
THEORY AND APPLICATION OF NEAREST NEIGHBOR IMPUTATION IN CENSUS 2000 

Robert E. Fay* 
U.S. Census Bureau, Washington, DC 20233-9001 

Key words: missing data, variance estimation, replication, 
replicate weights. 

1. Introduction 
1.1 Changing Census Plans The evolving plans for the 
next decennial census in the U.S., Census 2000, have 
been widely reported in the press and remain a focus of 
political debate. Last year, Thompson and Fay (1998) 
reviewed the milestones in the development of the 
decennial program at the Joint Statistical Meetings, 
particularly with respect to statistical sampling and 
estimation, which was to have been one of the 
cornerstones of the plans. While the 1970 census 
provided a precedent for inclusion of sampling and 
estimation in producing the population count (Wright 
1999), Census 2000 was to have been the first in the U.S. 
designed with the goal of achieving an optimal 
combination of counting, assignment, and estimation in 
order to obtain population totals. 

The 1980 and 1990 censuses primarily employed a mail 
strategy in which households in most parts of the country 
were mailed or delivered census forms. The majority of 
households responded by mail, but nonresponding 
households were followed up by personal visit to 
complete the enumeration. In some cases, interviewers 
had to obtain information about nonrespondents from 
neighbors or other sources, although precise figures on 
such proxy response are unavailable. 

Both demographic analysis (Robinson, Ahmed, Das 
Gupta, and Woodrow 1993) and coverage studies using 
sample surveys have documented a persistent undercount 
of some groups, including Blacks. In both 1980 and 
1990, the issue of a potential adjustment to the census 
counts to compensate for differential undercoverage 
became a matter of both debate and litigation. Results 
from coverage evaluations could not be produced until 
months after the release of the apportionment counts used 
to allocate the number of representatives among the 
states. No official numbers were adjusted in 1980. In 
1990, Secretary of Commerce Mosbacher decided in July, 
1991, against the Census Bureau recommendation for 
adjustment. The only official figures incorporating an 
adjustment for undercount in the 1990 census are 
postcensal population estimates at the state and national 
level used as controls for some demographic surveys, 
such as the Current Population Survey (CPS), the 
monthly labor force survey in the U.S. In particular, the 
official postcensal population estimates, published and 

used for other purposes including allocation of funds, do 
not incorporate an adjustment for census undercount, 
unlike current Canadian practice (Germain and Julian 
1993, Dick 1995). 

As of August 1998, the Census Bureau's plan for 
Census 2000, developed over several years, employed 
statistical sampling and estimation in two primary ways 
(Thompson and Fay 1998): 
1) A sample of nonresponding households was to be 

selected for Nonresponse Followup (NRFU), and the 
results used to form estimates for nonsample 
nonresponding households. Sampling for NRFU 
offered savings in both time and money. 
Nonetheless, this sample was to have been extremely 
large, on the order of tens of millions of households, 
enabling conventional survey estimates down to very 
low levels of geography. 

2) A large coverage study, called the Integrated 
Coverage Measurement (ICM), would be based on 
approximately 750,000 housing units and viewed as 
an integral part of the census. Its purpose was to 
measure differential undercoverage. The results 
would be incorporated into all official results, 
including the state population counts delivered to the 
President on December 31, 2000, to be used for the 
apportionment of the U.S. House of Representatives 
among the 50 states. 

In January, 1999, however, the U.S. Supreme Court 
upheld lower court rulings that the current census 
legislation did not permit the use of either form of 
sampling for the apportionment. The court's ruling did 
not resolve the constitutionality of such a census if 
current law were revised to permit it. Plans for Census 
2000, however, were changed to conform with the 
existing legislation and the court's interpretation of it. 

Thus, the effect of the Supreme Court ruling was to 
eliminate the first type of sampling, sampling for NRFU, 
from Census 2000. In other words, once NRFU sampling 
is excluded for purpose of apportionment, it would have 
no practical use for any other purpose. Revised plans for 
the census now reflect the increased workload and time 
requirements to follow up roughly 15,000,000 more 
nonresponding housing units. State counts without the 
use of sampling and estimation will be produced by 
December 31, 2000, for the apportionment. 

Although NRFU sampling was entirely eliminated by 
the court's decision, the ICM has been redesigned as the 
Accuracy and Coverage Evaluation (A.C.E.). Indeed, the 
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court's ruling did not exclude the use of sampling for uses 
other than apportionment, and to some degree suggested 
that sampling would be appropriate if feasible. The 
A.C.E. sample size has been reduced from 750,000 to 
approximately 300,000 housing units, and the time 
schedule has been adjusted for the more extensive period 
required for NRFU. Current plans are to obtain A.C.E. 
estimates by approximately February 15,200 l, relatively 
earlier than previous studies in 1980 and 1990. The 
A.C.E. estimates, in the form of estimated percent 
undercounts for a set of poststrata, are planned to be 
incorporated into the detailed official counts down to the 
block-level for release by April l, 2001. This timing 
permits their potential use in redistricting. (In the U.S., 
states allocated more than one representative in the House 
of Representatives are divided into Congressional 
Districts on the basis of population. Redistricting is the 
process of defining these boundaries. Although court 
rulings now tightly limit variation in the population sizes 
of congressional districts within a state, states are given 
some latitude in other respects in determining their 
boundaries.) Under the revised plan, all official data 
products from Census 2000, except the apportionment 
counts, will incorporate the results of the A.C.E. 
1.2 Nearest Neighbor Imputation in the Dress 
Rehearsal The paper will focus on the nearest neighbor 
imputation as an estimation procedure for NRFU in the 
Census 2000 Dress Rehearsal in Sacramento and on an 
associated variance estimator. Thus, the paper concerns 
methodological aspects of an application obviated by the 
Supreme Court's ruling. Nonetheless, this paper, and one 
in preparation (Fay and Farber 1999), will focus on 
methodological findings from the Dress Rehearsal effort. 

The 2000 Dress Rehearsal was conducted in three sites. 
Through agreement with Congress, the Census Bureau 
implemented its plan for Census 2000, combining 
sampling for NRFU with Integrated Coverage 
Measurement, only in Sacramento, California. A site in 
Columbia, South Carolina, and surrounding counties was 
enumerated without the statistical methods, although an 
accompanying Post-Enumeration Survey, similar in 
design to the ICM, was employed as an evaluation. A 
smaller site in Wisconsin did not use sampling for NRFU 
but incorporated the ICM corrections. 

The selection of a probability sample for NRFU 
theoretically permits the use of standard survey weighting 
procedures. Instead, a nearest neighbor/hot-deck 
imputation method was implemented in the Sacramento 
site, in effect treating nonsample nonresponding housing 
units as a problem in unit nonresponse. The subject of 
section 2 and a principal focus of this paper is the 
rationale for this methodological selection. The section 
also describes the Sacramento application in more detail. 

1.3 Variance Estimation A second purpose of the 
paper is to present a suitable variance estimator for the 
NRFU imputation. The variance estimator has potential 
application to other nearest neighbor imputation 
situations. 

As often noted, the term hot-deck imputation has been 
applied to a variety of similar methodologies. For 
purposes of discussion in this paper, it is useful to group 
most of these into three broad categories: 
1. The sequential hot deck. This original form appears 

to have been substantially shaped by available 
computer resources and practice at the time of its 
development. In its simplest form, a characteristic x 
is available for all units but y is subject to possible 
nonresponse. Units are classified on the basis of x 
into prespecified cells. Typically, an array is loaded 
with a cold deck of initial values based on an earlier 
survey or some other suitable source. The units are 
processed sequentially, often in a sort reflecting 
geographic proximity or another measure of 
similarity. New units with observed y, termed 
donors, are used to replace old values in the hot-deck 
array; units with missing y are assigned values from 
the hot deck. For example, the empirical study of 
Rizvi (1983) considered only this form of hot deck, 
whereas the overview by Ford (1983) considered this 
form of hot deck as well as nearest neighbor 
imputation below. 

2. Statistical matching with fixed cells. The ability to 
sort moderate or large files and other forms of data 
access removed the restriction that the hot deck be 
tied to the sequential order of the data file. For 
example, the variance estimator developed by Rao 
and Shao (1992) was for a hot deck unconstrained by 
the order of the file. Specifically, they consider units 
cross-classified into a potentially large number of 
cells, and each unit requiring imputation can receive 
a value from any of the donors falling in the 
corresponding cell. In Rao and Shao (1992), 
observations requiring an imputation are 
independently assigned values with probability 
proportional to each donor's survey weight. The 
asymptotic argument in Rao and Shao (1992) 
permitted an increasing number of cells but required 
that generally each cell have an increasing number of 
eligible donor cases. Fay (1996) contrasted the Rao 
and Shao (1992) estimator for this situation with a 
multiple imputation (Rubin 1987) approach, finding 
a clearer frequentist interpretation for the Rao and 
Shao approach than for multiple imputation. 

3. Nearest neighbor imputation. This form extends the 
logic of statistical matching further, searching for 
either a unique best match or small number of 
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equivalent matches on the basis of x among units 
with observed y. The cells in this form of imputation 
are not predetermined. For example, College, 
Johnson, Par6, and Sande (1978) describe an 
application to economic data in which a specific set 
of nearest neighbors were identified for each case 
requiring imputation. I.G. Sande (1983) reviewed 
the general features of the nearest neighbor 
approach, and G.T. Sande (1983) provided additional 
comments on its features and computational 
feasibility. Lee, Rancourt, and S~irndal (1994) 
presented and studied a variance estimator for y 
using nearest neighbor imputation on the basis of a 
continuous x and an assumed regression model for y 
on x. The extension of multiple imputation to this 
form of nearest neighbor imputation is less clear, and 
the version of multiple imputation investigated by 
Lee, Rancourt, and S~irndal did not perform as 
satisfactorily in an empirical study as their own 
estimator. 

This grouping is useful for categorizing variance 
estimators for the hot deck, but the distinctions among the 
three groups are not always precise, particularly between 
the second and third form. Bankier, Luc, Nadeau, and 
Newcombe (1996) characterize the New Imputation 
Methodology (NIM) developed at Statistics Canada 
(Bankier, Houle, Luc, and Newcombe 1997) as a 
minimum change hot deck, and it appears appropriate to 
categorize the NIM in the third group. The current 
imputation methodology for work history and income 
items for the Annual Demographic Supplement ("March 
Supplement") to the Current Population Survey (CPS) in 
the U.S. employs a series of sorts to achieve a statistical 
match between donors and cases requiring imputation. 
(Coder 1978 and David, Little, Samuhel, and Triest 1986 
provide a more detailed summary of the algorithm.) In 
effect, several different cross-classifications of observed 
characteristics are considered for each case requiring 
imputation. In many cases, a large number of donors may 
be available for particular cases requiring imputation, but 
in others cases imputations may be made by selection 
from a relatively small set of donors. Thus, the CPS 
application is best categorized as belonging to the third 
group but having ties to the second. Other versions of the 
hot deck, such as the use of the nearest neighbor approach 
with distance determined in whole or in part by predicted 
values from a parametric model, do not fit neatly into any 
of the three groups. 

Fay developed a variance estimator especially for the 
third group, based on different assumptions than used by 
Rao and Shao. Unlike the variance estimator proposed by 
Lee, Rancourt and SLrndal, the method does not require 
a parametric model. A key feature of the method is the 

use of data from a second nearest neighbor for purposes 
of variance estimation. Various forms of the variance 
estimator have appeared earlier (Town and Fay 1995, 
Steel and Fay 1995, Fay and Town 1996, 1998). Section 
3 describes the rationale of the estimator in more detail. 

2 Selection of Nearest Neighbor Imputation in the 
Dress Rehearsal 
2.1 Methodological Background 
2.1.1 Block vs. Unit Sampling The Census Bureau's 
planned use of sampling for both NRFU and the 
correction of differential census undercoverage through 
ICM led to a number of separate research efforts on how 
to estimate census results under NRFU sampling. The 
design for NRFU sampling was constrained, however, to 
be consistent with the plans for the ICM. 

The design strategy for the ICM involved sampling 
census blocks or block clusters and typically including all 
of the housing units in the sampled blocks in the ICM 
sample. (The largest blocks were to be subsampled. The 
average size oflCM clusters was projected to be about 30 
housing units after subsampling.) Because of the required 
matching of ICM sample cases to their initial census 
counterparts, the design called for 100°,4 NRFU, rather 
than NRFU sampling in ICM blocks. NRFU sampling in 
ICM blocks would have induced complexities arising 
from attempting to match an ICM household to a 
nonsample household in NRFU. 

Two primary candidate designs were available for 
NRFU sampling of non-ICM blocks: 
• Block sampling, where a sample of blocks with mail 

nonresponse would be selected. All nonresponding 
housing units in sampled NRFU blocks would be 
followed up. 

• Unit sampling of nonresponding housing units in an 
unclustered manner. One form, implemented in one 
of two panels in Oakland, CA, in the 1995 Census 
Test, assured selection of sample units in all blocks 
with nonresponse. (For example, a single 
nonresponding unit in a block was always included.) 
In Sacramento, a systematic sample of 
nonresponding units was selected, resulting in 
sampled NRFU units in most but not all blocks with 
nonresponse. 

The block-based design logically fit better with the ICM 
design, since NRFU would then be completed on a block 
basis in both ICM and non-ICM blocks. In other words, 
if 

E (y [un i t  sampling) , E (y lb lock  sampling) 
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then statistical adjustment of counts from NRFU using 
unit sampling on the basis of an ICM using block 
sampling would be problematic. A distinct potential 
disadvantage, however, later confirmed by empirical 
studies, was that sampling blocks for NRFU could yield 
much higher variances. 

Initially, research efforts had concentrated on NRFU 
estimation under block sampling. Tsay, Isaki, and Fuller 
(1996) and Zanutto and Zaslavsky (1996) investigated 
block-level models. Estimates at the block level would 
then be used as constraints by statistical procedures to 
estimate the nonsampled households and persons within 
each block to be added to the results of direct 
enumeration. Schaefer (1995) investigated a different 
procedure, which modeled at the household and person 
level. In Schaefer's approach, estimates for blocks 
emerged by summation. Schaefer's approach also 
attempted to integrate estimation for NRFU with 
imputation for item nonresponse for data on 
characteristics. 

In the 1995 Census Tests, a split panel experiment 
compared unit and block sampling designs for NRFU 
sampling in Oakland, CA. The two panels produced post- 
NRFU estimates within sampling error of each other, but 
variances were substantially less for unit sampling (Fay 
and Town 1996). In other words, the evidence indicated 

E(y i unit sampling) - E(y [ block sampling) 

Var(ylunit sampling) << Var(y]block sampling) 

In general, cost is an additional factor to consider in 
selecting among survey designs. In this respect, block 
sampling was thought to have a small advantage in terms 
of slightly reduced travel, but the differences were 
considered marginal because both designs, with their high 
sampling fractions, would be very densely distributed. 

The findings became the impetus to move to unit 
sampling. A related study based on matching ICM blocks 
to similar non-ICM blocks for the 1998 Dress Rehearsal 
showed no systematic differences (U.S. Census Bureau 
1999a). 

The effect of unit sampling is suggested by the 
following example: for a typical block of 30 housing 
units, a 70% response rate leaves 9 nonresponding units, 
of which an expected 6 would be sampled for NRFU, 
leaving an expected 3 to be estimated. Use of sampling 
rates defined within each block, or, as in the Dress 
Rehearsal, systematic sampling, are available to limit 
random variation in the realized sample size within 
blocks. Although the previous research had shown that 
models can make effective use of block-level variables in 
forming estimates under block sampling, unit sampling 

reduces these gains by largely eliminating the effect of 
between-block variability on the estimate. 
2.1.2 Weighting vs. Imputation With the selection of 
unit sampling and the accompanying feasibility of using 
simpler design-based estimators, a traditional weighting 
approach appeared to deserve consideration. Although 
the design-based rationale for weighting is clear, there 
were a few significant constraints. For the sake of ease of 
use, weights could only be integers. (Indeed, the Census 
Bureau has consistently used integer weights even for the 
census "long-form" sample data. In Census 2000, sample 
data will be collected from approximately 1 out of 6 
households.) For NRFU, most weights would thus be 
either 1 or 2, except in areas where the response rate 
exceeded 80%. 

For higher levels of geography such as census tracts, 
application of integer weights would have provided 
estimates of population plausibly consistent with housing 
unit totals. Use of weights at the block level, however, 
could have produced marked inconsistencies between 
population counts directly affected by NRFU sampling 
and counts of housing units, which were almost free from 
random variation. 

Use of nearest neighbor imputation, with nonsampled 
nonresponse housing units imputed from nearby sampled 
NRFU units, maintained the integer nature of the census 
data and linkage between housing units and population. 
Farber and Griffin (1998) compared weighting vs. nearest 
neighbor imputation, and found almost equal performance 
at most geographic levels, but awarded the advantage to 
nearest neighbor imputation for its ready handling of 
blocks lacking sampled NRFU units. 
2.2 Basic Implementation Strategy in the Sacramento 
Dress Rehearsal 

As in previous U.S. censuses, part of the overall task of 
taking a census is to obtain an inventory of housing units. 
Sampling was not to be employed at this stage; rather, the 
Master Address File (MAF) of all housing units was the 
frame for sampling. (Sampling enters slightly, in that the 
result of NRFU is occasionally to determine that a unit in 
the MAF must be deleted. For example, the unit might be 
a commercial address or demolished. Consequently, the 
imputation also classified some nonsample units to delete 
status.) 

Sampling for NRFU was to be used for two types of 
incomplete data. The first of these was housing units not 
responding by mail: nonresponding housing units 
represent a mixture of households not returning their 
forms, vacant units, and units that should have been 
deleted from the MAF. Consequently, NRFU was to 
determine the occupancy status of sampled 
nonresponding units as well as other characteristics. The 
sampling rates were set so that statistical estimation 
would be used to represent only 10% (or less) of the 
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housing units in each census tract (a publication area 
generally representing about 3000 housing units). With 
mail nonresponse in Sacramento around 50%, overall 
about 4-in-5 nonresponding units were sampled for 
NRFU -- a very large sample compared to usual statistical 
practice. 

The second type of incomplete data was entirely distinct 
from the first. During the mail delivery of the census 
questionnaires, carriers were allowed to return forms to 
the Census Bureau with the designation "Undeliverable 
as Addressed-Vacant" (UAA-vacant). From past 
experience, the majority of such units are vacant, but not 
all of them. (This again proved to be the case in 
Sacramento.) A sample of 3-in- 10 of the UAA-vacant 
units was selected for followup visit by an enumerator, 
and units found to be occupied were enumerated. This 
sampling rate required that most UAA sample cases be 
used in imputation 2 or 3 times. 
Each of the two groups was treated as an independent 

estimation problem, since the respective universes did not 
overlap. The following discussion will be primarily in 
terms of NRFU, although parallel operations were carried 
out for UAA. Farber, Fay, and Schindler (1998) describe 
the sampling and estimation in more detail, but a 
summary will be included here. 

Based on the overall approach of section 2.1, the basic 
strategy was to identify a neighboring sample NRFU case 
as the basis for imputation for each nonsample 
nonresponse housing unit. In terms of the previous 
notation, characteristics x, including sort order in the 
MAF (which is related to location), census block, and 
basic address (generally enabling identification of units in 
the same building), are available for both sample and 
nonsample nonresponse units. Wherever possible, the 
matching algorithm selected donors from the same 
address for nonsample units at multi-unit addresses. 
Otherwise, the nearest neighbor of a nonsample case was 
defined on the basis of the distance when the file was 
sorted by block and MAF order within block. Thus, the 
algorithm favored using units in the same block, taking 
into consideration the closeness indicated by the MAF 
(U.S. Census Bureau 1999b). The overall design was 
that donor units would provide characteristics, y, 
including whether the unit should be deleted, occupancy 
status, and for occupied units, number and demographic 
characteristics of the residents, owner/renter status, etc. 

In order not to depart from a design-based rationale too 
substantially, the number of times each eligible sample 
case was used was constrained to be consistent with the 
weight it would have had under a weighting approach. At 
the tract level, this weight would have been 

W NRFU 

NRFU sample units + NRFU nonsample units 

NRFU sample units 

omitting ICM blocks. A UAA weight, Wu~, was defined 
similarly. For example, for a UAA sample case in a tract 
with WUA A = 3.33, then the sample case was constrained 
to be used as a donor either 2 or 3 times (in addition to 
representing itself). Consequently, when the weights in 
a tract were an integer, then the nearest neighbor 
imputation was constrained to use each donor the same 
number of times and thus to reproduce at the census tract 
level the results of a weighting approach. 

As a remark, had the Supreme Court ruled differently, 
and had sampling for NRFU remained part of Census 
2000 plans, further empirical investigation of this 
approach would have been warranted. The procedure 
implemented for Dress Rehearsal insured a fairly high 
level of agreement between the imputation and weighting 
at aggregate levels, while effectively leaving the nearest 
neighbor approach some latitude in allocating whatever 
fractional weight was available. Because of high 
sampling rates for NRFU, in most tracts the weight did 
not reach 2, so the effect of the constraint was to allow 
the measure of distance to select donors but to constrain 
each donor to a single use at maximum. Alternative 
approaches, such as randomly determining which donors 
to use to distribute any fractional weight, would have 
provided even further protection against bias, possibly at 
the expense, however, of somewhat increased variance. 
Further empirical research on such points would have 
been warranted if NRFU sampling had remained in 
Census 2000 plans. 
2.3 Modifications for Late Mail Returns 

The conceptual model just described is based on a 
simple dichotomy between sample and nonsample 
nonresponse units. In practice, a cutoff date 
approximately 2 weeks after the due date was set during 
Dress Rehearsal, and the sample of nonresponding units 
was identified at that time. Some returns continued to be 
received thereafter. When a late mail return was received 
from a unit sampled for NRFU, a computer algorithm 
selected between the late return and the followup form 
that may have been obtained by personal visit on the basis 
of completeness, with a preference for the mail return. 
Late returns were incorporated into the census for 
nonsampled units, eliminating the need for any 
imputation for them. The decision to accept late returns 
was made on the basis of policy, to avoid rejection of data 
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from the public within the time span that the information 
could actually be processed and tabulated. 

Superficially, late mail returns appear simply to reduce 
the size of the remaining followup somewhat. In fact, 
however, late mail returns cannot be regarded simply as 
a random sample from the outstanding units. Late mail 
returns, like mail returns in general, were almost 
exclusively from occupied housing units. Ignoring late 
retums, the nonsample nonrespondents are a probability 
sample of all nonrespondents as of the cutoff date, but 
when those returning late retums are removed, the 
remaining units should be somewhat skewed towards a 
population of vacants and deletes. Since the occupancy 
status belonged among the sample characteristics, y, 
rather than among the characteristics, x, available for 
matching, the use of nearest neighbor imputation would 
not correctly represent this aspect of response. In other 
words, although selecting a probability sample for NRFU 
would have led to nonresponse (where nonresponse in the 
general theory is equated to not a member of the NRFU 
sample in this instance) unconfounded with y, the 
subsequent exclusion of late mail returns from the 
nonsample cases leaves a set of nonsample cases with 
nonresponse confounded with y, particularly through 
occupancy status. 

Lee, Rancourt, and S/amdal (1994) investigated the 
performance of their proposed form of nearest neighbor 
imputation under both unconfounded and confounded 
response situations, but proposed no modification to the 
procedure in instances in which response is confounded. 

A modification to the imputation to compensate for 
confounded response was implemented for the Dress 
Rehearsal. The approach was to reduce proportionately 
the number of available donors in accord with the number 
of late mail returns received for nonsample units. For 
each tract, a ratio of sampled to nonsampled units was 
computed; specifically (Farber, Fay, and Schindler 1998), 

r NRFU = 

N R F U  sampled addresses in n o n - I C M  blocks 

N R F U  nonsampled addresses in n o n - I C M  blocks 

WNRFU - ] 

Separately for the three categories, c, of sampled 1) 
occupied, 2) vacant, and 3) deleted units, a number of 
units, 

Rm c = rNRFU × LR c 

LR C 

W N R F U -  1 

were removed from the hot deck from c, where LR~ is the 
number of nonsampled late returns in c. Within c, 

sampled cases with late mail returns were targeted first 
for removal, followed by the remaining sample cases. 

For rNmu < 1, that is, WNRFU > 2, some sample units 
would be used more than once for imputation, and further 
research could have investigated an alternative that 
reduced the allowed imputations by 1 over a larger group 
of donors instead of completely eliminating some from 
any use. Again, circumstances no longer justify further 
pursuit of this option at this point. 
2.4 NRFU/UAA Variances for Sacramento Although 
the official Dress Rehearsal result for Sacramento 
incorporated the ICM component, the Census Bureau has 
also released a population total without the ICM 
component of 377,741 for Sacramento. Using the 
methodology reported in the next section, the estimated 
standard error for this estimate was 321 people, or a c.v. 
of less than .09%. This standard error pertains to the 
effect of NRFU and UAA estimation. By contrast, when 
the ICM correction is also included, the official 
population total is 403,312 with estimated standard error 
4,810 or a c.v. of  1.2%. 

For a block of approximately 30 housing units and 75 
people, a simple scaling of the site-level results suggests 
a standard error of approximately 4.5 people, or a c.v. of 
roughly 6%, from the NRFUAJAA component of 
estimation. 

According to the ICM, the census count, 377,741, 
without the ICM for Sacramento is subject to an 
estimated 6.3% undercount (s.e. 1.1%). 
2.5 Concluding Remarks on the Application Available 
evidence suggests that the implementation of nearest 
neighbor imputation essentially achieved its primary 
objective, namely, to produce statistical estimates 
comparable to conventional enumeration while agreeing 
closely in aggregate with traditional survey estimation 
results. Further empirical details will be provided by Fay 
and Farber (1999). 

Changes in legislation could open the possibility of 
sampling for NRFU in 2010; if so, the 2000 Dress 
Rehearsal experience will represent a potential starting 
point for research efforts. 

The application also illustrates consideration of the 
effect of confounded response in applying nearest 
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neighbor imputation. Although the procedure presented 
here could be further refined, the modification of the hot 
deck to compensate for the effects of confounded 
response may be a potential approach useful in other 
applications. 

3 A Variance Estimator for Nearest Neighbor 
Imputation 
3.1 Basic Rationale As noted in the first section, forms 
of the variance estimator had been reported in several 
previous collaborations. Although basic assumptions 
were stated, the previous accounts were considerably 
truncated. The discussion here is intended to provide an 
expanded account of the estimator. Section 3.1 will deal 
with a special case, which leads to a simplified, almost 
obvious, form. Section 3.2 provides the full estimator 
used in the Dress Rehearsal. 

As noted in Section 1.3, the Rao-Shao variance 
estimator was developed relying on a random selection 
from a set of possible donors in the imputation cell. 
Forms of nearest neighbor imputation emphasizing use of 
an optimal nearest neighbor depart from conditions 
required for the Rao-Shao variance estimator. 

For each case i requiring imputation, let y~ be the true 
but unobserved value and y~ = Y,,I (o the imputed value 
from the nearest neighbor, nnl(i), of i. The scope of the 
variance estimator includes both applications in which the 
nearest neighbor, nnl(i),  is defined on the basis of 
distance only or is subject to constraints on the number of 
times each donor may be used, as in the Dress Rehearsal. 
The variance estimator employs the value from a second 
nearest (responding) neighbor, nn2(i). In general, a 
second nearest neighbor, nn2(i), for i may be defined by 
omitting the first nearest neighbor, nnl  (i), and applying 
the nearest neighbor definition/algorithm. (In the Dress 
Rehearsal application, the constraint on the number of 
uses of the donor was not employed in defining the 
second nearest neighbor, nor is it theoretically necessary 
to do so.) 

The variance estimator is developed under a population 
model, ~, for a population ofy conditional on x (Fay and 
Town 1998). The variance estimator relies on model 
assumptions: 

E ( ( y , )  = E ( ( y , , , ( O )  = E¢@,,2(O) (1) 

To the extent that Xnnl(i) and X nn2(i) a r e  close to but not 
necessarily equal to x~, assumption (1) represents an 
ideal that practical applications will generally only 
approximate. Assumption (3) follows from an 
assumption of independence of the y's given the x. 
Assumption (2) follows from (1) and (3) ifnonresponse 
is unconfounded with y given x. 

Let Y denote the sum of the y's in the given finite 
population, which is a realization under ~. Suppose Y* 
denotes the sum with the imputed values for y. If each 
nearest neighbor is used in imputation at most once, then, 

= )2 Egr-r*) E E gy. - y . . , . )  
i EAnr 

E E((Ynn2(o 
i CAnr 

- y . . l (O)  2 
(4) 

where A,,  r denotes the set of cases requiring imputation. 
The variance estimator is derived by replacing the 
expectation over the model in (4) with the observed 
values, 

* )2 
V a r ( ( Y * )  = ~ (Y,,,2(O - Y , , ' (O  (5) 

i CAnr 

Under these simple conditions, the interpretation of (5) is 
straightforward. The variance under the model in 
estimating the unobserved Yi by Yi = Y,,I(;) is 
approximated by the squared differences of first and 
second nearest neighbors. 

Expression of a replication method through replicate 
weights facilitates subsequent analysis. For the sake of 
generality let, Y*, be expressed as a weighted sum, 

Y* = ~ W ~oyi • (6) 
i 

Suppose a replication-based estimator of variance can be 
written in the following form, 

Var*(Y*) = ~ br (Y  r - y . ) 2 ,  (7) 
r=l  

V a r ( ( y i l x i )  = 1/2 E((Ynnl(  0 - ynn2(O) 2 (2) 

C o v ~ ( y , , y , , l x , , x , , )  - O, i * i' (3) 

where the b, r=l  ..... n, are an appropriate set of 
coefficients independent of the choice of characteristic Y, 
and for replicate estimates, 
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Y ;  = ~ w , r y , ,  (8) 
i 

is defined for replicate r, on the basis of a set of replicate 
weights, w;~, where n replicate weights are assigned to 
each i. 

Estimator (5) can be approximated through a replicate 
weighting of the form (6) - (8). The Dress Rehearsal 
implementation used n = 100 and br = 1, r = l  . . . . .  100. 
For each i ~ A , a second record based on the second 
nearest neighbor, with x = xj ,  and y* = Y,,,,2o), can be 
incorporated into the data set with W~o = 0. When the 
number of imputed cases is less than n, each imputed 
case, i, may be assigned to a unique r. Setting 

ae 

w;~, = 1 for y~ record, r / , r ,  0 ~ r / ~  n 

= 0 for nn2 record, r / , r ,  

,# 

w~ = 0 for y~ record, 

O < r / g n  

(9) 

= 1 for nn2 record, 

donor, k, let nn l  -1 ( k )  denote the set of imputed cases 
with donor k. Donor k is associated with a replicate r in 
1-100, and (9) is implemented for this assignment of r for 
each imputed case in nn l  -1 ( k ) .  

Special Case: Suppose that, for each donor, k, whenever 
nn l  -1 ( k )  comprises Ck > 1 elements, each imputed case 
in nn l  - l ( k )  has a different assigned second nearest 
neighbor. For this special case, 

.))2 E¢( o,,-y, 
i ~ n n l  (- l)(k) 

E ¢ ( Y i -  y , , l O ) )  e 
i c n n l  (- l)(k) 

+ 2 c k (c  k - 1 ) Vix (Yk I xk) 
(11) 

= E¢.(( ~ (Y..2(O -Y..IO) ))2 ) 
i ~ n n l  (-l)(k) 

since for 

E¢((Y,,,IO) - Y , ) (Y , ,a09  - Y,')) 

= Var( (YkIXk)  
(12) 

exactly implements (5). 
For more than 100 imputations, the cases can be serially 

assigned to r= 1 ..... 100, losing some available precision 
but nonetheless producing a reasonable variance 
estimator with effective degrees of freedom approaching 
100. 
3.2 Donor Reuse The approach of 3.1 must be modified 
to account for use of donors more than once, which was 
to be required for NRFU sampling in tracts with mail 
response rates over 80% and for UAA sampling in 
general. If imputed cases i and i' share the same nearest 
neighbor, that is, nnl( i)  = nnl(i'), then the expected value 
of the cross product is 

E(((YnnlO) - Yi)(Y,ml09 - Y i ' ) )  

= Zare(y. .zo)  I x..~o;) 
(10) 

using (3). In other words, reuse of a donor contributes 
additional covariance affecting the variance of the 
estimated sum, Y*. Estimator (5) does not incorporate the 
effect of this covariance. 

In addition to the first 100 replicates as described, the 
full variance estimator incorporated two more sets of 100 
replicates each that, when used jointly in (8) and (7), 
represented the effect of (10). To understand the general 
case, it is helpful to consider first a special case. For each 

Thus, replicates 1-100 provide a consistent variance 
estimate. 

When two imputed cases share both the first and second 
nearest neighbors, (12) no longer holds; in fact, 

E(((Ynnl(O - Ynne(o)(Ynnl(O - Ynne(O)) 

= 2 V a r ( ( y k [ x k )  
(13) 

To address the resulting variance estimate in the general 
case, replicates 101-200 and 201-300 are included in the 
calculation. For any order pair of donors, k, k', let 
nnp -1 (k ,  k/)be the set of imputations, i, with nnl( i )  = k, 
and nn2(i) = k', and let ck. k~be the number of imputations 
associated with the pair. For ck. k' > 1, assign the pair to 
a replicate 101 ~ r _< 200. As in (9), for 
101 ~ r / ~  200 

wir~ = 1 foryk record, r / , r  

= 0 for nn2 record, r /~r  

a~ 

w~r = 0 for Yk record, 

(14) 

- 1 for nn2 record, 
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These replicates are used with b r = -1/2 in (7). These 
replicates correct effect of overestimation of the variance 
from the cross-product terms in (13). Unfortunately, they 
also subtract too much from the diagonal. To 
compensate, a third series of replicates 
201 ~ r ~ 300with br = 1/2 is constructed similarly for 
imputed cases with ck. k' > 1. Each imputed observation 
is assigned to a distinct replicate, r, for which (14) is 
again applied. 

The presence of negative terms in the variance estimate 
risks negative variance estimates to a generally small 
degree, and it appears to increase the variance of the 
variance estimate compared to some alternatives. When 
the conditions of the Rao and Shao variance approach are 
met, earlier simulation of the variance estimator showed 
higher variance than the Rao-Shao variance formula. 

The less obvious advantage to this approach is that it is 
directed to estimating the variance of subdomains as well 
as the domain total. The issue of variance estimation for 
subdomains was previously raised (Fay 1996) with 
respect to multiple imputation. 
Previously cited work on this approach covers additional 

types of applications, including to sample surveys with 
negligible sampling fractions and those where the finite 
population correction was important. Extensions to other 
replication methods besides the jackknife remains an 
open question. 

* This paper reports the results of research and analysis 
undertaken by Census Bureau staff. It has undergone a 
more limited review than official Census Bureau 
publications. Research results and conclusions expressed 
are those of the author and do not necessarily indicate 
concurrence by the Census Bureau. It is released to 
inform interested parties of current research and to 
encourage discussion. 

The author would like to thank Aref Dajani and Cary 
lsaki for helpful comments and Mary Ann Cochran for 
editorial assistance. 
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