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1. INTRODUCTION 

In conducting surveys, people have always had to face 
problems of missing data. For a few decades, survey 
statisticians have made use of donor imputation 
techniques to treat nonresponse. One only has to think 
of the time of punch cards when a missing record was 
replaced by the card of a respondent. That is how hot- 
deck (a form of donor) imputation was born. Over the 
years, donor imputation went through several 
refinements, the major one being making use of 
auxiliary variables available for both respondents and 
nonrespondents. In this case, in an attempt to find a 
donor most similar to the missing record, the closest 
record (according to some distance measure) is used. 
This closest matching hot-deck has been called nearest 
neighbour imputation since Sande (1981). 

feature however, but nearest neighbour imputation has 
the advantage of using auxiliary information. It also has 
an intuitive appeal. These reasons, plus the good 
formal properties discussed in Chen and Shao (1997) 
and in Section 4 now make nearest neighbour 
imputation a prime candidate for any imputation 
strategy. 

In Section 2, there is a brief description of Statistics 
Canada's GEIS. As the uses of nearest neighbour 
imputation have preceded the complete understanding 
of its properties, Section 3 presents three important 
applications of nearest neighbour imputation at 
Statistics Canada before Section 4 which describes 
nearest neighbour imputation using a model approach. 
In Section 5, variance estimation is discussed for the 
model assisted approach and for the jackknife technique 
as well as in terms of its implementation at Statistics 
Canada. Finally, a number of issues are presented in 
Section 6, followed by concluding remarks in Section 7. 

Already in Sande (1979), a description of the nearest 
neighbour imputation in the context of numerical 
imputation for business surveys could be found. Then, 
Kovar (1982) carried out an empirical study which 
showed the superiority of nearest neighbour imputation 
over hot-deck. With the advancement of technology, 
nearest neighbour imputation has also become easier to 
program. At Statistics Canada, the Generalized Edit 
and Imputation System (GEIS) was developed in the 
mid and late 80's and it certainly explains, at least in 
part, why in the past ten years nearest neighbour 
imputation has become so popular. At Statistics 
Canada, it is now used in a number of agriculture, 
business and household surveys. 

Until recently, the papers of Rancourt, S~irndal and Lee 
(1994) and Chen and Shao (1997), the properties of 
nearest neighbour imputation were not thoroughly 
known. However, it seems that the few known 
characteristics of nearest neighbour imputation were so 
attractive, that they overruled any possible undesired 
ones (such as bias and large variance) not very well 
known. Among these characteristics first comes the fact 
that nearest neighbour yields a "real" value for 
nonrespondents. Indeed, since the donated value is 
provided by a respondent, one can be sure that it is a 
possible outcome for the variables imputed (as opposed 
to prediction imputation methods such as mean, ratio or 
regression). All donor imputation methods share this 

2. THE GENERALIZED 
EDIT AND IMPUTATION SYSTEM (GEIS) 

GEIS has been developed and used at Statistics Canada 
since the mid 80's. It was then designed as part of the 
Business Survey Redesign Project, an initiative aimed at 
standardizing survey processes by identifying common 
steps of surveys and developing generalized systems to 
process data. On this topic, Outrata and Chinnappa, 
(1989) present a very interesting discussion of the issues 
surrounding generalized survey functions. 

GEIS is a system which is primarily aimed at satisfying 
the edit and imputation needs of economic surveys since 
it is designed for continuous variables. The system is 
based on Oracle and can run on both Unix and mainframe 
platforms. The systems has three main features: 

i) Editing 
ii) Error localization 
iii) Imputation. 

They are described in a detailed documentation of the 
system in Cotton (1991, revised 1993). 

The first module, for editing is used to define and analyze 
edit rules. In GEIS, edit rules must be linear equalities or 
inequalities. It is possible to define edit classes at any 
level using functions of specified variables. Also, the 
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system produces a number of diagnostics such as extreme 
points defined by the edits; implied edits, redundant edits 
and outliers. It also produces statistics on failure rates of 
the edits. 

The second module is the error localization function. 
This is the part of the system which determines the 
amount of changes to bring to a record so that it may 
satisfy the edits. The system is based on the minimum 
change principle laid out by Fellegi and Holt (1976). 

Then the third part is imputation. There are three types of 
imputation in GELS, namely, logical imputation, 
prediction imputation and donor imputation. Logical 
imputation is used when only one variable of an edit is 
missing and it can be deduced from the others. Prediction 
imputation methods include all methods which impute a 
value obtained as a function of variables available in the 
response set and for the sample. Examples of this are 
mean, ratio and previous value imputation. Finally, donor 
imputation is the method where values from another 
record are imputed for the record with missing values. 
Both hot-deck and nearest neighbour imputation methods 
are available in GEIS. 

For nearest neighbour imputation, a large number of 
"matching fields" can be specified. These are then used 
to find the record nearest to the recipient needing 
imputation. The distance used to find the nearest 
neighbour is obtained through a series of transformations 
of the matching variables. For each variable, the 
transformations are the following: 

1) Data are sorted in increasing order; 
2) A rank is assigned; 
3) Ranks are standardized to the (0-1) scale. 

Then the nearest neighbour of a record with missing 
values is the record which has the minimum value of 

MAX {[ZD1-zn, l,Izz 2 -- ZR2 [ .... ,[ZDp -- ZRp[} 

over all units in the response set, where ZDp is auxiliary 

variable p of the donor and ZRp is auxiliary variable p 

of the recipient. 

3. APPLICATIONS OF GElS 
AND NEAREST NEIGHBOUR IMPUTATION AT 

STATISTICS CANADA 

Nearest neighbour imputation is used in many surveys at 
Statistics Canada. For instance, Whitridge and Kovar 

(1990) present GEIS examples. In this Section, three 
typical examples of applications from the business, 
household and agriculture fields are briefly outlined. 
They are the Unified Enterprise Survey, the Survey of 
Household Spending and the Financial Farm Survey. 

3.1 Unified Enterprise Survey (LIES) 

UES is an annual survey which is part of the Project to 
Improve Provincial Economic Statistics (PIPES) and 
which collects information on enterprises. It allows for 
production of high quality provincial estimates, which can 
then be used to redistribute provincial taxes (in the 
maritime provinces). The UES is an integrated survey of 
industrial sectors (manufacture, construction, investments, 
etc.) designed to coordinate efforts and processes. The 
survey has a two-phase sampling design and uses a mail 
questionnaire with telephone follow-up. 

In the UES, both unit and item imputation are used tO 
compensate for nonresponse. For total nonresponse, tax 
data are used to perform mass imputation through 
matching, while nearest neighbour imputation is used for 
cases of item nonresponse. In this case, GElS is used to 
determine the fields to impute and to perform nearest 
neighbour imputation. The process follows the nearest  
neighbour imputation description presented in Section 2. 
A description of the UES imputation strategy is given in 
Martin, Berniquez and Bernier (1999). 

At the estimation stage, Generalized REGression 
estimators are used to produce domain estimates. 
Currently, the estimation of precision (variance) is 
performed on the completed data sets assuming no 
nonresponse, but development is under way in order to 
use the SIMPVAR prototype system (described in 
Section 5) to estimate the variance due to imputation. 

3.2 Survey of Household Spending (SHS) 

SHS is an annual survey of households aimed at gathering 
information on a wide variety of categories of household 
expenditures. This information is used in the PIPES 
program, for the goods basket used in the price index and 
for analytical studies. SHS is a multi-stage survey which 
uses the Labour Force Survey (LFS) frame. That is, it 
uses the same frame and same sampling scheme, but with 
an independent sample (not a supplement). The survey 
data are collected using personal interviews. 

Since SHS is a very detailed survey asking a fairly large 
number of questions, the edit and imputation strategy is 
divided into 24 subsets of edits (such as those for Income 
& Taxes, Food, Clothing, Sports, etc.) which are applied 
within imputation classes. Within each of the classes, 
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nearest neighbour imputation is performed for continuous 
variables using GEIS as described in Section 2. More 
details can be found in Vandermeer (1998). As a result 
of the imputation, each imputed section of the 
questionnaire is filled by values of a donor record that is 
not necessarily the same across edit classes. 

In SHS, estimation is performed using the LFS weighting 
and estimation program. In LFS, weights are obtained 
using calibration to a number of auxiliary totals such as 
combinations of age & sex. Then variance estimation is 
performed with the use of the jackknife technique. The 
system computes variances on the completed data set 
assuming that data are as if they were from respondents. 
Estimation of the variance under imputation is currently 
being developed for the LFS, with the intent of 
incorporating the method into the estimation system and 
transferring it to supplement surveys and those using the 
same frame as LFS. The LFS uses the jackknife 
technique which could account for imputation as in Rao 
and Shao (1992). For nearest neighbour imputation, the 
required jackknife correction is presented in Section 5. 

3.3 Financial Farm Survey (FFS) 

FFS is a bi-annual survey collecting information on 
agriculture operations in Canada. The survey collects 
information on revenues, balance sheet and investments. 
Its results are mainly used by Agriculture and Agri-Food 
Canada and by the Canadian System of National 
Accounts. The survey is based on stratified simple 
random sampling and collection is performed through 
CATI. 

The edit and imputation of FFS is carried out using GEIS. 
First, special attention is devoted to the top 25 records 
and then GEIS is used for nearest neighbour imputation, 
again as described in section 2. As in SHS, the data are 
grouped into classes within which imputation is 
performed. Details of the imputation approach can be 
found in Caron (1996), revised by Lalande (1998). 

In FFS, estimation is performed using the Horvitz- 
Thompson estimator and the variance is obtained using 
the usual variance estimator modified to take into account 
specific weights. Currently, the estimation system 
assumes that the completed data are as if they were all 
obtained by respondents. 

4. PROPERTIES OF 
NEAREST NEIGHBOUR IMPUTATION 

The literature on the properties of nearest neighbour 
imputation is thin. In Rancourt, S~irndal and Lee (1994), 
a model is used to obtain a variance estimator. Steel and 

Fay (1995) also used a model to adopt the jackknife 
technique to the replication approach by using the first 
two nearest neighbours. However, the actual properties 
of the nearest neighbour imputation method (such as bias) 
are only presented in Chen and Shao (1997). In this 
section, after briefly describing the approach of Chen and 
Shao (1997), we will show that using the model approach 
of Rancourt, SS.rndal and Lee (1994) leads to properties 
which are in agreement with the results of Chen and Shao 
(1997). 

4.1 Bias of nearest neighbour imputation 

The objective is to obtain an estimate of Yu = ~ Yk the 
u 

population total for variable y. Using the sample s, 

the estimator used is ITs- ~.~wkyk, where w k is the 
s 

sampling weight. In presence of nonresponse, we have 
a response set r and a nonresponse set o. The size of 
r is m and the size of o is n - m .  In this case, the 
estimator (for simple random sampling) is 

ITs _ N ( Z r  Yk + Zo)3k) where )~k is the imputed 
n 

value and N and n are respectively the size of the 
population and the sample. 

Binomial approach 

In the case of only one auxiliary variable, nearest 
neighbour imputation is obtained through a univariate 
distance function. With the Euclidean distance function, 

the imputed value is for unit Yk" )3k-YlCk) where 

[]z k -z,]] is minimum for l among all units in the 

response set. In other words, l is the donor for unit k, 

hence Y~k). 

To evaluate the properties of the method, Chen and 
Shao (1997) assumed a uniform response probability 
mechanism and used the fact that the number of times 
(t) that a donor is selected follows a Binomial 

t ! --) B ( n -  m,n~ 

where 7t / can be seen as proportional to the distance cl 

that there is between the midpoint to two neighbours of 
unit l on the ordered data set. Note that 
nonrespondents are assumed to be spread evenly among 
respondents (uniform response mechanism). 
Graphically, we have on the ordered set: 
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C(l) 

' I I I I . . . .  I I , 
Z(I-l) Z(i) Z(/+I) 

and in fact 
~, ) ~ ,  ) 2 2 

where F is the marginal distribution of z (with 

z(0 ) - - o o  and Z(m+l ) = + ~ ) .  Then, the bias is found 

to be asymptotically 0. Using the same approach, Chen 
and Shao (1997) obtained a variance expression. 

Model approach 

Imputation methods can be represented by a model. For 
example, for ratio imputation, the model is 

straightforward and its form is ~ :Yk =/~zk + •k ; 

E~(~k)=0; E~(EZ)=o'2zk; and E~(~kek,)=0for  

k ~ k'. For nearest neighbour imputation, the choice of 
a model is not obvious. However, upon noting that the 
matching variable(s) used to find the nearest record 
need to be correlated to the variable of interest (to 
preserve joint distributions), it can be seen that a model 
such as the ratio one has to be at least close to the one 
for univariate nearest neighbour imputation. In fact, it 
is the same model, but the values imputed for 
nonrespondents are different from those imputed by 
ratio. Comparing the imputed values from three 
imputation methods, we can see the link to the common 
model above. Note that Greek letters stand for model 
parameters, and roman letters for finite population 
parameters. 

Ratio: Yk = Z , .  Y_____._~k Zk = ~z k 
Zr Zk 

Ratio + residuals" 
~Yk  

)3 k =  " z k + e  k - / ~ z  + 
~ z  k k ek, 

r 

where e k is a residual randomly selected from the 

response set. 

Nearest neighbour: fek = Yt(k) - Bzt(k) + El(k). 

For ratio imputation, the model is obviously 
appropriate. For ratio with added residuals, the model 
is also appropriate, but a value is generated "around the 

expectation line". For nearest neighbour imputation, 
the imputed value is the expected value plus an actual 
residual, not centered on unit k but rather on l(k), the 

donor. 

A look at a graphical representation shows well how the 
ratio model applies to nearest neighbour imputation. 

Yt(k) 

Yk 
Bzt(k~ 

Bz k 

x 

El(k) 

o 

BAk f 

k l 

If we want to evaluate the bias (conditional on s and 
r ), we have" 

Y . ~ - N Z s Y . k - N ( Z ,  yk +Y_,of;k)o 
t7 17 

It can be written as 

17 

or since z/(k) - z k + A k, 

;., + 2 ,E ,  + a2oA,  + 2oe,,,,]. 
H 

Evaluating this latter expression in the case that 
nonresponse does not depend on y with respect to the 

model stated above, we obtain: 

A 

r.s 
n 

= N [ ~ s Y k  + B 2 o A k ]  
t7 
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Therefore, the conditional bias of/~.s is N B X o A k .  
/7 

If follows that: 

1) If there are no nonrespondents, then the bias is 0; 
2) As the size m of the response set increases 

(m ~ oo), then A k ~ 0 

a) for continuous distributions; 
b) for distance measures D which have basic 

properties such as (Yl(k) ~ Yk ) :=> (D ~ 0). 

It is also interesting to know that in Sande (1979), it 
was noted and seen experimentally that norms are 
locally alike; which seems to dwarf the importance of 
the latter condition. So under these conditions (which 

are fairly general) the bias of 1~.~ is asymptotically O, and 

this is consistent with the results of Chen and Shao 
(1997). 

4.2 Var iance  

Following the decomposition in Sarndal (1992), we can 
see that 

where Y~ is the estimator which would be used in the 

case of complete response. If the bias is negligible, then 
we have 

VTO T -- EpEq (Ys - Yu )2 _[_ EpEq (Yo, - 11, )2 + Mix T. 

which corresponds to 

VTOT -- VSA. + + Z x. 

^ 

The sampling variance is simply the variance of Yos 
^ 

(and Y~ ) with respect to the sampling design. Therefore, 

it is simply: 

VSAM = N2 1 - f Sy2u" 
n 

The imputation variance component was obtained in 
Forget (1999) by using the model in Section 4.1. The 
expression is 

_ N  2 
VIM P - - - " ~ 2 r t } Z l  -I- £oZk)O "2 "Jr" B2XoAk ], 

n 

where t i is the number of times that donor l is used. 

For the mix term, which is not crucial for the discussion 
in this paper, the reader is referred to Forget (1999) 
where it is also obtained with the help of the model in 
Section 4.1. 

5. ESTIMATION OF THE VARIANCE 

5.1 Mode l  assisted approach  

In the model assisted approach presented in Sarndal 
(1992), the goal is to obtain an estimator of the total 
variance by estimating each of the terms in 

VTO T -" VSA M "~" VIM P "[- VMI X . 

Estimation of the sampling component 

As given in Rancourt, Lee and S/irndal (1994), and 

Forget (1999), an estimator of VsA M can be the ordinary 

formula: 

~/~ORD -- N2 1 -- f $ 2  
y o s  ° 

I'7 

This estimator is good for VSA M provided that 
2 2 .  Syos = Sy s, which happens if the response set and the 

imputation classes are large enough. Also, the response 
mechanism must not depend on the variable of interest or 
on auxiliary variables correlated with y not used in the 

imputation process. 

Estimation of the imputation componen.t 

For the imputation component, all that is necessary is to 

estimate the B and o 2 parameters of the model used to 

obtain the V~M P formula. The second term of the 

imputation variance, B2~oAk ,  is small and of lower 

magnitude than the first and can be left out. Then using 
2 

6 "2-- ~ rek  as an estimator for O2 and 
Er gk 

^ 

ek = Yk - Bzk,  we obtain the following estimator for 

VIMP " 

^ N 2 
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Estimation of the mix component and 

The estimate for the mix term can be found in Rancourt, 
S/irndal and Lee (1994) or Forget (1999). As it is often 
zero or close to zero under a variety of conditions, it is 
not discussed here. 

5.2 Jackknife technique 

The principle of the jackknife technique is to 
recalculate the estimator after deleting a unit from the 
sample and use the variance between the recomputed 
estimates to obtain an estimate of the variance. After the 
deletion of unit j, the estimator of the population total is 

~.sj) = N . m  
n -  1 ~-~k,:j~.s Y.k 

where ( j )  denotes that unit j was deleted. Ignoring the 

finite population correction, the jackknife variance 
estimator is 

r; = n - !  Xj s( .T - 
n 

For data sets containing imputed values, the 
jackknife must be corrected. Rao and Shao (1992) 
proposed a method to correct the estimator by adjusting 
the imputed values when the jth deleted unit is in the 
response set. The data set after adjustment of the imputed 
values is 

Yk if k ~ r 
• (aj) a(kj) y-k = .Vk + if k ~ o  and j ~ r  

Yk if k ~ o  and j ~ o  

where a(k j) is the adjustment. The jackknife variance 

estimator is then given by 

= Z i p s ( / . ( : ; ) -  

where ~s aJ) N ~_~k.j~, (aJ) and ~s a) l 
: : - Xj s j )  n - 1  n 

In Steel and Fay (1995), they proposed corrected variance 
formulae for nearest neighbour imputation using the ratio 
model and the second nearest neighbour: 

i}j, 1 _ N -  n tT,.JA C X 
N 

n - 1 1 ( : ( J )  Yr .9/.. 
" ~ ' ~  X r Z  .Yr X k _ _ _ X k  s-r ~ ~ j  ) n N n  X r X r 

+ ~ ~ Z s  Xk -- ~ Xk 
2 N n  -r Xl(k) Xi2(k) 

N - n "JAr;" CK 
N 

. 9  

n -  1 1 =(J) - ]" 

) 

+ - - Z s - r  Xk - - ~ X k  " 
N n  xt(k) x,. 

Two versions of the jackknife technique are also 
considered for nearest neighbour imputation in Chen and 
Shao (1999), where imputed values are i) partially re- 
imputed or ii) partially adjusted, based on a probability 

p g which depends on the nearest neighbour for partial 

adjustment; and on the two nearest neighbours for partial 
re-imputation. 

Using a correction approach which avoids the need of 
finding a second nearest neighbour, Kovar and Chen 
(1994) used the following (ratio) correction: 

Yk + a*k (j) 
"7.(J) 

- Y l ( k )  + Yr Y,. 
-~(j) k" z,. -~,. 

However, according to the model presented in Section 4, 
the correction should be 

=(j) 
)3k + ak vN(j) = Yt(k) + .Yr 

-(j) 
Z r Z r  l ( k ) ,  

since the imputed value is Yl(k) and its expectation is 

Bz~(k) and not B z  k. 

Simulations conducted for a range of situations have 
shown that the jackknife technique works well with the 

correction based on Zt(k). In fact this correction should 

work better than the ratio correction as the donors get 
further away from the recipients. 

5.3 Implementation at Statistics Canada 

At Statistics Canada the Generalized Estimation System 
(GES) has been developed to compute estimates and their 
variance. GES can do domain estimation, and variance 
estimation is performed using the Taylor approach or the 
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jackknife technique. The current version of the system 
assumes that data sets (samples) used as input for 
estimation are complete. Further, GES treats the data as 
if they had been obtained from respondents. 

The current development schedule and future 
implementation plans of GES include incorporation of 
methods which take imputation into account. To fulfill 
the needs of surveys requiring calculation of the variance 
due to imputation, a prototype system has been created in 
the meantime. It serves as a vehicle which will allow for 
estimation of imputation variance in some applications, 
and for programming and testing the variance estimation 
methods to be implemented in GES. The preliminary 
version of the system is based on the model assisted 
approach and handles nearest neighbour imputation. 
Future plans include the implementation of the jackknife 
technique into GES. Tests are also underway for its use 
in household surveys. 

6. ISSUES 

This section addresses two types of issues with respect to 
nearest neighbour imputation: i) strategy issues related to 
actual implementation of imputation; and ii) development 
issues which have yet to be addressed and solved. 

Implementation issues 

A very important issue to address when imputation is 
being carried out is that flags (identifiers) must be set up 
in order to be able, at the estimation stage, to calculate the 
variance due to imputation. In other words, there has to 
be interaction between the imputation and the estimation 
systems, as pointed out in Rancourt (1996). 

The flags which are needed are respondent / 
nonrespondent identifiers; a flag indicating the imputation 
method that was used and indicating which auxiliary 
variable(s) was used to perform imputation. 

Since nearest neighbour imputation can be represented 
with the help of the ratio model, under a model 
framework, it is essential that one of the first steps of the 
implementation of imputation be the assessment of the 
goodness of fit of the model within each imputation class. 
If the model is wrong, then the model assisted approach 

will suffer accordingly. 

As well, since the bias depends on the fact that the size of 
imputation classes needs to be large (for asymptotic 
properties to hold), then provision should be made to 
avoid small imputation classes. 

Development issues 

This paper has dealt with simple situations such as simple 
random sampling without replacement. More complex 
designs need to be studied, but beyond the sampling 
design, there is a number of issues which remain open. 

The bias properties in Section 4.1 remain to be 
thoroughly validated for complex distance functions. 
This includes cases where not only other distance 
measures than the usual Euclidean norm are used, but 
also when there is more than one matching field. That is, 
multivariate distance measures. 

In many applications, it is rare to see a sole imputation 
method used for all units. Rather, there is a hierarchy of 
methods usually ordered according to the availability of 
the auxiliary information required. Even within the 
nearest neighbour imputation method, it happens that the 
auxiliary variables used for matching are not the same for 
all records, thereby adding complexity to the imputation 
method. In Shao and Steel (1999), this case is called 
composite imputation and they are the first to provide 
elements of solution since Rancourt, Lee and S~ndal 
(1993). 

In donor imputation implementations, there is almost 
always a hierarchy of levels of imputation. First, a donor 
is searched in a given imputation class. When no record 
satisfies the edit rules, then a higher level (predefined and 
usually consisting of groups of first level classes) of 
imputation classes is used. This process is repeated for 
records which did not get an imputed value at the first 
level. More often than not, there are more than two levels 
of imputation. 

7. CONCLUSION 

In this paper, we have seen that nearest neighbour 
imputation has been used for a number years and has 
found many applications. We have now started to 
understand all the properties of nearest neighbour 
imputation, and theory is "catching up" with practice. 

Nearest neighbour imputation is widely used at Statistics 
Canada for its numerous qualities: it yields possible 
values; it uses auxiliary variables; it is asymptotically 
unbiased; a nearest neighbour imputation system is 
available; and methods exist to account for it in variance 
estimation. And soon, the methods will be available in 
the variance estimation systems. 

Finally, the use of nearest neighbour imputation has 
proved to be successful thus far, and its increasing use is a 
trend that will and should continue. 
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