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Introduction 1 
In recent years, with the rapid increase of data sources on 
the Internet, there has been increasing concern about the 
possibility of matching records from publicly released 
survey microdata files with records from other sources 
that are readily available to a data intruder. The concern 
is that the data intruder would be able to use certain 
variables found on a typical survey microdata record that 
does not contain explicit identifiers (such as name, 
address, telephone number, or SSN) and match these 
variables to those found on some record in a different 
data source that does contain explicit identifiers. The data 
intruder would then be able to identify the respondent 
associated with the matched microdata record. This 
identification would cause various types of problems. If 
the survey were conducted with a promise of 
confidentiality to the respondents, it would violate that 
promise. If the identification were publicized, it would 
likely decrease the response rates on future surveys 
conducted by the organization conducting the survey and 
probably also by other survey organizations as well. The 
seriousness of such disclosures is also related to which 
sensitive items are on the survey record and thus can be 
acquired by a data intruder. Income, living arrangement 
information, and health history, are often considered to be 
among the more sensitive items that appear on 
demographic surveys. 

been explored in the literature with the goal of 
determining their effect on disclosure risk. What we 
believe is new here, is the application of specific 
measures of disclosure risk and information loss to a 
specific survey file. Information loss is measured using 
Shannon entropy. 

In general, there are several reasonable definitions of 
disclosure risk and for each there is often more than one 
way to estimate the associated measure. We chose one 
commonly used measure, namely the fraction of records 
in the microdata file that are unique in the population 
associated with the file. Two points should be made here. 
First, the estimation of this fraction of uniques is not done 
with the set of all file variables but only with the largest 
subset of the file variables that we suspect are accessible 
to a data intruder. Such a subset is called a 'key' for the 
disclosure problem for the given file. Second, since the 
survey is typically not a census, we need to estimate the 
fraction of unique records in the population from the 
fraction of records that are unique in the sample. 

The last goal of the paper is to express the tradeoff of 
maximizing information while insuring that disclosure 
risk is below an acceptable threshold. We express this in 
various ways as an optimization problem. There is 
similar work in the literature (ref: Z, DE). 

I. Assessing information associated with individual 
variables 

With disclosure risk reduction as the motivation, we 
explore information-reducing methods that are simple to 
implement and to fine-tune. We confine ourselves to an 
often used method, coarsening or broadening 
(combining) of categories. We also mention how 
measurement error affects the choice of categories. 
Several other methods for information-reduction have 

1This paper reports the results of research and 
analysis undertaken by Census Bureau staff. It has 
undergone a more limited review than official Census 
Bureau Publications. This report is released to inform 
interested parties of research and to encourage 
discussion 

a. Data quality; its effect on information 
Data quality, specifically the response error of a given 
variable, is clearly related to the information content of 
the variable. Response error may be viewed as a data 
modification performed prior to data collection. It's a 
complicated type of data modification having both 
deterministic and stochastic components that are reflected 
in the response bias and variance. Response error is a 
complex topic which has been the subject of entire books 
(ref: BGLMS, F, LK). We are including a brief 
discussion of this topic because it affects decisions about 
optimal interval sizes for continuous variables and the 
optimal number of categories for discrete variables. 
Normally one strives in a survey for the highest quality 
data possible. However, there is at least one positive 
aspect to poor data quality; it often makes the data 
intruder' s effort to match a survey record with an external 
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database record more difficult (ref: WdW, p.vii). (One 
exception to this is the case of biased data with the same 
bias on many files.) 
A rough estimate of the measurement error for each of the 
key variables is needed to determine the set of 
'reasonable categorizations'. This idea is discussed 
below and then is used in the formulation of the 
optimization problem. For example, using a very narrow 
interval for categorizing annual income (say, $10) is not 
reasonable due to the ambiguity of the term 'income' and 
the various levels of precision with which it is reported 
on surveys. 

b. Coarsening microdata to reduce disclosure risk 
Coarsening of data can be applied to both continuous and 
discrete variables. We will give an example of 
coarsening for each variable type and then discuss ways 
to measure the associated information loss. Coarsening of 
data has been a common method for data reduction for 
many years. It is known by many other names depending 
on the type of variable being coarsened, e.g., collapsing 
(or rolling up or combining) of categories, reduction of 
detail, or downscaling. For a general discussion of 
coarsening, including top and bottom coding, see EURO. 

i. Continuous variables 
For continuous variables, coarsening means decreasing 

the precision at which observed values are reported. For 
example, income is, for practical purposes, a continuous 
variable. As mentioned above the data quality of 
responses on these items may be low for various reasons. 
To the extent that the respondent tries to report an 
accurate response but fails to, due to exclusion or 
inclusion of some minor source of income, or some 
minor misunderstanding in the time interval for the 
income, it makes sense to conclude that income is 
reported only approximately. If this assumption is made, 
it can be expressed to some extent by using income 
intervals rather than a precise value. In so doing one is 
essentially discretizing the income variable, i.e., 
converting a continuous one to a discrete one. 
Discretizing is one way of expressing one' s uncertainty of 
the true value. One could argue that there are better ways 
to express the uncertainty in the variable due to 
measurement error. In particular, one could try to 
construct an interval about each response that reflects a 
95% probability that the true value lies in the interval. If 
this were done, we would have, in general, a number Of 
intervals equal to the number of responses, and the 
intervals would overlap. One could derive a measure for 
the uncertainty of a given response based on the width of 
its 95% interval. 
However, for simplicity, we restrict ourselves in this 
paper to the traditional way of constructing uncertainty 

intervals, i.e., a set of intervals that form a part i t ion of 
the value space from the bottom code or value (often 
zero) to the topcode or value. 
Once the decision to discretize is made, one must decide 
on the interval widths. One may take uniform intervals, 
e.g. for income one may take $1000 intervals, k * $1000 
to (k+l) * $1000 for k=0,1,2,3 ..... (topcode/1000)-l. The 
upper bound of such intervals may be chosen large 
enough to include all the responses, or it may be 
topcoded. Whether to topcode (or bottom code), and if 
so, at what level, are important decisions affecting 
disclosure risk. Non-uniform intervals are acceptable 
although they may be somewhat difficult to implement. 

ii. Discrete variables 
For discrete variables, coarsening means combining 
categories. For example, a question may have several 
categories (possible responses) but we may wish to 
combine some of themprior  to analysis. Similar to the 
decision for interval construction for continuous 
variables, it is necessary to decide how many categories 
to form and how small a proportion to allow for a single 
category. Similar to including thin tails for continuous 
variables, maintaining certain small proportion categories 
can greatly increase disclosure risk. 

iii. A potential increase in population information 
The practical information about a variable may decrease 
only slightly under a discretization. Even in cases in 
which the practical information does decrease 
significantly after a discretization, further computations 
involving the (now) discrete variable may lead to results 
that are insignificantly different from the result that 
would be produced based on the original (continuous) 
variable. On rare occasions, discretization may even 
have a positive effect on the information gained about the 
variable as a result of some process. Suppose, for 
example, the computational goal is to form a histogram 
for a continuous variable that approximates closely the 
true density function. Suppose the sample file contains 
records for only a small fraction of the population. Then 
moderate coarsening may have only a negligible effect on 
the histograms. Indeed, because overfitting a sample can 
lead to misleading results, there will be situations in 
which the coarsened data will actually lead to a 
histogram that better approximates the population density 
than one based on a very fine partition (ref: LZ). 

iv. The entropy measure of information content for a 
single variable 
There are various definitions of entropy. Shannon 

entropy H - - ~  p/ log(pi ) is commonly usedin 

books on mathematical (statistical) information theory 
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(ref: A, K). The key ideas about entropy as a measure of 
information content are: (1) entropy represents the 
average uncertainty removed by a sample of the variable 
(2) for a given discretization of a variable, the more 
uniform the distribution of the probability function, the 
greater the entropy (3) for a given sample of a variable, 
the finer the discretization used the larger the entropy. 
With the more familiar term "bin width" as used for 
histograms, we can say the smaller the bin widths, the 
larger the entropy. Other researchers have mentioned 
using entropy as a measure of information content or loss 
(ref: WdW, p. 138, DE, Z) 

c. Other deterministic methods for decreasing 
information (local suppression) 
Local suppression means blanking of data in microdata 
variable fields. This is sometimes done when the values 
are thought to be extreme enough to pose a disclosure 
risk. The effect of this information reduction depends on 
the categorization that has preceded the local suppression. 
If, for example, an extreme value is in a 1-cell (i.e. a cell 
with a value derived from only one respondent), the 
information reduction may be significant. Entropy may 
be used to measure this. 

coarsening X can be gotten simply by calculating one- 
dimensional H(X) before and after the coarsening. 
Typically, however, the key variables are dependent and 
then we need to calculate the joint H before and after the 
coarsening of each variable to measure the informational 
impact. 

Now we present an example of change in information 
content when two variables in a 4-d table are coarsened. 
Let's say we have four key variables that are categorical 
(possibly including ones that have been discretized). 
Label them X1,X2,X3,X4. Suppose the first two are 
being considered for coarsening. Let Y1,Y2 be the 
coarsened variables corresponding to X1,X2. Then, 
unless we know that Y 1 and Y2 are each independent of 
the other variables, we need to compute 
H ( X 1 , X 2 , X 3 , X 4 ) ,  H ( Y 1 , X 2 , X 3 , X 4 ) ,  
H(X1,Y2,X3,X4) and H(Y1,Y2,X3,X4). The maximal 
information content, as measured by H, occurs for the 
most finely discretized (i.e. least coarsened) set of 
variables, viz. X1, X2, X3, X4. 

IIl. The disclosure risk and information content 
tradeoff 

II. Measuring combined information from two or 
more variables 

We first note that the general statements about entropy for 
a single variable stated above generalize easily to the 
multivariate case. The main change is that discretizations 
here produce table cells rather than one-dimensional bins 
as mentioned above. Thus, H measures the information 
content of a multidimensional table. The joint uncertainty 

of variables X 1 , X2, . . . ,  X n , 

H(X1,  X2 ..... Xn) - 

-- Z p(Xl,  XZ,..,X,,)" Iog(p(Xl,XZ,. . ,X, ,))  
Xl,X2,...Xn 

eq.(1) 
over the table formed by a given discretization of the 

Xi 's. Note that H > 0. A basic theorem states that: 

H (  X ~, X2 ..... X,,) _< H (  X ~) + H (  X 2)÷...÷ H(X,,) 
eq.(2) 
with equality if and only if the Xi' s are independent (ref. 
A, p.19). 

Using (2) with the knowledge or assumption that a key 
variable X that is to be coarsened is independent of the 
other key variables, the informational effect of 

a. The effect of coarsening on disclosure risk 
i. Estimating the fraction of uniques in the population 
One commonly used measure of disclosure risk is the 
fraction of records in a survey file that are unique in the 
population (i.e. survey frame). A mathematical statistical 
problem of great interest over the past decade is how best 
to estimate this fraction. In our calculations below, we 
used a formula that uses only the fraction of uniques in 
the sample. (Other, perhaps more accurate 'extension' 
formulas, use more equivalence class data from the 
sample, e.g., the number of k cells for k small). There is 
limited numerical evidence that a simple formula based 
only on uniques in the sample provides a good estimate 
of the fraction of uniques in the population if the 
population is no greater than 10 times the size of the 
sample(ref: GZ). Thus, with a given microdata file that 
constitutes a sample of some population, one may 
compute the number of uniques for a given sample file 
and key, and then one may use that number to estimate 
the fraction of uniques in the population. For simplicity, 
however, in our examples below we will consider our 
samples to equal our population so that use of a 
'extension' formula will not be needed. This 
simplification does not detract from the results below; 
they require only some (reasonable) measure of 
disclosure risk for the given microdata file. How well this 
risk can be estimated is a separate question. ( For 
examples of the 'extension' formulas see ref GZ or M). 
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ii. Viewing uniques in a table 
It is useful to view the records as distributed in a 
(frequency) count table whose dimensions are determined 
by the key variables. This assumes all the variables are 
discrete; i.e., the continuous ones have already been 
discretized prior to table formation. With this "table- 
view" of the file, the unique records lie in 1-cells, i.e., 
they are the only records with a key vector that matches 
the cell's categories. 

In terms of this "table-view," in order to minimize 
disclosure risk, we should coarsen the variables to 
minimize 1-cells and probably also 0-cells. Suppose we 
have a table of dimension two or more formed by 
crossing discrete variables each with a finite number of 
categories. In order to reduce sample uniques, we need 
to determine whether there is a subset of the set of table 
variables that seem to be most responsible for creating 
small cell sizes. Most likely these are variables that have 
very non-uniform frequency distributions. In particular 
they probably have some categories wi th  very low 
proportions. We can only say 'probably' because it is 
possible to get a one count or even a zero count in a cell 
which is the intersection of two variables with at least 
moderate size frequencies for each category, if the 
variables are correlated. This can occur in a table of any 
dimension; i.e., a cell can represent a small frequency 
even though none of its corresponding marginal 
frequencies is small. Nevertheless, it is often the case 
that combining categories in some of the table's variables 
will eliminate most of the small cells, in particular the 0 
and 1- cells. 

iii. Disclosure risk associated with 0-cells 
The presence of 0- cells may be quite informative; e.g. it 
may show (or suggest) functional relationships among the 
variables. However, from a disclosure point of view, zero 
cells may pose a risk. In particular, zero cells at the upper 
and lower ranges of a given variable indicate upper and 
lower bounds on the values of the given variable for the 
sample data. Of course, this may not extend to the 
population but it is suggestive if the sample is a large 
fraction of the population. Knowing that any person with 
a given combination of demographic-geographic variables 
has an income (or other sensitive variable) in some 
narrow range may represent a disclosure if it is easy to 
determine if a person is a member of the group defined by 
the given combination of demographic-geographic 
variables. This situation is called an at tr ibute disclosure. 
Note that this type of disclosure does not require a 
matching file (ref: WdW, p.92). 

b. The dilemma and the need for a tradeoff 
In general, finer discretizations yield more informative 

views of the data. Thus any proposed measure of 
information content should have the property that it 
increases as the discretization becomes finer, or 
equivalently, it should decrease as coarsening is 
increased. The entropy H, that we are using here as our 
measure of information content, has this property. 
However the number of uniques increases as the 
discretization is made finer. This leads to the dilemma: if 
there a way of balancing the dual requirements of high 
information content and low disclosure risk? If so, can it 
be found as the solution to a mathematical optimization 
problem? What are possible formulations of this 
problem? 

The tradeoff 
The goal is to have the optimal balance of an informative 
and low disclosure risk microdata file. This implies an 
optimal balance of information content as measured by 
an information function applied to the table generated by 
the key variables, and disclosure risk as measured by 1- 
cells in the same table. Before formulating this tradeoff 
using functional notation, we present results from an 
American Housing Survey (AHS) national microdata file. 
This file consists of an approximately 1 in 2000 sample 
of all housing units in the United States. 

c. Examples from the AHS public use microdata file 
Consider the 1997 AHS national microdata file (ref: 
HUD-WEB, HUD) Let the key consist of the variables: 
SEX, RACE, AGE, SALARY. There are many other 
variables one could select for the key but our ideas can be 
illustrated with these four. The full sample file has 
102,761 records. All records have data for SEX, RACE, 
and AGE. However, 21,194 records have missing data for 
SALARY. Most of these are for persons under 16. For 
simplicity we will eliminate all the records with missing 
data; this leaves us a file with 81,567 records. 

The frequency tables for SEX and RACE are: 

SEX Frequency Percent 
Male 38830 47.6 
Female 42737 52.4 

RACE Frequency Percent 
White 67500 82.8 
Black 8845 10.8 
Amer Ind., Aleut 511 0.6 
Asian / Pacific .Is. 2954 3.6 
Other 1757 2.2 

AGE is an integer from 0 to 90 (i.e. 90 is a topcode). 

We will consider two coarsenings of AGE. 
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AGE3: 0, 3, 6, 9 ...... 90 
AGE5: 0, 5, 10, 15 ..... 90 

We present the AGE5 distribution below. The data for 
SALARY were missing for all persons under 14 so there 
are no age groups below 15. A code of 3"i for AGE3 
represents those in the sample with ages 3"i, (3"i)-1, and 
(3"i)-2. Similarly for AGE5. The 0 category includes 
only 0. 
We consider four discretizations of the continuous 
variable SALARY. We use 0 as a category, and then 
equal width intervals of sizes $1000, $2000, $5000, 
$10000 up to the topcoded value of $100,000. We present 
the SAL10000 distribution below. 

AGE5 Freq. % SAL10000 Freq. % 

15 3349 4.1 0 30615 37.5 
20 7213 8.8 10000 13772 16.9 
25 6347 7.8 20000 11360 13.9 
30 7225 8.9 30000 9715 11.9 
35 8063 9.9 40000 6386 7.8 
40 8476 10.4 50000 3754 4.6 
45 7804 9.6 60000 2155 2.6 
50 7201 8.8 70000 1200 1.5 
55 5397 6.6 80000 825 1.0 
60 4437 5.4 90000 404 0.5 
65 3832 4.7 100000 1381 1.7 
70 3664 4.5 
75 3461 4.2 
80 2550 3.1 
85 1570 1.9 
90 978 1.2 

Now we describe eight tables each of which is generated 
by SEX, RACE, AGE3 or AGE5, and one of the S AL 
variables. 

Variables: 
1. SEX, RACE, AGE5, SAL10000 
2. SEX, RACE, AGE5, SAL5000 
3. SEX, RACE, AGE5, S AL2000 
4. SEX, RACE, AGE5, SAL 1000 
5. SEX, RACE, AGE3, SAL10000 
6. SEX, RACE, AGE3, SAL5000 
7. SEX, RACE, AGE3, S AL2000 
8. SEX, RACE, AGE3, SAL 1000 

#(cells) 
2090 
3990 
9690 

19,190 
3410 
6510 

15,810 
31,310 

Let NZ denote the number of non-zero cells. 

The units of the entropy H are bits per record since we 
used logarithms to the base 2 for calculating it. Since H 
is the expected information revealed by a sample record, 
the units are bits 'per record'. 

TABLE: INFO-DRM points 
NZ #(1-cells) %uniques H: (bits/record) 

1. (1730) 352 0.43 8.56 
2. (3157) 828 1.02 9.29 
3. (4765) 1490 1.83 9.75 
4. (1627) 307 0.37 8.66 
5. (2557) 607 0.74 9.24 
6. (4513) 1353 1.66 9.95 
7. (6630) 2301 2.82 10.40 
8. (1078) 173 0.21 7.97 

d. Tradeoff Thresholds and The Tradeoff Rectangle 
We have a multiple criteria optimization problem. 
Perhaps the simplest way to treat such a problem is to 
establish a threshold for each criterion. For this tradeoff 
problem we need to establish an information threshold, 
T-info, and a disclosure risk measure threshold, T-drm. 
A data modification and the key formed by the associated 
modified variables are 'acceptable' only if both : 

(i) Info > T-info and (ii) Drm < T-drm 

A data providing agency might establish a rule that a 
survey file can be released only if all keys formed from 
intruder accessible variables, either original or modified, 
are acceptable. In this paper, we have confined our 
discussion to the modification of coarsening, the 
disclosure risk measure to the fraction of sample records 
that are unique in the population, and the information 
measure to entropy. 

If two or more modifications have been applied to the 
sample data, e.g the eight discretizations listed in the 
tables above, we can plot the values for each of the 
criteria in a graph that has one dimension for each 
criterion (see graph below). Clearly the conditions Info> 
T-info and 0 < Drm < T-drm imply the acceptance region 
is an infinite rectangular strip in the plane. It is possible 
that for a given value of one criterion there will be more 
than value of the other criterion. One simple way of 
selecting the "optimal" value is simply to take one of the 
acceptable points with the largest value of T-info. In other 
words, select a modification which has the largest 
information content among all modification that have an 
acceptably small value of disclosure risk. Of course, one 
could instead select the point with the minimum 
disclosure risk with an acceptably high value of 
information. In many cases, we would suppose, these two 
strategies lead to nearly the same result if a large of points 
in the upper right region of the Info-Drm rectangle are 
calculated. In the graph below, all points satisfy the T- 
info condition, and all but one satisfy the T-Drm 
condition. Therefore point 6 in the INFO-DRM table for 
which (Info, Drm) = (9.95, 1.66) is optimal. 
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It may be possible to determine by curve fitting or by 
theory, some functional relationship between Drm and 
Info for (a 1-parameter) continuously varying set of 
modifications (ref: ZE). In that case, we would expect 
that Drm would be an increasing function of Info. This 
property expresses the basic tradeoff between disclosure 
risk and information in functional form. When two or 
more sets of modifications are considered, as in this 
example, one can expect only a roughly monotonic 
relationship (see fitted line in graph). 

Our values for T-drm and T-info in the graph were 
arbitrarily chosen. Obviously there must be an objective 
way of determining these values. One way to determine 
the latter is to survey data users on whether a modified 
microdata file has sufficient information to be useful. 

IV. Conclusions 

We have discussed some general ideas for deciding which 
modification of the raw microdata has the optimal balance 
of disclosure risk and information content. There are 
several aspects of this problems that need to be explored 
in order to convert these ideas to a practical procedure; 
(1) need to decide on one, or at most a few, measures of 
disclosure risk; (2) need to determine ways of calculating 
information loss for modifications other than coarsening, 
e.g., noise addition and swapping; (3) need to find a 
justifiable way of establishing thresholds for disclosure 
risk and information; (4) need to determine if use of a 
multiple criterion threshold function is a better way to 
determine optimal balance: if so, need to construct an 
optimal such function. 
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