Also, according to the design in which whenever a 
encountered unit satisfying C, then all of the units 
in its neighborhood will be included as well, lij will 
be the length of the shortest path which starts from 
i to j .  Notice that  this path may not be unique but 
the value of lij is. On the other hand, the existence 
of the path that  starts from i to j does not guar- 
antee the existence of the path starting from j to i. 
However, if such path does existence, then lij - lji. 

L e m m a  3 Under the design, if the path starting 
from i to j exists and j E s then 

1. The path starting from j to i exists as well and, 

2. l i j  - -  l j i  

We can also give the necessary and sufficient con- 
dition for a unit j to be included into the final sam- 
ple, which is denoted by sfi,~at, under the IACS de- 
sign with the maximum number M 

L e m m a  4 j E 8final ¢=~ 3i E s (°) such that 3 a 
path which starts from i to j exists and lij ~ M 

In fact, the condition of i E s (°) is rather re- 
dundant since it is one of the necessary conditions 
for a path which starts from i exists. A unit which 
is not initially selected can be included into the fi- 
nal sample due to more than one initially selected 
units. Define the collection of units which can be 
included if unit i is initially selected as s(i). Obvi- 
ously, lji _~ M, Y j E s(i) if the path starting from 
j to i exists. Also notice that  for i, j E s, s(i) and 
s(j) are not necessarily to be disjoint, but we may 
like to arrange our initial sample in such way that  

s(i) M s(j) - 0 ,  V i, j E s, i ~ j 

in practice. 

4 Inclusion Probabil ity 

The inclusion probabilities for the units in the same 
network are the same in the original ACS (e.g. 
Thompson [skt1990]) but different in IACS. One can 
imagine that the border units will have smaller in- 
clusion probabilities than others. In fact, the in- 
clusion probability in IACS needs to be considered 

separately for each unit which is included in the fi- 
nal sample. For an IACS design with the maximum 
number of steps M, the necessary and sufficient con- 
dition for a unit to be included into the final sample 
is given in Lemma 4. 

Assume that  the probability for a unit i to satisfy 
C is pi, 

P(yi  E C) - pi 

where pi can be a given constant population parame- 
ter or an estimated value. For the purpose to simply 
the following discussion, we assume that  pi's are in- 
dependent probabilities. Also we assume the prob- 
ability for a unit i to be included into the initial 
sample is qi. 

P(i  C s (°)) - qi 

For example, if the initial design is a simple random 
sampling without replacement and the initial sample 
size is n, then qi - 1 -  (N-1) / (N) ,  V i. Under the 
design and the assumed population model, we can 
then calculate the inclusion probabilities of each unit 
in the final sample. 

There are some units in the initial sample of which 
the inclusion probabilities can be determined exactly 
without using the assumed model. If an initially se- 
lected unit satisfying C, the the inclusion probabil- 
ity of this unit can be determined by the following 
theorem 

T h e o r e m  1 I f  an initially selected unit i satisfying 
C, then the inclusion probability of i, denoted by 7~i, 
is 

1 (1) 

where ni is the number of units which belong to s(i) 
and satisfy C. 

Although we also can determine the exact inclu- 
sion probabilities of some other units by observing 
the final sample, however, it is not necessary to state 
all these miscellaneous cases. 

The number of possible paths from i to j is a finite 
integer, denoted by n_~. For the purpose to simplify 

the notation, define i j k ,  k = 1, . . .  nij to represent 
the possible nij paths which start from i and end 

'S at j .  Notice that the length of all possible ~3 k 
are equal to lij. The following theorem then follows 

.--+ 
immediately from Lemma 4 with this notation ~3 k, .-+ 
notice that  one of the necessary condition for i3 k to 
exist is i E s(°). 
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T h e o r e m  2 

P(j ~ s ~ )  
= P  (3 i such that 3 k E { 1 , . . .  , ni j  }, 

.-=+ 

z3 k exists under  the design) 

We can then calculate the inclusion probabilities for 
every units j E S yinat by the following discussion. 

Consider there are nij  possible paths z3 k, k - 
1 , . . .  , ni j  for each i C {1, . . . . . .  , N} as 

, . . .  , ~ k  , . . .  , ~ ~  

. -4  
z3z • • • ~ ~3 k ~ • • • ~ ~3 n i ~  

1 ~ • . • ~ k ~ • • • ~ ~ 3  n N j  

Let Ai jk ,  where i = 1 , . . .  , N  and k = 1 , . . .  , ni j ,  

represent the event such that  the path ~ k  e x i s t s  

under this IACS design with the maximum number 
of steps M, then the inclusion probability of j is 

P (j  e sf inat)  - P ( [ _ J  Ai jk  ) (2) 
i , k  

and Equation 2 can be calculated by the additive 
theorem in probability theory. 

In order to apply the additive theorem to Equa- 
tion 2, we need to know the probabilities of all the 
single events and the intersections of all the pos- 
sible combinations of Aijk 'S.  Under the initial de- 
sign and the population model described in this 

. - -+ 

section, the probability for the path U k to exist, 
under the IACS design with the maximum num- 
ber of steps M, can be obtained by the following 
lemma. Notice that  the initial design is a conven- 
tional design, therefore, the initial inclusion prob- 
abilities qi, Vi C {1, . . . . . .  ,N}  are independent 
from pi, the probabilities to satisfy the condition of 
interest, V i E {1, . . . . . .  , N}. 

L e m m a  5 The probability for  
[i, i l , i 2 ,  . . . . . .  , i n , j ]  to exist  is 

I "  

) _ ~o  
P ( A i j k  

t qi " Pi " Pil • • "Pin 

a path ~3k = 

i f  lij > M 
(3) 

i f  lij ~ M 

The probability to satisfy the condition of interest 
which depends on the population model can be a 
given constant or estimated value. However, if a 
unit i has been observed, then V i E sfinat 

1 i fyi  E C 

P i -  0 ify~ ~ C 

Similarly, the probability for two different 

paths ~3 = [i, i l ,  . . . . . .  , in , j ]  and - 
," "' j] to exists simultaneously is [i' ~i, . . . . . .  , ~ , ,  

P(Aiyk  t.J Ai, jk, ) = qii' " 

P ( i ,  i' and all of the intermediate units in (4) 
.-+. 
~3k and z 3k' satisfying C) 

where qii, is the probability of both i and i ~ are in- 
cluded in the initial sample. For example, with an 
initial design of simple random sampling without re- 
placement and if i ~ i ~, 

The probability for more than two paths which can 
reach j exists simultaneously can be obtained by the 
similar principle in Equation 4. 

4.1 E x a m p l e  

Consider a population of Figure 1, the variable of 
interest yi is a indicator variable with values of 0 
or 1. This indicator variable indicates whether a 
cell, which is the sampling unit, satisfies some pre- 
specified criterion C or not. For example, it can 
be used to indicate the presence (yi - 1 ) or ab- 
sence (yi = 0) of certain object in each cell. The 
neighborhood of a unit is defined as the four adja- 
cent units on the direction north, south, east and 
west. The condition of interest is C - { y : y - 1}. 
That  is, if the indicator variable of a initially se- 
lected unit is 1, then the units in its neighborhood 
will be included into the sample as well. Also, the 
adding process will be stopped after s (2) has been 
included into the sample. In order to keep our dis- 
cussion simple, only one unit (5,5) was selected into 
the initial sample. The observed value of unit (5,5) 
is Y(5,5) -- 1 E C, therefore all the units in (5,5)'s 
neighborhood are included and observed. After the 
adaptive sampling procedure stopped at the second 
step, we have 

s(O) 

s(1) 

s (2) 

= {(5 ,5)}  
= { (5, 4), (5, 6), (4, 5), (6, 5)} 
= { (5, 3), (6, 4), (4, 4), (3, 5), (4, 6)} 

and the associated observed values are 

Ys(0) - {1} 

Ys(1) - {1,0,1,0} 

ys(2) - {0 ,0 ,0 ,1 ,0}  
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The observed units are blocked by the bold line as 
which in Figure 1. 

Figure 1" A simple population 

7 ? 

6 ? ? 0 0 

5 ? ? 1 1 1 0 

4 ? ? 0 1 0 

3 ? 0 

1 2 3 4 5 6 7 8 

Table 1 shows the actual inclusion probabilities of 
all the units which are included into the final sample. 
The simulated inclusion probabilities are simulated 
out of 100,000 populations of which the values of 
the observed units are fixed as what has been ob- 
served, and the values of the unobserved units are 
simulated under the assumed population model of 
which P(i,j) -- 0.3Vi, j - 1 , . . .  , 8. The edge units 
are marked by the • sign. 

Table 1: The actual inclusion and simulated inclu- 
sion probabilities of each unit in the final sample of 
the population in 1 under the IACS design and the 
population model with P(i,j) - 0.3 Vi, j = 1 , . . .  , 8. 
The initial sampling design is a simple random sam- 
pling with size 1. 

Inclusion Probability 
Unit Actual Value Simulated Value 
(5,5) 0.06250 0.06216 
(5,4) 0.04688 0.04651 
(4,5) 0.07656 0.07625 
(3,5) 0.06994 0.06899 

(5,3)* 0.06994 0.06993 
(5,6)* 0.07848 0.07721 
(6,5)* 0.07848 0.07897 
(6,4)* 0.06286 0.06305 
(4,6)* 0.07708 0.07717 
(4,4)* 0.09270 0.09180 

5 A d j a c e n c y  M a t r i x  

The motivation of the idea to find all the possible 
paths which can reach a unit in order to calculate 
its inclusion probability is to avoid the complexity 
which may be caused by an intuitive approach. An 
intuitive way to obtain the inclusion probability of a 
unit i is to find the possible number of units which 
can lead to the inclusion of i, if they satisfy the con- 
dition of interest C. Denote this number to be mi .  
Due to the uncertainty of the unobserved units and 
the design, there would be some different possible 
values of mi .  If there are H possible numbers of mi, 
denoted by mih,  h = 1 , . . .  , H, of units which can 
lead to the inclusion of i, then the inclusion proba- 
bility of i can be written as 

H 

where N is the population size and n is the initial 
sample size. And we also need to find the probability 
of P(mi) ,  It can be really tedious to find all the 
possible mi's and the associated probabilities. 

In Figure 1, all the units which are marked by the 
"?" sign are the unobserved units which can possibly 
contribute to the inclusion probability of unit (3, 5). 
The possible number of units which can lead (3,5) to 
be included into the final sample ranges from 4 to 12. 
We also have different combinations of units which 
can lead to the same number of m(3,5). For exam- 
ple, there are 10 different possible combinations of 
unobserved units which can make the number m(3,5) 
to be 6. The process will easily become too compli- 
cated to finish while the number of the maximum 
steps M increases. 

On the other hand, the approach which proposed 
in Section 4 can be assisted by the adjacency ma- 
trix to calculated the inclusion probability with an 
efficient and systematic method. Also, this method 
will still be fairly simple even with a large M. 

Define an adjacency matrix A = {a i j } i , j  = 1 . . . . .  N ,  

after the final sample has been collected, such that  
if i E S/inat and j in in the neighborhood of i, then 

0 ifyi  ~t C 
a i j -  1 if yi G C 

and aij -- 0, V i , j  C { 1 , . . . , N }  if i and j are 
not neighboring. Also, we define a i i  : 0 V i. By 
this definition of an adjacent matrix .A, we will then 
be able to find all of the possible paths which we 
need in calculating the inclusion probabilities of the 
sampling units in the final sample. First of all, I shall 
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state a well-known theorem in graph theory with the 
notations analogous to which in Section 1 

T h e o r e m  3 Let G = {V, E } be a graph, where V 
and E are as which given in Sect ion 1, and .4 is 
the associated adjacency matr ix  with G. Then V k E 
Z +, ai k - ( i , j ) t h  entry of  .A k, aij is the number  of  
dif ferent walks f rom i to j of  length k. 

We can have the following corollary by Theorem 3 

h _ 0 V h E Z + and h < k, C o r o l l a r y  1 I f  aij 

k is the number  of  different paths f rom i to j then aij 
of  length k. 

We can now construct a general algorithm to 
search all the possible paths of a unit i by using 
Corollary 1. Given the maximum number of steps 
M ,  we first construct the adjacency matrix ,4 as 
what has been defined as above after the final sample 
has been collected and observed. Then Vi E Sfinat, 
we can 

0. Let { i } -  s~ °). 

1. Collect all the j E V such that  aij - 1, denote 
(1) i.e. ( 1 ) _  {j E this collection of units as s i . s i 

V l a i j  - 1} 

(k-~) 
k. Let sl k) - { j '  E V I 3 i '  E s~ , a~,j, - 

t - 0 V / < k }  1 and aij, 

Until k - M. 

With all the sl k), k _< M ready, we can then con- 
struct all the possible paths which will be used in 
calculating 7ri, the inclusion probability of unit i. 
First, we need to find all the 

[i, i l ,  . . . , i k - i ,  ik], k ~_ M 

such that  aiil - aili2 = • • • -- ai~_li~ = 1 and it E 

sl l), V 1 = 1 , . . .  , k. Then all the possible paths, if 
they exists, which can reach i in at most M steps 
will be in the reverse direction of those paths which 
we have constructed above. The procedure which 
has been discussed in Section 4 then can be applied 
for the inclusion probability of i. 

6 D i s c u s s i o n  

The inclusion probability of the final sample ob- 
tained by the procedure in the previous sections can 
be used to construct a Horvitz-Thompson type esti- 
mators. If Pi is a given constant population param- 
eter, then the inclusion probability in Theorem 2 

is the exact inclusion probability of a final selected 
units. Consequently, the Horvitz-Thompsom esti- 
mator  based on this inclusion probability will be an 
unbiased one. If pi needs to be estimated and an 
unbiased estimator is available, then the Horvitz- 
Thompson type estimator will be a moment estima- 
tor. The properties, such as the unbiasedness and 
MSE, of this estimator then need to be examined 
according to different population models. 

One possible advantage of using a population 
model to estimate pi and the Horvitz-Thompson 
estimators is that  we can make use of some prior 
knowledge of the population. But, meanwhile, we 
usually only need to estimate the probability of 
which y~ belongs to some pre-specified set rather 
than yi itself. It might improve the robustness from 
using a pure model-based estimator if the population 
model is mis-specified. 

A wide class of population models can be applied 
in this approach. In a practical framed spatial popu- 
lation, whether a unit satisfies the condition of inter- 
est usually depends on its neighboring units because 
of the natural  spatial dependence. The assumption 
of the independent pi in the discussion of Section 4 
will often over-simplify the practical situation. How- 
ever, with the approach using the idea of path, it 
seems natural  to introduce a Markov Random Field 
model into this framework. Under this situation, a 
more sensible way to estimate the inclusion proba- 
bility P ( j  E s final) might be to estimate the prob- 
abilities of the existence of events Aijk 'S,  as well as 
the intersection probabilities of different Aijk 'S  ex- 
ist simultaneously, but not Pi seperately. And then 
Theorem 2 can be applied. A well defined Markov 
random field can help us to describe the dependence 
between the neighboring units. A further study for 
combining a practical spatial population model with 
the approach introduced in this chapter should be 
conducted in the future. 
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