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Abstract 

It is common in applied research to have large 
numbers of variables measured on a modest number of 
cases. Even with small rates of missingness on 
individual variables, such data sets can have a large 
number of incomplete cases. As a result, complete-case 
analysis can lead to substantial loss of efficiency even if 
the missing data are missing completely at random and 
can lead to substantial bias even if the missing data are 
missing at random. Here we present a new method for 
handling missing continuously scaled items in 
multivariate data sets based on a common factor model 
for reducing the number of covariance parameters to be 
estimated in a multivariate normal model. The 
technique is illustrated using applications from mental 
health research. 

1. Introduction 

When the number of variables is large relative to the 
number of cases, even a small number of missing items 
on each variable can result in a large number of 
incomplete cases. For example, with 20 variables on 
100 cases, if 10% of the values on each variable are 
randomly missing, we would expect only about 12 cases 
(0.920 _-_ 0.12) to be completely observed on all 
variables. As is now well known, complete-case 
analysis can be inefficient when missing data are 
missing completely at random (MCAR) and potentially 
biased when missing data are missing at random (MAR) 
(Little and Rubin 1987; Little 1992). 

Multiple imputation offers an attractive alternative to 
complete-case analysis in that it can represent 
uncertainty due to missingness. It is valid under MAR 
when imputations are "proper" as defined by Rubin 
(1987). When missing data are MAR and the 
parameters of the data model and missing data 
mechanism are distinct, the missing data mechanism is 
said to be "ignorable" (Rubin 1987). 

When we apply multiple imputation, it is 
recommended to include available information to the 
fullest extent possible because systematic difference 
between completely and partially observed cases may 
be reduced by incorporating important covariate 
information (Meng 1994; Rubin 1996). However, when 

the sample size is modest, even a simple model can be 
overparameterized. For example, if we observe 50 
variables, 50x49/2=-1225 correlation parameters would 
need to be estimated in a multivariate normal model 
with a general covariance matrix. Moreover, sometimes 
several variables arc closely related to one anothcr, 
which can cause problems with parameter estimation. 
In such cases, analysis often proceeds wilh an arbitrary 
choice of variables to include or exclude. 

Schafer (1997a) introduced a method to handle 
possible overparameterization using a ridge prior 
distribution for a multivariate normal data model. The 
ridge prior is a limiting case of the normal inverted- 
Wishart prior. When data Y follows N(#, Z), a. normal 
inverted-Wishart prior for the mean ,u and variance 2,' is 
implied by the specification that # ~ N(/lo, r-12;) and Z ~~ 
Wl(m, A). When r - +  0, the resulting prior distribution 
is called ridge prior by analogy with ridge regression. 
Posterior distributions are then given by 

At I Z ,Y~ N(.~,-n1521, 

and 

( ( )-'/ Z i Y ~ W  -1 n + m ,  A - l + n S  , 

where ~F is the sample mean vector of Y and S is the 

sample covariance matrix of Y. When we standardize 
the data, a common choice ofA -m is A -~ :- ~: 1, for m : ~: 
> 0 and an identity matrix 1. Then, the prior smoothes 
the sample correlation matrix toward an identity matrix. 
Schafer (1997a) showed that small positive values of t: 
work well to stabilize parameter estimates. 

The present paper proposes multiple imputation 
based on a common factor model to reduce the 
dimension of the parameters in a multivariate normal 
model. We used the Gibbs smnpler (Geman and Geman 
1984) to draw parameter estimates, factor scores, and 
missing items. Based on the assumed factor structure, it 
is straightforward to randomly draw the means, factor 
loadings, uniqueness, factor scores as well as missing 
items from conditional distributions with other 
parameters fixed. 

In Section 2, we describe multiple imputation based 
on a common factor model in detail. In Section 3, 
simulation results demonstrate that multiple imputation 
with a sufficient number of factors produces little bias 
under a variety of conditions. The application of this 
method to an emergency room intervention study in 
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Section 4 suggests that the proposed method has 
potential advantages in more complicated settings such 
as with longitudinally measured data. Finally, we 
discuss future directions of this research in Section 5. 

2. M e t h o d  

The idea of the factor model is to ignore factors 
corresponding to small eigenvalues and reduce the 
dimension of parameters. To be precise, we denote a 
data set as a matrix Y with n rows and p columns, where 
n represents the number of observations and p 
represents the number of variables. Then, Yi, i=1 ,2 ,  ... 
, n, denotes the ith observation of Y representing an lid 
random draw from an underlying sampling distribution. 
When we denote observed elements of Y as Yob.~. and 
unobserved items as Ym,s, the data matrix Y can be 
written as Y = (Yob,, Ym~,). The factor model with k 
underlying factors can be described as 

Y~ = a +  Z,/3 + & 
where 

a is a I xp mean vector; 
Zi is a l x k factor score vector; 
/3 is a k x p  factor-loading matrix; 
e,,-, N( O, z: ) 

where z 2 = diag(  rl 2, r22 . . . . .  re 2 ); 
and Z~ and c~ are independent. 

Rubin and Thayer (1982) discuss the EM algorithm 
for maximum likelihood factor analysis when there are 
no missing items. They considered factor scores as 
missing items and showed that EM algorithm can be 
used to calculate maximum likelihood estimates. Little 
and Rubin (1987) hint at an approach to handle missing 
items in the factor analysis, and Jamshidian (1997) 
introduced the EM algorithm for factor analysis when 
the data include missing items. 

Markov chain Monte Carlo techniques such as data 
augmentation (Tanner and Wong 1987) and Gibbs 
sampling can be applied in multivariate incomplete data 
problems to multiply impute missing items as well as to 
estimate parameters. The complete-data likelihood 
function under the factor model can be expressed as 
L(a,,e, f lY ,  Z) 

= ~l f ( Y i , Z i l a ,  fl, r)  
i=1 
/1/ 

= H f ( Y , . I Z i , a , f l ,  r ) . f ( Z i l a ,  fl, r) 
i=1 

( ') 1 ~ Zi Zi • exp - -~ ~--~ 

For the prior distribution of r/, j =- 1, 2, ..., p, we 
/ , 'x 

assu,Tle an inve r se  galT] nl a d i s t r ibu t ion  ] ( ; / 2 -  ' ~-9  " 

Although other prior descriptions would be possible, we 
prefer inverse-gamma prior distribution due to its 
convenience as a conjugate prior. We also assume 
conjugate prior distributions for %. and ~-, namely: 

~ j  : ~  ~ u ~ 0 , - -  ~Y , r o ~ ;  = 1, 2 . . . . .  p 
/7. a 

and 

I I ' !  fl / r.~ ,'-" N flo , ~ r ~ I k for./= 1,2 ..... p. 
• n/:: • 

When na and np equal zero, these priors become non- 
informative priors for ~. and ~., respectively. 

With these specifications, the posterior distribution of 
model paramters becomes: 
P(a , /3 ,  rIY,  Z )  

P V i bi 
= L( ~,/~, ~lY, z) • lq : G ( ~  I T '  T ) 

j=l 

P " f i N  /go "rjlk • I1 N a 0 ,  
j : l  n a ) ./:j np  

oc ):Jl ~rJ ) exp - -~ /:1 

( ') 1 ~2 Z i Zi 
• exp - -~ i=1 

k'j -t-2 ( 
P - - 2  1 P b;~ 

, o0 
/:'~,"~ ) ~xp --2 J:~ ~ 

The Gibbs sampler can successfully simulate the 
mean a, factor loadings/7, and uniqueness terms r / a s  
well as factor scores Z and missing items as follows: 

(1) Simulate missing items from 

Yi(mis) [ Yi(obs)' a,  ¢q, 75 2 

"~ N ( amis.obs + bmis.obs" Yobs , Z mis.obs ) 
f o r i = l ,  2 . . . . .  n, 
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where amis.obs is an I x(p-pj) intercept vector of the 
regression of Ymi~" on Yobs and 

bm~.,..ob.,, is a plx(p-pj) slope matrix of the 
regression of Ym~.; on Yob~. and 

Z'mis.obs is a residual matrix of the regression of 
Ymi~ on r'ob~, 

when p~ variables are observed and p-p~ 

variables are not observed. 

(2) Simulate factor scores from 

Zi [ Yi(obs), Yi(mis), a, ~, r 2 

for i -  1,2, ..., n. 

(3) Simulate the uniqueness terms from 

~ I G  2 '-2i=~ 

for j = 1, 2, . . . ,  p. To avoid slow convergence due to 
high correlation between c~ and /5' (Gilks, Richardson 
and Spiegelhalter 1996), a and/5' were transformed to 

a '  = a + Z ,8  and f l¢= ,8 .  

(4) Simulate the mean estimates from 

'[ 2 Yobs Ymis Z 

I 

a j  r j ,  , , 

~ N n + n a n + n a 

for j -  1,2, ... ,p,  
¢ 

where c~ 0 = c~ 0 + Z / 3 .  

(5) Simulate the factor loadings from 

P/  lt:~ , r'obs, Ym,s, Z 

i = 1  

\ i = 1  - 

for j - 1 , 2 ,  ... ,p. 

Then %' is transformed back to the original a j 

t 

by a j  = a j  - Z /3 j  . 

This model assumes that the number of factors, k, is 
known in advance• The effect of various choices ofk is 
considered in the simulation. 

The convergence of Gibbs sampler can be monitored 
by the method of Gelman and Rubin (1992) based on 
multiple starting values chosen after exploration of the 
likelihood surface using EM algorithm. Rubin and 
Thayer (1982, 1983) note the possibility of multiple 
modes in factor-model likelihoods. When there exist 
several modes in the likelihood, the Gibbs sampler may 
not mix values across separate regions of appreciable 
posterior density. However, posterior distributions can 
be simulated by drawing values from different chains 
with probability proportional to the posterior density of 
values. 

Multiple imputation results in m _> 2 complete data 
sets. The standard complete-case analysis pretending 
imputed values are observed can be applied to each 
imputed data. set, and the results of these analyses can 
be combined to obtain an overall inference (Rubin 
1987). 

3 .  S i m u l a t i o n  
A simulation study was carried out to evaluate the 

bias and coverage when the factor model is correct, 
overparameterized, or underparameterized. We chose a 
simple factor structure only with high loadings (0.8) and 
zero loadings (0). An example for the case of k = 5 is 
as follows: 

0.8 0 0 0 0 

• . 

0.8 0 0 0 0 

0 0.8 0 0 0 

0 0.8 0 0 0 

0 0 0.8 0 0 

• : : : 0 

0 0 0.8 0 0 

0 0 0 0.8 0 

. . . .  

0 0 0 0.8 ' 

0 0 0 0 0.8 

0 0 0 0 O.8 

105 

. . ,  ~ .. . . . . .  



Data were assumed to follow a multivariate normal 
distribution with a mean 0, variance 1, and covariances 
determined from the factor structure. 

Based on the assumed factor structure, l'able 3.1 
shows the combinations of conditions used in the 
simulation study. 

Table 3.1 : Combinations of the simulation 

# of # of # of # of 
observations variables true assumed 

(n) (p) factors factors 
100 100 5 5,10 

10 5,10 
500 100 5 5,10 

10 5,10 

The conditions with 100 observations were chosen to 
represent a modest sample size, and those with 500 
observations were chosen to represent a slightly larger 
sample size. The number of variables, 100, is a large 
number to have in a multivariate normal model but a 
realistic number to measure in applied investigations. 
When the number of true factors is five, The assumption 
of five factors represents the correct model and the 
assumption of ten factors represents an 
overparameterized model. In the same way, when the 
number of true factors is ten, an assumption that there 
are five factors present represents an 
underparameterized model and an assumption of ten 
factors denotes the correct model. We replicated each 
combination of simulation conditions seventy-five 
times, to produce an error standard deviation for 95% 
coverage statistics of 2.5%. 

We explored three missing-data mechanisms. In the 
first missing data mechanism M 1, the first 99 variables 
were missing 5% of the time completely at random, and 
the last variable was missing roughly 25% of the time 
according to a logistic regression model with normally 
distributed coefficients. Technically, this is an MAR 
mechanism, but because all of the correlations we 
simulated were positive and the coefficients of the 
logistic regression were around zero, we found that 
even complete-case analysis performed well with this 
mechanism. Our second missing data mechanism, M2, 
was similar except that the logistic regression 
coefficients were taken to be absolute values of normal 
variates. We also explored another missing data 
mechanism, M3, where missingness on each variable 
depended on the underlying values of two adjacent 
variables. Because the adjacent values could also be 
missing, this mechanism is technically nonignorable, 
but because the adjacent values are not missing very 
often, we characterized this mechanism as "close" to 
MAR. We use this term "close to MAR" loosely, only 

to mean that a procedure developed to handle MAIl 
data might perform reasonably well with this 
mechanisnl. 

When n :: 500, multiple imputation based on the 
multivariate normal model performed well with non- 
informative priors for model paranaclcrs, l lowever, 
when n ::: 100, informative priors were necessary for 
Gibbs sampler to work. For the ridge prior, ~: ~ 3 was 
applied, and for the factor model, the stone number of 
degrees of freedom was chosen for z 2. When n ~-- 100, 
the multivariate normal model using the ridge prior 
indicated unstable parameters and resulted in higher 
variance estimates. 

The performances on cross-sectinal mean when n : 
100 arc in Tables 3.2-3.4. rl'hc first column shows the 
true number of factors and the second column shows the 
models we compare. In the factor model, thc row 
"correct" represents the correct model, and the rows 
"over" and "under" represent the ovcrpm'ameterized 
model and the underparameterized model, respectively. 
The third and fourth columns represent Monte Carlo 
mean and the average length of 95% confidence 
intervals, respectively. For both flae multivariate normal 
model and the factor model, the Monte Carlo mean and 
standard error were calculated based on multiple 
imputation inference (Rubin 1987). "l'hc last column 
represents the acl.ual 95% coverage rate, measured by 
the number of data sets whose 95% confidcncc interval 
covers the true parameter valuc. 

Table 3.2. The mean of the last variable under the 
missing data mechanism M 1 

k Models M.C. 
Mean 

Ave. 
Int. 

l~ength 

Act. 
95% 
Cov. 

True 0.0000 
All Data 0.0141 0.3972 0.960 
Available-case -0.0168 0.4580 0.933 
Normal 0.0164 0.5110 0.987 
Factor correct 0.0159 0.4491 0.947 

over 0.0141 0.4618 0.933 
10 rl'rue 0.0000 

All Data 0.0000 0.3928 0.987 
Available-case -0.0068 0.4557 0.960 
Normal 0.0028 0.5173 0.933 
Factor correct -0.0044 0.4469 0.960 

under -0.0112 0.4789 0.947 
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Table 3.3. The mean of the last variable under the 
missing data mechanism M2 

k Models M.C. Ave. Act. 
Mean Int. 95% 

Length Coy. 
True 0.0000 
All Data 0.0030 0.3966 0.960 
Available-case -0.3170 0.3938 0.133 
Normal -0.0083 0.5084 0.960 
Factor correct -0.0224 0.4585 0.880 

over -0.0328 0.4481 0.920 
10 True 0.0000 

All Data -0.0074 0.3989 0.960 
Available-case -0.2889 0.4114 0.200 
Normal -0.0354 0.5023 0.973 
Factor correct -0.0445 0.4492 0.920 

under -0.2275 0.4347 0.440 

Table 3.4. The mean ofthe last variable under the 
missing data mechanism M3 

k Models M.C. Ave. Act. 
Mean Int. 95% 

Length Coy. 
True 0.0000 
All Data -0.0016 0.4004 0.960 
Available-case 0.1386 0.4027 0.773 
Normal 0.0038 0.4388 0.987 
Factor correct 0.0056 0.4124 0.987 

over 0.0095 0.4131 0.987 
10 True 0.0000 

All Data 0.0005 0.3957 0.947 
Available-case -0.1388 0.4004 0.693 
Normal -0.0170 0.4291 0.947 
Factor correct -0.0192 0.4072 0.947 

under -0.0784 0.4042 0.827 

The factor model performed well when the specified 
number of factors equaled or exceeded the true number 
of factors. Coverages ranged from 92.0 - 98.7% with 
one exception, where the coverage was 88.0% under k = 
5 and missing data mechanism M2. However, factor 
models performed poorly when model is 
underparameterized, showing coverages from 44.0 - 
94.7%. Even though multivariate normal model 
produced larger variance estimates, its coverages were 
good, ranging from 93.3 - 98.7%. On the other hand, its 
average interval lengths were longer than those for the 
factor model. Available-case analysis performed poorly 
overall with coverages ranging 13.3 - 96.0%. We did 
not include the result of complete-case analysis because 
the number of completely observed cases was always 
less than five when the sample size is 100. However, it 
is common that the imputation model is larger than the 
analysis model, so available-case analysis can be 

considered as complete-case analysis from the analyst's 
viewpoint. 

Real data usually have a complicated factor structure, 
and the number of factors is unknown in advance in 
most cases. Therefore, to depict this situation, next 
simulation was based on an observed covariance malrix. 
We generated 200 data. sets from a multivariate normal 
distribution with mean and covariancc matrix fixed at 
published values from a study of 24 psychological tests 
on 145 school children (ltarman 1967). The number of 
factors was unknown, but earlier analyses for these data 
suggested four, five, or seven factors (l-larman 1967; 
Velicer 1976). We also considered eleven factors based 
on the cumulative variance explained (80.2%) and 
because we desired not to underparameterizc the model. 
Table 3.5 shows the performance of the cross-sectional 
mean of the last variable under the missing data 
mechanism M I. All factor models performed well, 
showing good coverage rales. The multivariate normal 
model also performed well, but. available-case analysis 
was more biased, showing low coverage. 

Table 3.5' The mean of the last variable undcr the 
missing data mechanisnl M 1. 

Models M.C. Ave. Int. Act. 95% 
Mean I,ength Coverage 

3"rue 25.8300 
All Data 25.8116 1.5385 0.955 
Available-case 25.2779 1.7553 0.775 
Normal 25.8293 1.8820 0.935 
Factor 4-factor 25.9646 1.8012 0.930 

5-factor 25.9220 1.8473 0.940 
7-factor 25.8962 1.8420 0.940 

1 l-factor 25.8710 1.8558 0.925 

4. Application to emergency room intervention data 

In another applied research setting, 140 female 
adolescents were recruited after a suicide attempt to 
provide information on psychosocial variables in a 
longitudinal study that tracked subjects beyond a period 
of follow-up counseling. During the middle of the 
study, an intervention was implemented in an effort to 
improve emergency room procedures. 2"he first 75 
adolescents therefore received a standard emergency 
room treatment, and the next 65 adolescents received a 
specialized emergency room intervention, rl'hc 
specialized emergency room intervention included 
education of emergency room staff, meeting with 
bilingual crisis therapists, and video session showing 
what patients and their families could expect during the 
follow-up treatment process. It was hypothesized that 
the specialized emergency room intervention would 
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improve subsequent psychological outcomes, perhaps in 
part by resulting in better attendance by adolescents and 
their caregivers (generally their parents) in counseling 
session attendance. 

Brief demographic assessments as well as mental 
status exams were gathered at the emergency room. 
The first baseline assessment asked questions of both 
adolescents and their caregivers and was obtained after 
the hospital discharge of the adolescent. Assessments 
were repeated after three, six, twelve and eighteen 
months, lnterest focused on the effectiveness of the 
specialized emergency room intervention and the 
relationship between baseline psychological impairment 
and outcomes over time. Analyses were performed on 
27 outcome variables with several baseline 
characteristics used as covariates. Most variables had 
5-25% missing values, although a few showed 50-60% 
of missing items (see Table 4. l ). 

For multiple imputation based on the factor model, 
we considered each longitudinally measured variable as 
potentially representing a separate factor. For example, 
the Beck depression inventory was measured on 
adolescents at baseline, three, six, twelve and eighteen 
months, which were entered into the data set as five 
separate variables. Similarly, the adolescent 
impulsiveness scale was not measured at twelve months, 
so that it was reflected as four separate variables in the 
data set. The ensemble of 27 outcome variables, 
baseline characteristics including impairment status, and 
intervention status amounted to 135 variables overall. 

In applying the factor model, we chose a 30-factor 
model. This model explained roughly 80% of the total 
variation in the original data set and was general enough 
to allow each longitudinal variable to represent a 
separate factor. Another motivation for choosing a 
model with 30 factors was the insight from the 
simulation study that overparameterization is not a great 
concern from the vantage point of bias and coverage, 
while a model with an insufficient number of factors can 
result in serious bias. 

Rubin and Thayer (1982, 1983) warned that it is 
possible to have multiple modes in the factor model. 
However, in the high-dimensional data., it is not easy to 
find starting values covering the whole posterior density 
space. Therefore, we chose starting values from a run 
of Gibbs sampler starting from the mode. After 1500 
iterations of the Gibbs sampler, we stored maximum 
and minimum values of each parameter and chose fifty 
random combinations of them as starting values. It 
turned out that 27 starting values ended up at a mode 
with the highest likelihood. Seven converged to another 
mode with slightly smaller likelihood. We also found 
five other local modes with smaller likelihoods. 

When there are several modes, the Gibbs sampler 
may not reflect values across separate regions of 

posterior density. However, a posterior distribution can 
be represented by drawing different chains with a 
probability proportional to the posterior density of the 
values. Among ten starting values of Gibbs sampler, 
seven were chosen from the maior mode and three were 
from the mode with the second largest likelihood. 

Intervention status and family type (single versus 
multiple adults in the household) were measured as 
dichotomous variables. Impairment status was 
measured as three categories which we have labeled 
low, moderate, and high ilnpairment, rl'he number of 
sessions attended, acculturation measures, and many 
outcome measures had limited ranges. For binary 
variables, we viewed imputed values as a probability. 
For exalnple, if the categories arc coded 1 or 2 and an 
imputed value is 1.3, we randomly draw a value from 
Bernoulli distribution with a probability 0.3 and impute 
category l if the drawn value is 0 and impute category 2 
if the drawn one is I. For the variables with limited 
ranges, values outside the range were truncated. 

After we generated ten multiply imputed data set, the 
analysis proceeded with longitudinal data analysis using 
SAS PROC MIXED. Rotheram et. al (1999) applied 
this data to the multiple imputation based on the linear 
growth-curve model using a program developed by J. L. 
Schafer (1997b) and reported that. impairment status 
was significantly related with many outcomes but the 
effect of intervention was diluted afl.er adjusting for the 
baseline impairment as well as covariates. No 
substantial differences were shown in multiple 
imputation based on the factor model, even though 
some sensitivity appeared in significance of impairment 
effect and interaction between intervention and 
impairments, as seen in Table 4.2. 

5. Discussion 

When data sets have large numbers of variables 
measured on modest number of cases, the complete- 
case analysis is inefficient and often biased. Multiple 
imputation with the factor model showed little bias with 
good coverages when we considered a large enough 
ilumber of factors. As Schafer (1994) describes, there 
are many cases where an ideal imputation model 
requires many more parameters than we can estimate in 
the data, and multiple imputation using a common 
factor model can be a solution to overcome this 
difficulty. 

We developed the model with an assumption of 
known number of factors. Simulation warned dlat the 
underparameterized model can cause a serious bias, but 
the overparamterized model does not have any serious 
problem. However, the overparamcterized model 
requires more parameters to be eslimated, requiring 
more computation time. Therefore, more specific 
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advice on determining an appropriate number of factors 
would be useful. 

The factor model was developed based on the 
normality assumptions. Sensitivity analyses for 
categorical or non-normal continuous data were left for 
future research. A worthwhile extension would be to 
consider a factor model tailored to handle longitudinally 
measured variables. These methods presumably could 
also be extended to accommodate structural equation 
models, although the numerous criticisms of any causal 
interpretation of structual equation models (e.g., 
Freedman 1987; Rosenbaum 1995) leaves us less 
enthusiastic about pursuing this direction. 
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Table  4 . !"  Var i ab l e s  and p e r c e n t a g e  o f  m i s s i n g  i tems  in each  t ime  p o i n t  1) 

Baseline 3 Months 6 Months 12 Months 18 Months 
Baseline 
Characteristics 

Impairment 
Intervention 
Mother's Education 
Family Type 
Accultration : Adolescent 
Accultration :Parent 
Number of Treatment Attendence : Adolescent 
Number of Treatment Attendence : Parent 

6.4 
0.0 

13.6 
0.0 
0.7 

11.4 
0.0 
0.0 

Adolescent 
Measure 

Beck Depression Inventory 
Rosenberg Self-Esteem 
Impulsiveness Scale 
Hass Ideation Factor : Suicidal Ideation 
Hass Ideation Factor : Substance Use 
Frequency of sexual partners in past 3 months 
Number of sex in past 3 months 
Conduct Disorder 
Delinquency 
School Problem 
Maternal Caretaking 
Overprotectiveness 
Family Adaptability 
Family Cohesion 

1.4 
6.4 
0.0 
0.0 
0.0 

13.6 
15.0 

20.0 
6.4 
0.7 
0.7 
0.7 
0.7 

13.6 
17.1 
12.9 
16.4 
16.4 

13.6 

12.1 
12.1 
15.7 
15.7 

12.9 
12.9 
17.1 
12.9 
12.9 
14.3 
15.0 
13.6 
19.3 
19.3 
20.0 
20.0 
12.9 
12.9 

7.9 
7.1 

7.1 
7.1 

57.9 
57.9 
7.9 
7.9 
7.9 

7.1 
7.1 

Parent 
Measure 

Beck Depression Inventory 
BSI- General Severity Index 
BSI - Somatization 
BSI- Obsessive, Compulsive Behavior 
BSI - Interpersonal Sensitivity 
BSI- Depression 
BSI - Anxiety 
BSI- Hostility 
BSI - Phobic Anxiety 
BSI - Paranoid Ideation 
BSI - Psychoticism 
Family Adaptability 
Famil;¢ Cohesion 

12.1 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 

16.4 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
20.7 
20.7 

14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 

15.7 
15.0 
15.0 
15.0 
15.0 
15.0 
15.0 
15.0 
15.0 
15.0 
15.0 
15.0 
15.0 

1 )  - m e a n s  that  the va r i ab le  was  not measured at that  t ime  point .  

7.1 
7.1 
7.1 
7.1 
7.1 

52.1 
52.9 
7.1 
7.9 
7.9 
7.1 
7.1 
7.1 
7.1 

17.1 
16.4 
16.4 
16.4 
16.4 
16.4 
16.4 
16.4 
16.4 
16.4 
16.4 
16.4 
16.4 



Table 4.2" The result of linear mixed model regression for emergency room intervention data (parameter estimates and 
p-values in parenthesis) 

Adolescent Parent 
Depression Depression Gen. Severity Anxiety Depression Adaptability Cohesion 

(BDI) (BSI) (BSI) (BSI) (FACES III) (FACES III) 
Intercept 5.389(<0.001) 7.358 (<0.001) 0.627 (0.011) 0.779 (0.003) 0.562 (0.020) 32.189 (<0.001) 44.702 (<0.001) 
Time -0.043 (<0.001) -0.030 (<0.001) -0.004 (0.091)- -0.003 (0.238)- -0.003 (0.291)- 0.070(0.121) -0.037 (0.366) 
Impairment (M vs. L) 0.635 (0.018) + 0.268 (0.312) 0.136 (0.199) 0.228 (0.047) + 0.187 (0.080) 0.337 (0.834) -1.106 (0.521) 

(H vs. L) 1.420 (<0.001) 1.250 (<0.001) 0.220 (0.041) 0.300 (0.009) 0.315 (0.004) -0.405 (0.795) -3.737 (0.017) + 
Intervention -0.546 (<0.001) -0.153 (0.481) -0.039 (0.717) -0.036 (0.749) 0.006 (0.953) -0.781 (0.622) -3.875 (0.023) 
Mother's Education -0.007 (0.961) -0.269 (0.041) + 0.016 (0.836) 0.013 (0.873) -0.011 (0.890) -0.853 (0.443) -1.472 (0.208) 
Family Type -0.043 (0.733) 0.178(0.213) 0.075 (0.235) 0.113 (0.088)- 0.054(0.385) 0.620(0.535) 0.875 (0.387) 
Accultration SA 0.003(0.798) -0.021(0.106) -0.011(0.075) -0.013(0.038) + -0.010 (0.100) -0.010 (0.915) 0.149(0.131) 
Accultration Mother 0.006 (0.653) 0.017 (0.246) 0.012 (0.147) 0.006 (0.429) 0.010 (0.238) -0.274 (0.014) -0.329 (0.006) 
Impairmentxlntervention 

(M vs. L) 0.901 (0.033) + 0.302 (0.423) -0.010 (0.945) 0.002 (0.989) -0.029 (0.840) 0.444 (0.840) 0.591 (0.797) 
(H vs. L) 0.284 (0.425) -0.306 (0.266) -0.199 (0.154) -0.217 (0.128)- -0.273 (0.037) 3.824 (0.093) 4.591 (0.062) 

+ means that it became significant at a=0.05 but it was not significant in Rotheram et. al. (1999). 
- means that it became not significant but it was significant at a=0.05 in Rotheram et. al. (1999). 


