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A b s t r a c t :  

Nearest neighbor imputat ion is a popular hot deck 
imputation method used to compensate for nonre- 
sponse in sample surveys. Although this method has 
a long history of application, the problem of vari- 
ance estimation after nearest neighbor imputation 
has not been fully investigated. Since nearest neigh- 
bor imputation is a nonparametric method, a non- 
parametric variance estimation technique such as the 
jackknife is desired. We show that the naive jack- 
knife that treats imputed values as observed data 
produces serious underestimation. We also show 
that Rao and Shao's (1992) adjusted jackknife or 
the jackknife with each pseudoreplicate re-imputed, 
which produces asymptotically unbiased and consis- 
tent jackknife variance estimators for other imputa- 
tion methods (such as mean imputation, random hot 
deck imputation, ratio or regression imputation), 
produces serious overestimation in the case of near- 
est neighbor imputation. Two partially re-imputed 
and a partially adjusted jackknife variance estima- 
tors are proposed in this article and shown to be 
asymptotically unbiased and consistent. Some sim- 
ulation results are provided to examine finite sample 
properties of these jackknife variance estimators. 

1 I n t r o d u c t i o n  

Imputation is commonly applied to compensate for 
item nonresponse in sample surveys (Kalton and 
Kasprzyk 1986, Sedransk 1985, Rubin 1987). The 
nearest neighbor imputat ion (NNI) method is used 
in many survey agencies such as the U.S. Bu- 
reau of Labor Statistics, the U.S. Census Bureau, 
and Statistics Canada. Consider a bivariate sam- 
ple (Xl, Yl), ..., (Xn, Yn) and suppose that yl, ..., Yr 
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are observed (respondents), yr+l, ..., yn are miss- 
ing (nonrespondents), and all x-values are observed. 
The NNI method imputes a missing yj by yi, where 
1 < i <_ r and i is the nearest neighbor of j measured 
by the x-variable, i.e., i satisfies 

- - m i .  - I. ( 1 )  
l < / < r  

If there are tied x-values, then there may be multiple 
nearest neighbors of j and i is randomly selected 
from them. 

The NNI method has some nice features. First, 
it is a hot deck method in the sense that nonre- 
spondents are substituted by respondents from the 
same variable; Second, it is shown in Chen and Shao 
(1999) that the NNI method provides asymptotically 
unbiased and consistent estimators for population 
means as well as quantiles. Third, the NNI method 
may be more efficient than other hot deck meth- 
ods that do not make use of auxiliary information 
provided by the x-values (e.g., the mean imputa- 
tion method). Finally, the NNI method uses a non- 
parametric model relating y and x (see Section 2) 
and, hence, it is expected to be more robust against 
model violations than methods based on paramet- 
ric models, such as ratio imputat ion and regression 
imputation. 

In this article we focus on jackknife variance esti- 
mation for the sample means (or weighted averages) 
based on data imputed by NNI. It is known that 
naive jackknife variance estimator often underesti- 
mates in the presence of imputat ion and some ad- 
justments are necessary (Rao and Shao, 1992). Full 
implementation of the adjustment principle, how- 
ever, overestimates the variance of the sample mean 
based on NNI. In view of these, we propose a par- 
tially re-imputed jackknife and a partially adjusted 
jackknife, and show that they produce asymptoti- 
cally unbiased and consistent variance estimators for 
the sample means based on NNI, under some weak 
conditions for stratified samples. 

The rest of the article is organized as follows. 
Some notation, assumptions, and details for NNI 
and the jackknife are given in Section 2. The asymp- 
totic biases of the naive jackknife variance estimator 
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and Rao and Shao's adjusted jackknife variance esti- 
mator are derived in Section 3. Partially re-imputed 
and partially adjusted jackknife variance estimators 
are proposed in Section 4 and they are shown to be 
asymptotically unbiased and consistent. Section 5 
contains some simulation results for these jackknife 
variance estimators, using a population that is close 
to a real data set from 1988 Current Population Sur- 
vey (Valliant 1993). 

2 P r e l i m i n a r i e s  

2.1 Sampling Design and Model 

Let 7 ~ be a finite population containing indices 
1, ..., N. Assume that :P is stratified into H strata 
with Nh units in the hth s t ratum and that nh > 2 
units are selected without replacement from stra- 
tum h according to some probability sampling plan, 
independently across the strata. The overall sam- 
pling fraction n / N  is assumed negligible, where n = 
~ h  nh, although n h / N h  may be non-negligible for 
some h. Let S denote the sample. According to the 
sampling plan, survey weights wi, i C S,  are con- 
structed so that for any set of values {zi : i C :P}, 

E, wizi N i=1 

where E, is the expectation with respect to S. This 
sampling design is commonly used in many busi- 
ness surveys conducted at the U.S. Bureau of Labor 
Statistics and the U.S. Census Bureau. 

Let y be a variable of interest and x be an auxiliary 
variable. Let a be the response indicator for y (i.e., 
for the ith unit, ai = 1 if yi is a respondent and 
ai - 0 otherwise). The validity of NNI is based on 
the following model assumption. 
Assumption A. The finite population P is divided 
into K imputation classes such that within each 
imputation class, (xi, yi, ai) 's  are lid from a super- 
population and P(ai  = l lx i ,  y i ) =  P(ai  = l lx i ) .  
(xi, yi, ai) 's  from different imputation classes are in- 
dependent. NNI is carried out within each imputa- 
tion class. 

We assume that K is fixed and the number of 
units in each imputat ion class is large. This is nec- 
essary for the validity of NNI, in fact, for any model- 
based and nonparametric imputation method (VM- 
liant 1993) 

2.2 Nearest Neighbor Imputation 

Let Sk be the set of indices of sampled units in 
imputation class k, 7~k be the set of indices of y- 
respondents in imputation class k, and A/'k be the set 
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of indices of y-nonrespondents in imputation class k 
(Sk = 7~k U Ark), k = 1, ..., K. Under assumption A, 
conditional on rk, the number of respondents in Sk, 
{ ( y i , x i ) , i  E TO, k} and {(yi,  x i ) , i  E A/k} are indepen- 
dent sets of iid random vectors from two possibly 
different distributions. 

For j E A/k, let 9j = Yi denote the value imputed 
by NNI, where i is selected according to 

Ixi - xj  l -- min I x l -  xjl. 
IE'R k 

(2) 

Note that (1) is a special case of (2). We focus on 
the case where the distribution of x related to the 
superpopulation is continuous so that there are no 
tied x-values. The NNI sample mean can be written 
as 

K 

k = l  iET~k 

where 

1 i is the nearest neighbor of j 
dij - 0 otherwise 

and d} k) - ~ j e X k  w [ l w j d i j "  
Chen and Shao (1999) showed that YNN' in (3) 

is asymptotically unbiased (for the population mean 
I7" -- N -1 }-]N=I Yi) and has the following asymptotic 
variance 

y E + 4 
k--1 iET~k 

+ E Var W i C k ( T , i  , 

k=l 

(4) 

where Ck(x) - E ( y l x )  in the kth imputation class. 
Their results were established under the stratified 
sampling design described in Section 2.1, assumption 
A, and the following technical assumption. 
Assumption B. (i) The total number of sampled 
units n -+ oc and m~ -1 - O(n-1) ,  k - 1 , . . . ,K,  
where m k  is the number of sampled units in impu- 
tation class k. 
(ii) The survey weights satisfy max/wi - O ( n - 1 ) .  
(iii) There exist c o n s t a n t s - o c  _< M1 < M2 <_ ec 
and C such that the function Ck(x) is monotone 
when x < M1 or x > M2, and I C k ( t ) -  Ck(s)l < 
C [ t - s [  when M1 < s , t  < M2. 
(iv) The marginal distribution of x has a density, 
E]xl 3 < e~, E[~bk(X)} 6 < cx:), and Z]yiI 6 < c~. 
(v) The response probability P ( a  - llx ) satisfies 
infzep P ( a  - 1Ix) > 0, where 79 is the support of 
the marginal distribution of x. 



2.3 The  Jackkn i fe  and  the  A d j u s t e d  Jack-  
knife 

If Ck(x)and Var(ylx ) in (4) have parametric forms, 
then we can estimate the variance in (4) by substi- 
tution (Chen and Shao 1999). Since NNI is non- 
parametric (i.e., the function forms of Ck(X) and 
Var(ylx ) are not known), a nonparametric variance 
estimation method is preferred. 

The simplest nonparametric resampling method 
for variance estimation is the jackknife method, 
which estimates the variance of an estimator 0 by 

K 

V j , c K - - E  m k - - 1  E (O(j) _ 0 )  2 ' (5) 
rnk 

k = l  j E S k  

where mk is the number of units in Sk and 0(J) is 
the same as g but is based on the j th  jackknife pseu- 
doreplicate, which is the dataset obtained by chang- 
ing survey weight wi to 

wi if j E Sk,  i ~_ Sk 
(j) mk wi - m ~ - l  wi ifi,  j E S k ,  i ~ j  

0 i f i - - j .  

Note that we adjust survey weights using ink 's ,  
which are the imputation class sizes (or poststratum 
sizes), not the original stratum sizes nh's.  This is 
justified by the superpopulation model assumption 
in assumption A. In the case of no nonresponse, the 
jackknife estimator VjAcK is asymptotically unbiased ^ 
and consistent when 0 is a differentiable function of 
sample means. 

In the case of 0 - ~)NNI, however, directly applying 
formula (5) and treating imputed nonrespondents as 
observed data produces a VjAc~ that underestimates 
the asymptotic variance of YNN~. The precise form of 
the bias of VjAcK under NNI is given in Section 3. 

For mean imputation and random hot deck im- 
putation (which imputes y-nonrespondents in Sk by 
a random sample from y-respondents in Sk), Rao 
and Shao (1992) proposed to first adjust the im- 
puted values in each jackknife pseudoreplicate and 
then apply formula (5) with 0(J) computed based on 
the adjusted j th pseudoreplicate. Rao and Shao's 
adjustment can be described as follows. In the j th 
pseudoreplicate, each imputed value Yi iS adjusted 
to 

Adj 
i,j - ~li + k(~li , j)  F-,(~li), (6) 

where ~li,j is the imputed value for yi using the re- 
spondents in the j th pseudoreplicate and /~ is the 
expectation for random imputation. For any non- 
random imputation (given the observed data), ad- 
justment (6) reduces to 

~hdj  
- ( 7 )  

i.e., Rao and Shao's adjustment amounts to re- 
imputing nonrespondents in each pseudoreplicate 
using the observed data within the same pseudorepli- 
care. 

Note that if yj itself is a nonrespondent, then 
~.,a.j _ yi under NNI Hence for NNI, adjustment 

l,J " 

(6) or re-imputation (7) needs to be applied for the 
jth pseudoreplicate only when yj is a respondent. 

Although Rao and Shao (1992) showed that the 
adjusted jackknife produces asymptotically unbiased 
and consistent variance estimators for sample means 
under mean imputation or random hot deck impu- 
tation, we show in Section 3 that the adjusted jack- 
knife variance estimator overestimates the variance 

of YNNI o 

3 T h e  B i a s e s  of Jackkni fe  E s t i m a t o r s  

Let 9(,J~ ) be the same as YNNI but based on the j th 
jackknife pseudoreplicate re-imputed according to 
(7) or, equivalently, adjusted according to (6). Then 
the re-imputed or adjusted jackknife variance esti- 
mator is 

K 

Vj~cK- E m k - - 1  E ( 901)- YNNI) 2" 
~r~k 

k = l  jE£k  

Let us focus on imputation class k. Recall that 7~k 
is the set of respondents and Ark is the set of nonre- 
spondents. Consider the j th  pseudoreplicate with a 
respondent yj in 7~k. Let yt be a nonrespondent in 
Ark. If the original NNI value yt is not yj,  then the 
re-imputed value ~]t,j is still yr. If ~]t - yj ,  i.e., j is 
the nearest neighbor of t, then the re-imputed value 
~]t,j is the y-value of the second nearest neighbor of t. 
Let xj l  C T~k and xj2 E T~k be two nearest neighbor 
values of xj  (Xjl < x j  < xj2 if xj  is not the smallest 
or largest x-value in ~k;  otherwise xj l  - xj~).  Then 
the second nearest neighbor of t must be either jl  or 
j2, i.e., ~]t,j - Yjl or yj~. Let 

1 jl  is the second nearest neighbor of t 
Cjt -- 0 j2 is the second nearest neighbor of t, 

(s) 
given that j is the nearest neighbor of t, 

c?)- E t e X k  w j c j t '  

and let dJ k) be the same as that in (3). Then 

('r~ k -- 1)(IJNNI- y(RJi ) ) 
= m k w j y j  -- ~lk 
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if yj is a respondent in 7~k, and 

(~q'k - -  1 ) ( Y N N I  - -  Y(aJi ) )  - -  mkWj~]j - -  ~ lk,  (10) 

if yj is a nonrespondent in A/k, where Yk = 

E i~nk  (1 + d}k))wiyi. 
For convenience, write ei - Y i -  Ck(xi) .  Then ei's 

are uncorrelated, conditional on xi's, and E ( e i l x i )  - -  

0 and Var(eilxi) - Var(yilxi). It follows from (9) 
that when yj is a respondent in imputat ion class k, 

(19"-~k - -  1)(YNNI- 9(R21 ) ) 
__ __ (k)Ejl __ (dJk) (k - . ~ [ ( 1 +  d~) )~  cj - ~ ))~j:] 

(k) 
+ i n k  Wj Zj + ?]j , 

where zj - Ck(x j )  - #k, #k -- E[¢k(Xi)], 

(k) ~ - - . ~  ~[c~.~) (z~ - z~) + (e~ ~t ~.~t)(z~ _ z~)] 

n L m k w j # k  - - i ) k  - -#k ,  

and Ck (or ik) is the same as Yk but with yi replaced 
by Ck(xi)  (or el). 

It follows from Lemma 1 in the Appendix that  

E 71j - o ( n  - z )  (11) 
mk- -  1 

where E is the joint expectation with respect to 

(~) +d~))~ modeland  sampling. Let #j - (1 +(cJ k)) + 
(k) 2 2 

(dJ k ) -  cj ) ]wj. Using the fact that  ej s are condi- 
tionally uncorrelated and assuming that  the function 
( r 2 ( x ) -  Var(ylx ) is continuous in x, we obtain that  

2] ,k,var, ,xj,] E (gNNI- Y(RJI ) ) --E ~j yj 
j k j k 

+ E wj  zj + o - ). 
jET~k 

For nonrespondents in Ark, a similar argument shows 
that 

E [j~E~,klgNNI--Y(R31))2]--E[i~kdlk)w2Var(yil2g'i) ] 

i e A/;, 

where the last equality follows from Lemma 2 in the 
Appendix. 

The naive jackknife variance estimator is defined ^ 
by (5) with 0 - YNNI and treating imputed values 
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as observed data. By omitt ing the last term on the 
right hand side of (9) and using a similar argument,  
we obtain that  

-- ..~NNI -- E w]Var(y j lx j )  
k 

Wj Z~ "Jr- 0 ) 
j E'R.k 

and 

E [ ~ k j  (gNNI- 9(JN)I)21 

k 

+ E  ~ ~ j ~ ;  + 1. 
jEAfk  

Combining these results and imputat ion classes, 
we obtain the following result on the biases of the 
naive jackknife variance estimator VjACK and the re- 
imputed (or adjusted) jackknife variance estimator 
v~ I ACK " 
T h e o r e m  1. Suppose that  assumptions A and B 
hold and that  the function cr2(x) - Var(ylx ) is con- 
tinuous in x. Then 

E(v~AcK) -- E E E (1 + dlk))w~Var(yilxi)  
k = l  iET~k 

] + ~_ V~r ~¢k(~)  + o(n -~) 

and 

k~ [ (k)w~Var(YilXi) 1 E(vjRIcK)- E E #J 
-- iET~k 

+ ~= V~r ~ ~¢k(~)  + o(~-*). 

Compared with result (4), we conclude that  the 
naive jackknife variance estimator Vj,CK has a nega- 
tive bias and the re-imputed jackknife variance esti- 
mator  has a positive bias. Some numerical examples 
of these biases are given in the simulation study in 
Section 5. 



4 Par t ia l l y  R e - i m p u t e d  or Par t ia l ly  
A d j u s t e d  J a c k k n i f e  

In view of the fact that the naive jackknife under- 
estimates and the re-imputed jackknife (which is 
the same as the adjusted jackknife) overestimates, 
we propose some jackknife methods with partial re- 
imputation or partial adjustment. The first partially 
re-imputed jackknife can be described as follows. 
For j E Tgk, nonrespondents in pseudoreplicate j are 
re-imputed with probability pJk) and not re-imputed 

with probability 1 -  p~k). Let 5 be the indicator that 
equals 1 when re-imputation is conducted. Then a 
partially re-imputed jackknife variance estimator is 

P F t l  
J A C K  

K 

j 6  k 

/, _ ( j )  2 
+ ( i  - - (12) 

(Recall that for pseudoreplicate j with j E A/k, 

- -  JNNI.) Using the same argument in estab- 
lishing Theorem 1, we obtain that 

E/ PRI typiC.) - 

] + W r  + • 

k = l  

choosing pl k) so that the coefficient in front By 
a l  

of Var(yjlxj) equals (1 + dJk)) 2, we can obtain an 
asymptotically unbiased -PRI This leads to " [ / J A C K  • 

( k )  
p) = 

+ d ?  ) ) 

+ + + --Cj ) 2 - 1  

(pJk) _ 0 i f  dJ k ) -  0). 

To compute _PR, in (12) both d!. k) and c~ k) "U J A C K  

have to be computed in order to obtain the prob- 
, J  J 

( k )  
Note that the computation of c~ k) is ability Pj 

than that of d~ k), since second 
, , J  

complicated more 
nearest neighbors have to be located. The follow- 

J 

ing slight modification of the previously described 

avoids the computation of c!. k). Instead procedure 
of re-imputing nonrespondents in pseudoreplicate j 

, J  

by either yjl or Yj2, where jz and j2 are defined 
in (8), we re-impute nonrespondents by the aver- 
age (yj~ + yj2)/2, whenever re-imputation is needed. 

The partially re-imputed jackknife variance estima- 
tor =PR~ with this modification in the re-imputation "U J A C K  

(k) 
procedure is then asymptotically unbiased if pj = 

2(1 + dJk))/(3d~P ) + 4)(pjk,  _ 0 i f  dJ k , -  0). 
Instead of randomizing re-imputation, we can use 

a partial adjustment,  i.e., modify adjustment (7) to 

#~j (k) (#i - 9i) i , j  - -  #i  + gj , j  (13) 

(k) [0, 1] to be specified later. If with a constant gj C 
gJk) _ 1, then adjustment (13)is the same as adjust- 

ment (7); if gj(k) _ O, then there is no adjustment" 

if 0 < g < 1, then there is a partial adjustment. 
For simplicity, we may use ~]i,j = (Yjl + yj~)/2 when 
yj is a respondent. 

Our third proposed jackknife variance estimator 
is obtained by applying formula (5) with 0(J) being 
the sample mean computed based on the j th  pseu- 
doreplicate adjusted according to (13). This estima- 
tor is called the partially adjusted jackknife variance 
estimator and denoted by VjACK.PA Note that although 
re-imputed jackknife and adjusted jackknife are the 
same, partially re-imputed jackknife and partially 
adjusted jackknife are generally different. 

Using the same argument in establishing Theorem 
1, we can also show that VjAcKPA is asymptotically un- 
biased when 

2 + 6d~. k) + 4 -  2 

3dJ k) 

-,(g}k) _ 0 if'd} k) - 0). It is easy to verify that 
(k) O~_gj < 1 .  

The following result summarizes the asymptotic 
performance of three proposed jackknife variance es- 
timators. 
T h e o r e m  2. Assume the conditions in Theorem 1. 
Assume further that  nV is bounded away from 0, 
where V is the asymptotic variance of 9N~I given by 
(4). Then 

E( ~PR' ) \ 'U J A C K  --> i (14) 
V 

and 
o P R I  

JAC_______~K _~, 1 in probability. (15) 
V 

Results (14) and (15) also hold with VjP~K replaced 
by =PRI PA 

"U J A C K  o r  V J A C K .  

The proof is given in the Appendix. 

5 S i m u l a t i o n  R e s u l t s  

As a complement to our theory, we present in this 
section some results from a simulation study. We 
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examine five jackknife variance estimators for Y N N I  ° 

the naive jackknife estimator vj,cK, the re-imputed 
jackknife estimator %AcxRI, tWO partially re-imputed 
jackknife estimators-PRI and : P R I  and the par- "{]JACK "UJACK 

tially adjusted jackknife estimator VjAcKPA • The popu- 
lation distribution used to generate (yi, xi)'s is close 
to a real data set from 1988 Current Population Sur- 
vey (Valliant 1993), where z is the hours worked per 
week and y is the weekly wage. Some descriptions of 
the data set can be found in Chen and Shao (1999). 

We consider simple random sampling with n - 
100 or 200 and a single imputation class. The y- 
respondents are generated according to the response 
probability function 

exP(71 + 72x) 
P(a  = l l x ) =  

i + exp('/1 + 72 x) 

with various ~1 and 72. When "Y2 = 0, respondents 
are generated with equal probability (uniform re- 
sponse); when 72 =/= 0, response rate depends on the 
value of x (non-uniform response). When uniform 
response is considered, the response rate is chosen 
to be between 0.5 and 0.88. Table 1 provides values 
of 71, 72, the ranges of P(a  = llx), and the average 

E[P(a = 

Table 2 lists 10,000 Monte Carlo simulation esti- 
mates of the relative bias (in %) and the standard 
deviation for five jackknife variance estimators un- 
der 15 different models (different values of 71 and 72) 
described in Table 1. The values of the asymptotic 
variance V in (4) are also listed. 

The results in Table 2 can be summarized as fol- 
lows. 

The naive jackknife variance estimator VjACX 
has a serious negative bias. The relative bias 
of Vj,cx can be as high as 50-70% and, as ex- 
pected, is related to the average response rate 
E[P(a  = 1Ix)]. The re-imputed (or adjusted) 
jackknife variance estimator vj,cxR' has a serious 
positive bias, as indicated by Theorem 1. The 
relative biases of VjAC, and R I  V JACK are compara- 
ble in absolute value, but with different signs. 
Furthermore, the relative biases of VjAcK and 
VjAC KaI do not change much as n increases from 
I00 to 200. 

2. The relative biases are small for the two par- 
tially re-imputed jackknife variance estimators, 
v PRI and = P R I  and the partially adjusted 

J A C K  "(/JACK 

jackknife variance estimator P* V J A C K  • 

3. The standard deviations of "{]JAcK'PRI , VJACK2:'PRI, and 
vj,c KP* are comparable and the standard devia- 
tion of vjAcKP* is slightly smaller. All standard 

deviations decrease substantially as n increases 
from 100 to 200, which supports the consis- 
tency result established in Theorem 2. The 
standard deviation of the naive jackknife vari- 
ance estimator VjACK is much smaller than those 
of other jackknife variance estimators, but this 
does not indicate a good performance of VjACK 
since VJ,CK has a large negative relative bias. 

Appendix 

L e m m a  1. Under the conditions in Theorem 1, (11) 
holds. 
P roo f .  From Theorem 2 in Chen and Shao (1999), 

_ 

E ( ¢ k - - # k )  2 - O(n-1) ,  under the conditions of The- 
orem 1. Hence, 

E m k  w j  ~k  -- ~)k -- o ( n -  1). 
m k -  1 

Similarly, 

_ 

Thus, the result follows from 

E wj - - - 
j k 

= O(T/,--1). 

Let bJ k) - ~-~tEAfk d j t .  Since 

_< E 
tEAfk 

the result follows from 

Let Var, be the conditional variance, given xj ,  j C 

'/~k. Since/)3(. k) is conditionally binomial, we have 

L j e ~  

-- E [2mkrk ~ [¢k(y) -- ¢k(x)]2[Fk(y) -- Fk(x)] 
<y 

[1 + Fk(x)  - Fk(y)]rk f k ( x ) f k ( Y ) d x d y ] ,  
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Table 1" Parameters in Response Models 

p(a = 11 ) = + + + 

Model 71 ")'2 min~ P(a = 1Ix) maxx P(a = l[x) E [ P ( a =  llx)] 
1 0 -0.02 0.12 0.50 0.32 
2 0 -0.01 0.27 0.50 0.41 
3 0 0.00 0.50 0.50 0.50 
4 0 0.01 0.50 0.73 0.59 
5 0 0.02 0.50 0.83 0.68 
6 1 -0.03 0.12 0.73 0.46 
7 1 -0.02 0.27 0.73 0.56 
8 1 -0.01 0.50 0.73 0.65 
9 1 0.00 0.73 0.73 0.73 

10 1 0.01 0.73 0.88 0.80 
11 2 -0.04 0.12 0.88 0.61 
12 2 -0.03 0.27 0.88 0.70 
13 2 -0.02 0.50 0.88 0.77 
14 2 -0.01 0.73 0.88 0.83 
15 2 0.00 0.88 0.88 0.88 

where rk is the size of Tgk, Fk is the conditional 
distribution of x given a - 0 in imputat ion class 
k and fk is the density function of Fk. Note that  
r~[F~(y) - F~ (.~)][1 + F ~ ( x ) -  F~(y)] ~ has an upper 
bound independent of rk. Also note that  x < y. 
Hence, with the moment  assumption, 

f [¢k(Y)-  Ck(X)]2[Fk(Y) -- Fk(x)] 7" k 
J x  <Y 

[1 + Fk(x) - Fk(y)] rk fk (x ) fk (y )dxdy  < c~. 

Since the integrand converges to 0 almost surely 
when r k  --~ oO, by the dominate convergence theo- 
rem, the integral converges to 0 as rk -+ c~. There- 
fore, 

since mk = Op(n). Let E,  be the conditional expec- 
tation, given xj, j E 7"4k. The same argument can 
be used to establish 

This completes the proof. 
L e m m a  2. Under the conditions of Theorem 1, 

i i E.A/'~, 

where zi = Ck (xi) - #k, and 

W j  dij ti - E 
i jeAfa  

w h i r .  t , -  or 

P r o o f .  The first result follows directly from The- 
orems 1 and 2 in Chen and Shao (1999). For the 
second result, note that  

wi Pk E m  (t i  lai - -  1) 

+ E w?(1 - pk)Em(ti[ai - -  0)] -t- o(n -1) 
iESk 

i E S k  

where Em is the expectation with respect to model 
under assumption A, E8 is the expectation with re- 
spect to sampling, Pk = E(ai) for i in imputat ion 
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Table 2" Relative Bias (RB) in % and Standard Deviation (SD) of Jackknife Variance Estimations 

n -  100 
RI ~ P R I  Z P R I  PA 

V j  AC K V j  AC K U j  AC K "Uj AC K V j  AC K 

Model V RB SD RB SD RB SD RB SD RB SD 
1 2303.8 -74.9 194.1 63.7 2628.1 8.1 2100.7 3.1 1949.4 2.7 1602.0 
2 1742.2 -66.1 168.5 59.2 1550.2 7.2 1222.8 2.1 1152.3 2.2 942.9 
3 1360.6 -56.6 145.5 48.6 943.5 2.5 742.2 -0.6 677.5 -0.5 573.7 
4 1070.2 -44.2 128.8 45.9 621.8 5.6 496.3 3.2 453.8 3.3 385.0 
5 924.2 -35.0 117.4 35.5 443.8 2.9 342.1 1.8 327.4 1.8 282.5 
6 1571.7 -62.1 164.8 61.5 1370.4 9.7 1091.0 6.2 1067.5 5.7 847.6 
7 1240.0 -51.7 142.1 52.4 895.4 6.8 700.4 4.3 662.3 4.1 547.0 
8 1025.2 -41.4 128.5 41.8 561.5 4.0 436.3 2.1 408.1 2.3 353.4 
9 837.1 -28.3 115.1 40.1 401.5 8.0 313.4 7.2 294.6 7.0 256.7 
10 782.3 -23.2 108.5 25.1 297.9 1.7 229.6 1.6 220.3 1.6 199.4 
11 1163.3 -48.6 140.6 53.1 853.5 8.7 696.6 6.4 667.7 6.2 538.4 
12 974.8 -38.4 125.7 40.1 528.8 4.6 415.5 3.1 393.1 3.2 337.7 
13 850.7 -29.5 114.1 29.4 366.6 1.7 285.7 1.1 275.5 1.2 240.8 
14 747.2 -19.5 105.6 24.6 269.9 3.5 211.4 3.2 207.0 3.1 183.9 
15 689.6 -12.6 101.0 19.0 210.7 3.5 167.1 3.3 162.6 3.5 149.8 

n -  200 
RI ~ P R I  Z P R I  PA 

V J A C K  V j A C  K "U J A C K  "U J A C K  V J A C K  

Model V RB SD RB SD RB SD RB SD RB SD 
1 1135.6 -74.1 70.1 64.4 901.8 8.7 715.2 2.3 676.3 2.2 545.9 
2 849.9 -65.2 60.4 59.3 549.6 7.4 442.5 1.9 393.4 2.1 329.2 
3 664.1 -55.4 51.4 50.4 330.0 4.2 259.3 0.7 237.1 0.8 200.0 
4 527.3 -43.6 45.6 45.8 219.9 5.7 173.8 3.3 157.8 3.4 134.8 
5 442.5 -32.7 41.2 39.7 155.5 6.2 118.8 4.8 111.4 4.8 96.9 
6 770.0 -61.4 58.2 62.4 501.5 10.8 407.1 5.8 370.7 5.7 303.8 
7 615.8 -51.7 50.3 50.8 301.6 5.1 233.9 2.9 221.4 2.6 181.8 
8 498.5 -40.5 44.0 42.6 192.0 4.6 148.2 3.1 141.2 3.0 120.1 
9 434.5 -31.5 40.0 32.3 136.2 2.3 105.5 1.8 101.4 1.6 87.8 
10 384.5 -22.6 37.3 25.3 101.0 2.1 78.0 2.1 76.1 2.1 68.3 
11 589.0 -49.5 49.6 48.0 293.9 5.1 236.8 2.7 220.5 2.7 181.9 
12 483.2 -38.3 43.7 39.7 188.2 4.0 146.0 2.9 141.4 2.9 118.7 
13 425.1 -29.9 39.9 28.8 130.5 1.2 103.2 0.3 96.0 0.4 84.3 
14 367.6 -19.0 36.8 25.0 93.6 3.8 74.2 3.6 71.3 3.6 64.1 
15 340.6 -12.6 34.4 18.4 71.9 3.3 57.4 3.2 55.9 3.2 51.5 
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class k, and the second equality follows from The- 
orem 1 in Chen and Shao (1999). The result then 
follows from the first result and ~iesk  w~Em(ti) - 
E ienk  w2Em(ti) + Ei~Xk w2Em(ti) • 
P r o o f  of  T h e o r e m  2. Result (14) has already 
been established in the derivation of-pru in Sec- "U JACK 
tion 4. To show (15), it suffices to show that 
Var(v~,RI~) = O(rt-3). From (9) and (10), a straight- 
forward calculation shows that 

Var[ (~ . JNNI-  y(R]i)) 2] --  O(Tt -4) 

uniformly in j and 

uniformly in j :fi 1. This proves the result. 
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