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1 I n t r o d u c t i o n  

Adaptive cluster sampling (ACS) was introduced by 
Thompson (1990) as an efficient sampling procedure 
to estimate totals and means of rare and clustered 
populations. The idea behind this method is to take 
an initial sample by some ordinary sampling proce- 
dure, and then to increase the sample size by adding 
elements in the vicinity of the sampled units that 
satisfy a previously specified condition. Despite the 
appropriateness of this sampling design for sampling 
clustered populations, one of its main drawbacks is 
the lack of control of the final sample size. Several 
suggestions have been proposed to limit the final 
sample size. For instance, Brown (1994) has pro- 
posed an ACS version in which the initial sample 
is sequentially selected until the final sample size 
reaches a specified value or first exceeds that  value. 
Although this design controls well the final sample 
size, efficient estimators have not been developed un- 
der this design. Salehi and Seber (1997) have pro- 
posed a two-stage ACS version in which the whole 
vicinity of a secondary sampling unit is restricted to 
lie within the primary sampling unit that  contains 
the secondary unit. Despite the fact that efficient 
estimators of the population mean have been devel- 
oped, the problem with this design is that  large-size 
clusters are not completely sampled, but only their 
portion or portions that are intersected by the pri- 
mary units in the initial sample are sampled. There- 
fore, in the case of populations with large-size clus- 
ters (with respect to the size of the primary units), 
a reduction in the efficiency of this sampling design 
should be expected. 
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In the context of conventional designs, dou- 
ble sampling designs have been used in situations 
where the survey variable is expensive or difficult- 
to-measure, and it is cheaper or easier-to-measure 
an auxiliary variable correlated with the survey vari- 
able. The strategy used in double sampling is to take 
a large-size initial sample and measure the auxiliary- 
variable values associated with the elements in that 
sample. Then, a small-size subsample is taken from 
the initial sample and the survey-variable values as- 
sociated with the elements in the subsample are mea- 
sured. Regression type of estimators are used to es- 
timate the population mean because they allow one 
to take advantage of the relationship between the 
survey variable and the auxiliary one. One of the 
advantages of this design is that even with a few 
measurements of the survey variable it is possible to 
get good estimates of the population mean. 

The goal of this paper is to develop a sampling 
design which combines the ideas used in ACS and 
those used in double sampling. This new sampling 
design, which we have called Adaptive Cluster Dou- 
ble Sampling (ACDS), is appropriate when the con- 
dition for additional sampling can be based on an 
easy-to-measure auxiliary variable x correlated with 
the survey variable y. For example, in some situ- 
ations, even without measuring the actual y-value 
associated with a unit, it might be possible to de- 
cide whether or not that  value satisfies the condition 
for additional sampling; hence, a potential auxiliary 
variable could be a binary variable which takes the 
value 1 if the y-value satisfies the condition for addi- 
tional sampling and the value 0 otherwise. In other 
situations, the auxiliary variable could be defined 
as that whose values are "eyeball" estimates of the 
actual y-values, or that  whose values are measure- 
ments of the y-values made with a not very accurate 
instrument. The idea behind ACDS is to model the 
relationship between y and x through a regression 
model and to take an ordinary adaptive cluster sam- 
ple based on the auxiliary variable. Notice that the 
x-value associated with each element in this sample 
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is measured, and because the auxiliary variable is 
inexpensive and easy-to-measure, a relatively large- 
size initial sample could be employed to select the 
adaptive sample, which would increase the proba- 
bility of detecting clusters with elements satisfying 
the condition. Then, using the network structure 
of the adaptive cluster sample, a subsample of net- 
works is taken by means of a conventional design. 
Finally, from each network in the subsample, a sam- 
ple of units is taken, using a conventional design, 
and their y-values are measured. Despite the fact 
that  this design would not allow one to control the 
number of measurements of the auxiliary variable, it 
would allow one to take a previously specified num- 
ber of measurements of the survey variable. Regres- 
sion type of estimators could be used to estimate 
the population mean, which can be based on one 
of the estimators proposed by Thompson (1990), a 
Horvitz-Thompson type of estimator (HTE) and a 
Hansen-Hurwitz type of estimator (HHE). 

In this paper, we will focus on the construction of 
a regression estimator based on the HTE, and on an- 
other regression estimator constructed by applying 
the estimating function approach to the HTE. We 
will also present asymptotic expressions for the vari- 
ances of the regression estimators, and estimators of 
those variances obtained by using the Delta method. 
In the last part of this paper we will present the re- 
sults of a simulation study carried out to compare 
the ACS design with the ACDS procedure. 

2 Notation and design 

Let U = {ul, . . . ,UN} be a finite population of size 
N. Let us denote by y and x the survey variable 
and the auxiliary variable, respectively. Similarly, 
let yi and xi be the values of y and x associated with 
the element ui, i = 1 , . . . ,  N. We will assume that  
the relationship between y and x can be modeled 
through a stochastic regression model ~ with mean 
E~(yi]xi) - x~/3 and variance V~(yilxi ) - vi a2, 
i = 1 , . . . , N ,  where xi is a vector in R p, whose 
elements are functions of the auxiliary variable xi 
[for example if xi C R, then we might have xi = 
(1, xi,x2i)t], and vi - ~(xi),  where the function ~p is 
assumed to be known. Let Yu = (Yl,-..,YN) E R N 
and xu C R N × R p be the population vector of 
the y-values and the population matrix of the x- 
values, respectively. Let #y - ~N=I y i / N  and 

tt× - ~-~g= 1 x i / N  be the population means of the y- 
values and x-values, respectively. Throughout this 
paper, the goal is to estimate p y ;  however, because 
of the assumed regression model, we will also require 
to estimate the finite population regression parame- 

ter B .  = ( x u t v u - l x u ) - l x u t v u - l y u ,  where vu is a 
diagonal matrix whose elements are the variances vi, 
i - 1 , . . . ,  N. Notice that  Bu can be thought as the 
finite-population version of the regression parameter 

The first phase of an ACDS procedure consists of 
taking an ordinary adaptive cluster sample $1 based 
on the values of the auxiliary variable. To do this, we 
first define both a condition Cx for additional sam- 
pling and a set of neighboring units for each unit 
ui E U. Next, by using an ordinary sampling proce- 
dure, we select an initial sample So of n units from 
U. We observe the x-values associated with the units 
in So, and we add to the sample the neighboring 
units of every unit in So that  satisfies Cx. We re- 
peat this procedure with the new added units, and 
we stop when no new added unit satisfies Cx. The 
set formed by an original unit ui C So and the units 
added as a consequence of including ui in So is called 
a cluster. A cluster minus its edge units (units which 
do not satisfy C) is called a network, as does any set 
formed by a single unit which does not satisfy C~. 
The definition of C~ and that  of neighborhood give 
rise to a partition of U into K networks A1,..., AK,  
and from among these networks, the initial sample 
So intersects k different of them. 

The second phase of an ACDS procedure consists 
of selecting a conventional sample $2 of kl (kl _< k) 
networks, A 1 , . . . ,  Ak~, from the k different networks 
intersected by So. Finally, the third phase consists of 
taking a conventional subsample of units from each 
network in $2, and recording the y-value associated 
with every unit in those subsamples. Here, we will 
assume that the kl subsamples are independently 
selected. 

The previous description of the ACDS procedure 
suggests that  the second and third phases are car- 
ried out once the first phase has been completed, and 
therefore, that  the subsampled networks are visited 
two times (one on the first phase, and another one 
on the second phase). However, if we decided to 
subsample every network intersected by So, then we 
could subsample a network as soon as we know which 
units belong to that  network, and consequently, each 
network would be visited only one time. Neverthe- 
less, the procedure consisting of subsampling after 
the first phase has been completed allows the re- 
searcher a better control of the size of the subsam- 
ple. 

To conclude this section we will introduce the fol- 
lowing notation. We will denote by mi the size of 
the network Ai, and by Y/ and Xi the sums of the 
y-values and x-values in Ai, that  is, Yi - -  ~~u~EAi YJ 
and Xi - ~-']ujeA, xj,  i -- 1 , . . . , K .  The sub- 
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sample taken from Ai will be denoted by S3i, and 
by m i (m~ <_ mi )  we will denote the size of S3i, 
i = 1 , . . . , k l .  Finally, the set of units whose y- 
values are measured will be denoted by $3, that is, 

kl S3i $3 - -  Ui= 1 

R e g r e s s i o n  e s t i m a t o r s  o f  t h e  p o p u -  

l a t i o n  m e a n  

To estimate the population mean #y, we propose 
to use regression-type estimators. As was indicated 
previously, different types of regression estimators 
can be constructed depending on whether we want 
to use HTEs or HHEs. In both cases, the general 
form of the regression estimator is 

I I I  /11 

(1) 

where/2 x is an estimator of/z x computed from the 
,., I I I  

elements in the adaptive cluster sample $1; #y and 
I I !  

/2 x are estimators of #y and/Zx, respectively, com- 
puted from the elements in $3; and t3s3 is an esti- 
mator of Bu computed from the elements in $3. 

In the case of the regression estimator based on 
the HTE,/2 x is given by 

1 ~ l x i  ' 
~ x -  N i=1 7r i 

where Xi = EujEA.  x j ,  and 7ri is the probability 
of intersecting Ai by So, i = 1 , . . . , K .  For ex- 
ample, if So were a simple random sample with- 
out replacement (SRSWOR), 7ri would be given by 
7ri - 1 - ( N - m ~ ) / ( N ) . n  To construct the estima- 

I I I  l i t  

tors /2 x and/2y,  we first need to estimate Xi and 
Y/ from the observations in S3i, i -- 1 , . . . , k l .  To 
estimate these quantities, we need to take into ac- 
count the sampling design used to select S3i. For in- 
stance, if S3i were a simple random sample without 
replacement (SRSWOR), an estimator of Y/ could 
be Y/ - ( m i / m ~ ) ~ u ~ e S 3 i  YJ" Here, we will assume 

that appropriate estimators l)/ and Xi of Y/and Xi 
^ !11  !11 

have been constructed. Then, HTEs of #y and/2 x , 
based on the sample $3, are 

1 Y/ and fZ x N 7riTrilsl /;u N i=1 7riTrilsl i=1 

where 7ri]sl is the conditional probability, given S1, 

of including the network Ai,  i - 1 , . . . , k l ,  in the 
second stage sample $2. Finally, an estimator 13s3 
of Bu, constructed from the elements in $3, is 

- -  1 k l  1 (XY)i, 
I3s~ - 1 (XXt) i  7riTri[sl 

ki=l  7riTri[s~ = 

A A 

where (XX t)i and (XY)i are estimators of 
± x .  t and ~ eA~ ~ x j y j  respectively. E ujEAi vj 3Xj 

By using the formula for the variance of a three- 
phase-sampling estimator (see Cochran, 1977, p. 
276), we have that 

V ( ~ n )  - V l  {E2[E3 (/;R - #y)]} 

+ E l  {V2[E3(/2R - #y)]} 

+El  {E2[V3(/2R -- #y)]} 

- - V F P  -~- V S P  -Jr- V T P ,  

where the subscript i of the expectation (variance) 
operator indicates that the expectation (variance) 
is taken over all the/-phase sample selections, and 
V F P ,  V S P ,  and V T P  a re  measures of the variability 
corresponding to the first, second and third-phase 
sample selections, respectively. 

By using the Delta method, and a similar strategy 
to that used by S/irndal et al. (1992, Section 9.7) we 
get the following asymptotic approximation to V F p :  

K K 
1 - 7riTr j 

vF,,  
i=1 j = l  7riTrj 

where 7rii - 7ri, i - 1 , . . .  , K .  Similarly, an asymp- 
totic approximation to V s p  is 

V S P  ~ E1 ] 7rijlsl -- 7rilsl 7rjlsl Ei  Ej  

i=1 j=l 7rils 17rjlsl 7ri 7rj ' 

_ t Bo is the popula- where Ei = 2 u j E A i  ej,  ej y j - - x j  
tion regression-error associated with uj E Ai ,  7rijlsl 
is the conditional probability, given $1, of including 
the networks Ai and Aj ,  i 7 ~ j ,  in the second-stage 
sample $2, and 7riils I - 7rils~ , i - 1 , . . . ,  k. Finally, 
if the estimators I)/ and Xi used in the third-stage 
sampling are HTEs, then an approximation to V T p  
is 

1 k/~ 1 1 
V T P  ~ EIE2 ~ (TriTrilsl )2 

".__ 

×  JJ'l,- 

ujEAi uj, CAi 7rjliTrj'li 
, 

where 7rjl i is the conditional probability, given $2, 
that uj is including in S3i; 7rjj, li, j ¢ j ' ,  is the con- 
ditional probability, given $2, that both uj and uj, 
are including in S3i; and 7rjjli = 7rjli, j = 1 , . . .  , k l .  

An estimator V(/~R) of V(/SR) can be obtained 
by constructing estimators of V F p ,  V s p ,  and V T p .  

341 



An estimator of V F P ,  obtained by using the Delta 
method, is 

V F p - - - - ~  E 7rij -_ 5i2j _Yi __g 1-2 7ri 
i=1 j = l  7rijTrijlsl 7ri 7rj 7r i 7ril s "--- 1 

x =JJ'l - = ; I , = J ' l ,  ] 
ujeSai U j l e S 3 i  7rjj'liTrjliTrj~]i YJYJ' " 

Similarly, an e s t i m a t o r  ~VrSp of V s P  is 

1 kl kl 

9 s p  - - S  - 
"= j = l  7rijls~Trils~jlsl 

7C i 7C t l i 7r j E 
Ut ~ 3i Ut ~ S 3 j  

1 ~2~ 1 - 7rilsl Vs3i 
N 2 Z .  7r2 2-~ , 

i=1 ilsl 7ri 

7rtld 

( 2 )  

where 

ujES3i uj, ESai 7rjJ'liTrjliTrj'li 

t ^ and ~j - y j  - x j g s a .  Finally, an e s t i m a t o r  ~rTp of 
V T P  is 

1 kl 1 
9s i. 

Therefore, 9(/5R)is  given by 9 ( ~ . )  - V F p + g s p +  
"~r T p . 

A slightly different regression estimator (/5~) can 
be obtained by solving the following set of estimating 
equations: 

k 

^ 1 ( x j - ~ x ) - 0 ,  

i=1 uj EAi 

k l  
1 

i--1 
- - 0 ,  

[ ( ~ ) i - -  ( X - X t ) i ~ ]  

and 

Gs3 (Y83, xs3, #y) 

- + - 

i--1 7ri7rilsl 
= 0 ,  

where/2~ is the solution of the first equation, 13s3 is 
the solution of the second one, and rhi is an estima- 
tor of the size mi of the network Ai. This set of equa- 
tions gives rise to an estimator of the same form as 
that  given by (1), but the value of N that  appears in 

the estimator ~ is replaced by Nsl k - 

^ I I I  I I I  

and the value of N appearing in #y and /2  x is re- 

placed b y  - 

The asymptotic variance of ~ ;  is the same as that  
of fiR. The variance of ~ ;  might be estimated by the 
same estimator used in the case of fiR; however, an 
alternative variance estimator is obtained by replac- 
ing the N 's  appearing in the expression for V(/;R) 

by/~-s i • 

4 M o n t e  C a r l o  s t u d i e s  

To compare the performance of ACDS with that  of 
ACS two simulation studies were carried out. Next, 
we will describe both studies. 

4.1 A s i m u l a t e d  p o p u l a t i o n  

A population of point-objects was generated from a 
Poisson Cluster process, conditioning on the num- 
ber of "parents". The number of parents was set 
to 4, and they were randomly located in the study 
region. The study area was a 25 x 25 unit square 
divided into 625 equal size 1 unit 2 quadrats. Pois- 
son distributions with means 100, 70, 30 and 20 
were used to generate the number of offspring as- 
sociated with parents 1, 2, 3 and 4, respectively. 
The offspring were placed around their parents using 
bivariate normal distributions with means centered 
on the parents '  locations, and compound symmet- 
ric variance-covariance matrices. The values of the 
variances were set to 4, 4, 1, and 1 (listed in the 
same order as that  of the means of the Poisson dis- 
tributions), and those of the correlations were set to 
0.3, 0.3, 0 and 0. If a coordinate of a child's location 
was outside the study region, that  coordinate was 
set to a value on the border of the region. The y- 
value associated with each quadrat  was the number 
of point-objects located in the quadrat.  The finite 
population mean was # = 0.414. 

Three sampling designs were compared: the or- 
dinary ACS design, and two variants of ACDS. In 
the three cases, the initial sample of quadrats was 
selected by a SRSWOR design, and the neighbor- 
hood of a quadrat  was defined as the set consisting of 
that  quadrat  plus the quadrats  placed directly to the 
north, south, east, and west of that  quadrat.  In the 
case of ACS, the condition for additional sampling 
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Table 1: Simulation results based on 2000 replicated samples 
Sampling 

design 
ACS 

ACDS I 

ACDS I 

ACDS II 

Initial 
sample size 

10 

16 

30 

23 

Marginal 
costs 

co = 1000, cl - 100, c2 - 20, 
c3 - 90, c4 - 15 

c~ = 1800, c~ = 15, c~ = 20, 
c~ - 10, c~ - 15, c~ = 100 

c~ = 1200, c~ - 15, c~ - 20, 
c~ - 10, c~ - 15, c~ - 100 

c~ - 90 
c~ - 1000, c~' - 15, cg - 20, 
c~' - 10, c~' - 15, c~' - 100 

Expected 
cost 

3307.41 

3303.78 

3289.96 

3286.27 

Exp. numb. 
of y-values MSE 

21.1 .1206 

6.3 .0818 

6.3 .0413 

11.8 .0459 

was Cy - {y "y  _> 1}. In the case of the two vari- 
ants of ACDS, the auxiliary variable was defined as 
x j  - 1 if unit  uj  satisfies Cy, and x j  - 0 otherwise, 
and the condition for addit ional sampling (based on 
x) was Cx - {x"  x _> 1}. The previous definitions 
of neighborhood and criteria for addit ional sampling 
gave rise to a part i t ion of the s tudy region into 556 
networks. Only 5 of those networks had y-values 
greater than  zero. The sizes and y-values of those 
5 networks were the following: ml  - 25, m2 - 25, 
m3 - 15, m4 - 8, m5 - 1; Y1 - 101, Y2 - 80, 
Y3 - 6 1 ,  Y4 - 16, and Y5 - 1. 

In both variants of the ACDS procedure, every 
network intersected by the initial sample was sub- 
sampled (kl - k), and the subsamples were taken 
by SRSWOR designs with sizes proport ional  to the 
network sizes. The difference between the two vari- 
ants was tha t  in one, which will be labelled ACDS 
I, the max imum number  of y-measurements  to be 
recorded was previously specified, and the subsam- 
ples were assumed to be selected once the adap- 
tive sample based on x had been completed. As 
was indicated previously, this would imply tha t  ev- 
ery network tha t  contains quadrats  satisfying Cy 
was visited two times. In the other variant,  which 
will be labeled ACDS II, the number  of recorded y- 
measurements  was not controlled, and the subsam- 
pie S3i was selected as soon as the x-values asso- 
ciated with quadrats  in the network Ai were regis- 
tered. This would imply tha t  every sampled network 
was visited only one time. 

To make a fair comparison of the three designs, 
a cost function was defined for each design (except 
for the ACDS I design, which had two cost func- 
tions associated with it), and the initial samples 
were determined so tha t  the expected costs of the 
three designs were almost the same. In the case 
of ACS, the initial sample size was set to n - 10 

quadrats ,  and the cost function was defined a s  C T  : 

co + c lnc  + c2(n  - nc)  + C3Vc + C4l/edge, where CT 
and co were the total  and the fixed costs; cl, c2, 
c3 and c4 were the cost of measuring the y-value of 
an initially sampled quadra t  satisfying Cy, an ini- 
tially sampled quadra t  which does not satisfy Cy, 
an adaptively added quadra t  satisfying Cy, and an 
adaptively added quadra t  which does not satisfy Cy; 
and nc,  l/c and l/edge were the number  of initially se- 
lected quadrats  satisfying Cy, the number  of adap- 
tively added quadrats  satisfying Cy, and the number 
of adaptively added edge units. In the case of the 
ACDS I design, the max imum number  of recorded 
y-values was set to 7, and the cost function was de- 

! ! ! 
fined as C ~ - C ~o + C l n c + C ,2 ( n, _ n ,c ) + C ,3 l/ c + C ~4 i/edg + 

I c'hn c + c ' 6 ( m ' - n ' c ) ,  where the costs C~., c~, c~, c~, 
c~ and c~ were similarly defined as those in the cost 
function for the ACS design, but they refer to costs 
of measuring x-values instead of y-values; the costs 
c~ and c~ were the costs of measuring the y-values of 
an initially selected unit satisfying Cy and an adap- 
tively added unit  satisfying Cy; n ' ,  nc; l/c' and l/'edge 
were defined as in the previous case; and m ~ was 
the total  number  of y-measurements .  Finally, in the 
case of the ACDS II design, the size of the subsam- 
ple S3i was set to 30% of the size of the network Ai, 
i - 1 , . . .  ,k, and the cost function was defined as 

" " " 

C ~  - cg + c  1 ,re c - r t c ) +  Yc + l/edge , 
where the costs C~, c~, c~ ~, c~ ~, c~ ~ and c~ were sim- 
ilarly defined as those in the cost function for the 
ACS I design; c~ ~ was the cost of measuring the y- 
value of a unit  satisfying Cy; and the numbers n",  

" " " and m"  he, l/c, l/edge were similarly defined as those 
in the cost function for the ACDS I design. 

In the case of the ACS design, the population 
mean was es t imated by the Horvi tz-Thompson type 
of est imator.  In the case of the ACDS designs, the 
population mean was es t imated by (1), which in the 
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Sampling 
design 
ACS 

ACDS II 

ACDS III 

Table 2: Simulation results based on 10000 replicated samples 
Initial Marginal Expected Exp. numb. 

sample size costs cost of y-values 
5 co = 1000, Cl - 100, c2 = 20, 1904.64 7.7 

15 

15 

c3 = 90, c4 = 15 
I I  I t  I I  

c o - 1000, c I - -  15, c 2 -- 20, 
l /  I I  I I  

C 3 - -  1 0 ,  C 4 - -  15, c 5 = 1 0 0  
I I  I I  ' I I  

c 0 - 1 0 0 0 , c  1 - 1 5 ,  c 2 - 2 0 ,  
I I  I I  I I  

c 3 - 10, c 4 - -  15, c 5 - 100 

1901.198 

1901.198 

4.2 

4.2 

MSE 
65909.29 

199710.9 

5451.344 

case of our auxiliary binary variable x, it reduces 
^ l i t  

to the unbiased estimator #v • The simulation mean 
square errors (MSE) of the estimators, based on 2000 
replicated samples, are shown in Table 1. From the 
results in this table, we can see that  all the con- 
sidered ACDS designs gave better results (in terms 
of the MSE) than those given by the ACS design. 
The minimum MSE was achieved by the design that  
used the largest initial sample size. In fact, for the 
particular sampled population there is a decreasing 
relationship between the MSE and the initial sample 
size. The reason for this is that  the variability within 
each network is not so large (S12 - 11.29, S~ - 5.91, 
S 2 - 6.92, S 2 - 1.71, and S 2 - 0); therefore small 
subsamples are enough to yield good estimates of 
the network-totals Yi, and the best strategy is the 
one that samples, in the average, more number of 
networks. 

4.2 A rea l  p o p u l a t i o n  

Here, we considered a population of blue-winged 
teals reported in Smith et al. (1995). The study re- 
gion was a 5000 km 2 rectangle divided into 5 × 10 = 
50 quadrats of 100 km 2. The y-value associated with 
a quadrat was the number of birds in that  quadrat, 
and the population mean was # = 282.42. In this 
study, we considered the same definitions of x, Cv, 
Cx, and neighborhood of a quadrat  as those given 
in the previous study. Those definitions of neighbor- 
hood and criteria for additional sampling gave rise 
to a partition of the study region into 38 networks. 
Only 3 of those networks had y-values greater than 
zero. The sizes and y-values of those 3 networks were 
the following: ml = 7, m2 = 7, m3 = 1, Y1 = 53, 
Y2 = 14066, and Y3 = 2. It is important to indicate 
that  the y-value associated with one of the quadrats 
in the second network was equal to 13639, and that 
this y-value was responsible for the high value of Y2. 

We compared the ACS design, the ACDS II de- 
sign, and another variant of ACDS, which will be 
labelled ACDS III. This variant was identical to the 

ACDS II design but whenever the second network 
was intersected by the initial sample, the quadrat 
with y-value equal to 13639 was included in the sub- 
sample S3i with probability 1. The results of this 
study, based on 10000 replicated samples are shown 
in Table 2. From this results, we can see that the 
ACDS II design performed very badly. The problem 
with this design is t h a t t h e  variability within the sec- 
ond network was 2.6 x 107. On the other hand, the 
very good performance of the ACDS III design is be- 
cause the inclusion of the quadrat  with the highest 
y-value in S3i with probability 1 reduced the within 
variability of the second network to 5346.2, which is 
not so large. 
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