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1. I n t roduc t i on  

Price indexes are some of the key statistics 
published by national governments. The survey 
systems required to estimate indexes are often 
complex and involve solving a number of statistical 
problems, including sample design, variance 
component estimation, sample allocation to meet 
multiple goals, data adjustments specific to indexes, 
missing data imputations, and variance estimation for 
nonlinear estimators. This paper reviews some of the 
previous research in these areas and notes some of the 
topics that deserve future research. 

A consumer price index (CPI) is a measure of 
how much the purchasing power of a consumer has 
changed from one period to another. Indexes are used 
in other ways such as gauging the change of the output 
of an economy, but this paper concentrates on 
statistical problems associated with estimating a CPI. 
Some of the methods and issues are transferable to 
other index problems as well. 

Models can be used both to define the 
population index and to guide the construction of 
estimators. Among economists there is no agreement 
on which form of index is theoretically preferred and, 
at the same time, is practical to estimate in an ongoing 
program. Three approaches have been used in the 
past to derive indexes (see, e.g., Diewert 1987): 

(1) Economic, 

(2) Test, and 

(3) Stochastic. 

In the first, a function is defined that measures the 
utility to a consumer of purchasing certain quantities 
of goods. The cost-of-living index between times s 
and t ( s < t )  is then defined to be the ratio of the 
minimum cost at time t to the minimum cost at time s 
of achieving the same level of utility. In the Test 
Approach, originated by Fisher (1922), a series of 
desirable properties of an index are listed. A 
candidate index is examined to see howmany of the 
tests it passes, e.g., monotonicity, circularity, and 
price/time reversal. With the Stochastic Approach, an 
attempt is made to model the behavior of prices or 
ratios of prices at different time periods. A parameter 
of the model is the overall rate of change in prices. 

2. A l t ernat ive  Indexes  

There are a number of indexes that have been 
developed using one or more of the three approaches 
listed above. In preparation for discussing estimation, 
we describe the Laspeyres, Paasche, Geometric, 
Fisher, and T6rnqvist indexes. Assume that we have a 
finite population U of N items and that the prices of 
the items and the quantities purchased at some time t 
are, respectively, . 

Ptl . . . . .  PtN and qtl . . . . .  qtN • 

The Laspeyres index of change between period s and 
a later time t is 

Z Ptiqsi 

Lt,s = ieU 

Z p s i q s i  
i~u 

2_, W si rtsi 
i~U 

where rt, i = P t i /Ps i  is the price relative between times 

s and t and Wsi = P s i q s i / Z i s u P s i q s  i is the share of 

expenditures due to item i during period s. The 
standard application of a Laspeyres index sets s to be 
some base period denoted by 0. 

The Paasche index for the change between s 
and t is defined to be 

Z Ptiqti 

Pt s = i ~ u = Z w s*i rt s i 
' Z P s i q t i  i~U 

ieU 
i 

" / Z  where w,i  = Psiqti  ieU Psiqti is an expenditure share 

with current period quantities evaluated at base period 
prices. 

The geometric mean or "geomean" index is 
equal to 

Gt, s =H( r ts i )  '''i 

where the w i are a fixed set of weights that sum to 1. 

A typical application of the geomean would use 
weights that are expenditure shares during some time 

period, e.g., wsi = ps iq .w /~_ , i euP~ iqs  i . If the weights 

arc fixed and not dependent on a time period, then 
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Gt, s satisfies five axioms on price indexes in Balk 

(1995). 

Indexes that pass most of the tests listed by 
Fisher (1922) and Diewert (1987) are the Fisher and 
T6rnqvist. The Fisher index is the geometric mean of 
a Laspeyres and a Paasche index: 

- ,~1/2 
Ft,s = ( Lt,sPt,s l 

while the T6rnqvist is 

T t , s = H ( r t s i )  w'si 
i~U 

w i t h  W t s i : ( W s i + W t i ) / 2 ,  i.e., the mean of the 

expenditure shares at times s and t. 

Note that each of these indexes, as formulated 
above, assumes that the same set of items is available 
for pricing in the two time periods being compared. 
In a dynamic economy this is unrealistic since the 
types of items available for purchase may change 
rapidly. Electronics and computer equipment are 
extreme examples, but other commodities like 
women's apparel also undergo enough change that 
pricing the same item for extended periods of time is 
impossible. Practical work-arounds are, thus, required 
when any of these indexes is implemented in practice. 

3. Estimation of the Indexes 

The indexes defined in the last section are 
population values that must be estimated from 
samples. How complicated the sample design must be 
depends on the type of commodity and on what sorts 
of lists are available for sampling. In a large country 
like the United States, it may be necessary to select 
the sample in several stages in order to identify items 
whose characteristics are specific enough that the 
items can be priced over a number of time periods. 
For pricing most commodities other than housing, the 
U.S. Bureau of Labor Statistics (BLS), for example, 
samples geographic areas, retail outlets, and items 
within the outlets for pricing. In this section we 
assume that a probability sample of items has been 
selected and review how estimators of the various 
indexes can be constructed, using auxiliary or 
explanatory data. 

One of the standard and most flexible 
estimators in finite population sampling is the 
generalized regression (GREG) estimator (S~irndal, 
Swensson, and Wretman 1992). The GREG allows 
auxiliary data to be easily incorporated into an 
estimator and is motivated by a linear model. Many 
standard estimators, including the Horvitz-Thompson 

and the post-stratified estimators, are special cases of 
the GREG. The types of auxiliary data available for 
index estimation are usually qualitative, e.g., region of 
the country, type of retail outlet that sells the item 
(e.g., department store, discount store, grocery, etc.), 
season of the year, type of item, (food, clothing, 
electronics, etc.). 

Since each of the indexes described in section 
2 can be expressed in terms of price relatives or their 
logs, it is natural to attempt to frame models that 
describe the behavior of one or the other. Let Ytsi be 

either rrs i or ln(rtsi). Thus, the Laspeyres, Paasche, the 

components of the Fisher index, and the logs of the 
Geometric and T6rnqvist indexes can all be expressed 

in the f o r m  E i ~ u  ffetsiYtsi for appropriate definitions of 

ff2ts i and Ytsi • 

Consider the working model 

Ytsi -- X;i~t + Eti ( 1 ) 

where xt/ is a p x l vector of explanatory or auxiliary 

variables, [~t is a p x l  parameter vector, and the 

errors have zero mean. Errors for different items may 
be correlated, but detailed specification of the 
variance/covariance structure is not needed for the 
discussion in this section. Empirical research by 
many authors suggests that the logs of the price 
relatives are often nearly normally distributed than the 
price relatives themselves and are usually the 
preferred function for modeling. However, for 
indexes like the Laspeyres and Paasche, modeling 
price relatives is clearly most convenient. 

Suppose that a probability sample of n items is 
selected with the inclusion probability of item i being 
7I" i . Let XtN be the N x p population matrix of 

explanatory variables at time t and X,, be the 

corresponding matrix for the sample items. Taking 
the weights, {Wtsi}i~U, a s  known, the GREG estimator 

of 0,, s = E i e u  WtsiYtsi is 

-" Ytsi 
b t,s = E Wtsi - + 

i~s ~i  (2) 
Ytsi 

(W'NXtN - W n I - I - 1 X t n ) A ~ n E X t i  - 
i ~s ]'td i 

where ~,U is  the vector of weights for items in the 

population, g',, is the vector for the sample items, 

1-I=diag( tc i ) ,  and Az~ =X~,,FI-iXr~. The g-weights 

associated with the GREG in this case have the form 

gtsi = ffetsi + (~ '~vXtN - ~'~,I-l-lXm)A~xti (3) 
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and the GREG can be written as 

Ot,s = Z gtsi "yts----L" 
i~s Yr i 

If model ( 1 ) holds, then 

EM(A -1 / ~ l : ~ t  a n d  EM(Ot,s-Ots)=O rcn Z Xti Ytsi i , ' 
i~s 

i.e., the GREG is model-unbiased. Also, whether the 

model holds or not, as n~oo  if A - I ~  , n;n x t i Y t s i / ~  i is 
i~s 

bounded, then the GREG is design-consistent and 
approximately design-unbiased. Having both model- 
based and design-based justification is desirable for 
indexes produced by government programs. 

Thus, more specifically, if linear model (1) 

holds for price relatives, then Ot,s is a reasonable 

estimator for the Laspeyres, Paasche, and the 
components of the Fisher indexes. If a linear model 
holds for logs of price relatives, then appropriate 
estimators of the log of the Geometric index and the 
log of the T6rnqvist index can be constructed with the 
GREG. 

A key issue, of course, is whether the GREG is 
practical since it involves the weighted universe total, 
~¢'uXtu . For quantitative explanatory variables, such 

weighted totals may have no interpretation and would 
not be available. More plausible choices of auxiliaries 
may be stratifiers that identify the type of outlet in 
which the item is sold, the location of the outlet 
(urban, suburban, or rural), or the region of the 
country. The regression basis of the GREG also 
permits interactions of main effects to be easily 
incorporated, which would simply be ways of defining 
domains if the main effects in the model are stratifiers. 
In these cases ,  v c % X t u  consists of expenditure totals 

for various domains and can be estimated from a 
separate expenditure survey of households. 

Calculation of the sample expenditure 
estimate, ~,~,I-l-lXt,,, is also an issue because the 

values of Wtsi may be unknown for individual 

items---even those in the sample. When estimating a 
Laspeyres index, the U.S. BLS deals with the problem 
by selecting items with probabilities proportional to 
expenditure. It is assumed that the probabilities are 
also proportional to the desired values of ~"tsi : Woi 
(defined in section 2), so that when ~tsi/rc i is 

computed, certain unknowns cancel (see Leaver and 
Valliant 1995, pp. 549-550). 

4. Combining Data Over Time 

Estimating change over time is the primary 
goal of price indexes, and both long-term change and 
short-term change are important. By long-term 
change, we mean the change from a specified base 
period to the current time. The base period is often 10 
years or more in the past. Short-term changes are for 
intermediate periods like a month, a quarter, or a year. 
One of the cosmetic goals of some index programs is 
to have the short-term changes compatible with the 
long-term change. Multiplying the annual changes 
together for the last 10 years produces the published 
change for the whole 10 year period, for example. 

One method of combining estimates of change 
over time by directly multiplying the estimators of 
short-term change to estimate long-term changes. Let 
Is, o be an index of change from the base period 0 to a 

later time s. We have at least two alternatives for 
defining a 1-period price change from time s to time 
s+l. One is by using the price relatives, rs+l,s, i in the 

different index formulas in section 2 to obtain an 
index we can denote as Is+l,s- The other is to take the 

ratio of the time s+l long-term change to the time s 
change: 

Is+l, s = Is+l'~O . (4)  
Is,o 

These 1-period changes can be multiplied together to 
obtain a long-term change as 

t-1 t-1 
l"t,o : H "]'s+,,s : H Is+l,0 (5) 

s-0 s=0 Is,o 

where, by convention, we set I0, 0 =1. Because of 

serial cancellation in (5), the far right-hand side 
reduces exactly to It,0- The construction in (5) can be 

used for any of the indexes defined in section 2. 

By definition in (5), the 1-period short-term 

changes, I~+1, ~ , are compatible with the long-term 

change, It, o, in the sense that that the product of the 

short-term changes equals the long-term change. In 
contrast, if Is+l, s is the 1-period change, then 

t-1 

It,o :/: H Is+l,s ' in general. 
s=0 

For example, with the Laspeyres index and 
t=2, we have 
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12,0 -- Z woir20i 

(E w0/r,0,)(E 
= I1,012,1 , 

i.e., the fixed base index 12,0 differs from the chained 

Laspeyres index, I1,012,1 . 

On the other hand, with the Geometric index 
we might define the short-term change as either 

Gs+l, s = H(rs+l , s , i )  wi or (~s+,,s = Gs+l,o/Gs,o with Gu, 0 
i~U 

(u = s+l or s) defined by the standard geometric 
formula using the long-term relatives ru,o, i. 

Expression (5) is then 

,_, ,_l I ] ( r s + l , 0 , )  w' 
Gt,0 --" H Gs+l,s = H ieu = H(r t ,o ,  i) wi" (6) 

s_-0 , -0  1-I(r , ,0 , , )  w' 
i~U 

The other alternative for the long-term change is 

t-1 
G,, o = l " I I ' ~  (rs+,,s,i ) wi . (7) 

s=Oi~U 

If the universe is constant so that the products over 
time and items can be interchanged, then serial 
cancellation leads to expression (7) equaling (6). 
With a changing universe, however, this equality 
would not hold. 

When population indexes are replaced by 
estimators in (5), the serial cancellation feature will 
usually be lost because of changes in the sample 
across time. The long-term estimate will, however, 
still be compatible with the short-term estimates if we 
combine them using formula (5). 

How much different countries value this 
"compatibility" varies. Sweden, for example, allows 
the product of monthly changes within a year to be 
different than the annual change. But, for publishing 
changes across several years, Sweden does multiply 
the estimates of annual change (Dal6n 1992). 

Let is(U ) denote an estimator of the long-term 

index I.,.,0 based on the sample at time u. An 

estimator of the index in (5) is then 

^ '- '  is+,(s+ 1) 
I,-H i~(s+l) 

s ~ O  , (8) 
,-I i,. (S) 

= i ' ( ' ) l - I  s+ . 

Expression (8) is sometimes referred to as a product 
estimator and is the type used by the BLS in 
estimating Laspeyres indexes in the Consumer Price 

Index, the Producer Price Index, and the International 
Price Index. 

A poor statistical feature of an estimator 
constructed by substituting estimators into (5) is that 
its variance tends to increase over time as more and 
more estimators are chained together. In the context 
of Laspeyres estimators, Valliant and Miller (1989, 
denoted as V&M below) noted that both the variance 
and the relvariance of (8) are increasing as long as 
prices are rising. Leaver (1990) empirically 
confirmed this phenomenon with U.S. CPI estimates. 
The problem of increasing variance affects product 
estimators more generally (see, e.g., Hansen, Hurwitz, 
and Madow 1953, sec. 11.7). We can also expect the 
phenomenon of increasing variance to occur when (8) 
is applied with Geometric, T6rnqvist, or the other 
indexes noted earlier. 

The form of (8) does suggest an alternative 
formulation that will have better variance properties. 
The numerator and denominator of the ratio 

i s ( s ) / i s ( S  + 1) both estimate the long-term index Is, 0 

based on the samples at two time periods. The ratio 
is, thus, an estimator of the constant 1. An obvious 
modification of (8) is then 

 s(Sl-I '''s 
s=lLis(s+l)j (9) 

where ~'t.~ is selected optimally. A linear 
^ 

approximation to I o, is 

t-I ^ 

- i,(,)+ Z.,,,,./:,,s[is(S)-i,(s+ (IO) 
s--l 

where I~, s = l , , o / I s ,  o as in (5). Next, if we define 

= ..., and b t D/t i l t , l ,  ~I t,t-l Yt,t-1]" 

Zt = [I1(1)- I 1 ( 2 )  . . . . .  [t_,(t-  1)- It_, (t)]', 

then the linear approximation can be written as 
^ 

--- i , ( , )  + z ' ,b , .  

The variance of the linear approximation is 

var(/t, )--_ var(l, (t))+ b; var(Z,)b, + 

where the variance can be taken with respect to either 
a model or a sample design. 

The optimal vector bt is the one that 

minimizes the approximate variance and is equal to 
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bt,op t = - [ v a r ( Z t ) ]  -1 cov( I t  ( , ) , Z t )  

as shown in V&M. If c o v ( i t ( t ) , L ( s  ) - L ( s + l ) )  

decreases as t and s move farther apart and the 
covariance is negative, then bt,t_ 1 > bt,t_ 2 > . . . >  btl  with 

bts = 7tsIt,s . From (10) this implies that the influence 

of past data on the current period estimate dies out. 
Under the simple autoregressive model 

rts i = J.l t + F-,ti , Eti = DEt_l , i  + uti 

( ) 2 andlpl<l the with E(ut i )  "- E(utilg,, i,) = 0,  E tl 2 = O'u, 

optimal value of 7,s for estimating a Laspeyres index 

is 

1 )pt-s 
Yts,opt = ~( t - t s  l l - l t  

In times of inflation, ;-/s </-tt and with p positive, the 

effect of earlier samples is damped out. 

The product estimator is optimal in the 
restrictive case of (/l t / / ls)= 1 t-s p for all s = 1 ..... t - 1. 

When p is positive, this condition implies that 

( la t / l i s )<-} ,  an unrealistic case of severe deflation. 

Since 7t~ = 1 in the product estimator, we can see 

from (10) that the effect of old data does not diminish. 
In fact, the old data may become relatively more 

influential as t increases, because It, 1 > It, 2 >- . .>  I t , t_  1 

with inflation. 

Using expression (10), we can make a simple 
comparison to linear composite estimation. Suppose 
that at time t we have an estimator of a total denoted 
by :Yr. At time t+l let the composite estimator of the 

total be 

( ^* ) 
Yt = 1 -  w t + w Y t - I  + A t , t - 1  

where 0 < w <1, Yt is a direct estimator based on the 
^* 

time t sample, Yt-1 is the composite at time t-l, and 

At,t_ 1 is an estimator of the difference between time t- 

1 and t based on the sample units common to the two 
times. Substituting recursively into this formula, we 
have 

t-1 

Y, = Y, + w t - S  Ys - Ys 

s = l  

where Ys = Ys-1 +As,s-1.  That is, we can write the 

composite as the current period estimator :~, plus an 

estimator of 0. Since w < 1 and is raised to the power 

w t-s ,  the data from earlier time periods is 
progressively damped out, just as in the V&M optimal 
estimator. Thus, linear composite estimation acts in 
much the same way as the optimal long-term index 
estimator and the opposite of the way the product 
estimator does. 

Similar analyses can be carried out for optimal 

short-term index estimators of the form I12~,/T,1 ), 

where t 1 <t 2 . For Laspeyres indexes, V&M found 

that the optima depend on the endpoints, t 1 and t2,  and 

are not practical choices. 

Analyses of optimal index estimators for other 
indexes like the Paasche, Geometric, Fisher, and 
T6rnqvist have not been conducted. Another open 
question is whether it is possible to structure short- 
term index estimators that are compatible with long- 
term estimators in ways other than using a product 
estimator. 

5. Sample Design Issues 

As in most surveys, sample design is critical to 
properly covering the universe and to producing 
estimates with acceptable precision. In this section, 
we discuss some of the statistical problems in variance 
component estimation and sample allocation. Proper 
coverage of the universe is, of course, a critical issue 
but is governed in large part by survey field 
operations. The lag in including new products was, in 
fact, one of the sources of bias in the U.S. CPI cited 
by Boskin, et.al. (1996). 

An index estimation program usually has 
multiple goals that must be considered when 
allocating a sample of geographic areas, outlets, and 
items to be priced. An overall index across all types 
of items is usually published as are many subindexes 
for food, clothing, housing, medical expenses, and 
other groups of items. Indexes may also be published 
for regions of a country. 

Obtaining an overall index that has a small 
variance may be quite important for budgetary 
reasons. According to Boskin, et.al. (1996), more 
than half of federal spending is attributable to 
entitlements and other mandatory spending programs 
that are indexed. The Congressional Budget Office 
(O'Neill 1995, Table 1) estimated that a hypothetical 
reduction in the CPI of 0.5 percentage points would 
result in a total contribution to federal deficit 
reduction of about $26.2 billion in fiscal year 2000. 
The reduction counts declines in federal outlays, 
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increases in revenues, and decline in debt service. In 
the years 1987-1991 the standard error of the estimate 
of 12-month price change in the CPI was about 0.144 
percentage points (Leaver and Valliant 1995, Table 
28.1). Thus, the width of a 95% confidence interval 
corresponds to roughly $30 billion. 

The cost of living adjustment to federal 
programs is applied multiplicatively each year. Thus, 
over a period of years the cumulative, multiplicative 
adjustment is made using a product index. As noted 
in section 4, a product index generally has a 
relvariance that increases over time. Consequently, 
the dollar amount of budget increase due to indexing 
is more and more affected by statistical variation as 
time passes. 

The estimator in (8) is a complex combination 
of products of ratios with a concomitantly complicated 
variance structure. In the U.S. CPI the all-items 
estimator is actually more complex since it is a 
weighted, linear combination of estimates like (8). 

When allocating a sample, variance 
components are needed for the different stages of 
sampling that are used. The standard approach is to 
linearize the estimator and then compute the variance 
of the linear approximation in component form. As 
seen in (10) even the linear approximation is 
complicated since it involves data from t different 
time periods. In the U.S. CPI there are four stages of 
sampling: 

• geographic primary sampling units 

• entry level items (which are groups of 
similar items) 

• outlets 

• individual items within outlets 

5.1 Variance Component Estimation 

A linear approximation to the variance will 
have components due to each stage of sampling and 
coefficients on the components that depend on the 
particular form of Laspeyres index estimator that is 
used (Leaver, et.al. 1987). More generally, if another 
form of index, like the Geometric, is used, the linear 
approximation will be different as will the variance 
components, even if the stages of sampling are the 
same. The U.S. CPI now uses a Laspeyres index for 
Housing and geometric indexes for Commodities and 
Services. Thus, a different linearization is needed in 
the different parts of the index. 

A simplification is to calculate the 
approximate, anticipated variance (AV), i.e., 

E~varg(i"t) where the subscript Jr denotes 

expectation with respect to a sample design and M is 
with respect to a model. Sampling with replacement 
may have to be assumed at some stages to make the 
derivation of the variance tractable. Valliant and 
Gentle (1997) used the AV approach in an allocation 
problem for estimating an index for wages. Because 
(8) or (9) uses sample data from t time periods, some 
strong assumptions about constancy of variance 
components across time and, possibly, on the rate of 
inflation are needed to make the variance formula 
tractable. Baskin and Johnson (1995), for example, 
used the following, random effects model for the price 
relative rhijk  = Pthijk/Pshijk between times t and s for 

item k in primary sampling unit (psu) h, outlet i, and 
entry level item j: 

rhijk = ~ -k- O~ h + ~ hi + ~" hj + e hijk • 

We suppress subscripts for time to simplify the 
notation. The term ~ is a mean common across all 

items. The random errors a h, ~hi, 7hj, and ehijk are 

assumed to have mean 0 and to be mutually 
independent. Separate models are needed within large 
groupings of commodities like food, apparel, housing, 
and transportation. An additional complication would 
be to model the correlation structure of the errors over 
time. 

Various approaches can be used to estimate 
the variance components themselves. Baskin (1992, 
1993) and Baskin and Johnson (1995) experimented 
with analysis of variance (ANOVA), hierarchical 
Bayes estimation using Gibbs sampling, and restricted 
maximum likelihood estimation (REML). General 
discussion of variance component estimation in 
hierarchical (or multilevel) models can be found in 
Goldstein (1995). The Bayesian approach is 
discussed in Gelfand and Smith (1990) and Gelfand, 
Hills, Racine-Poon, and Smith (1990). Baskin and 
Johnson (1995) encountered a number of problems, 
including negative ANOVA estimates. The Bayes 
estimates are guaranteed to be nonnegative, but in the 
CPI data set would not consistently converge and 
were often trapped at 0, even when 0 was not a 
reasonable value. Baskin and Johnson (1995) found 
that REML estimates performed the best but that the 
orders of magnitude of components were somewhat 
different from the ANOVA estimates that had been 
previously used in the CPI. The REML estimates of 
the individual-item component, in particular, were 
relatively larger than the ANOVA estimates. This 

99 



would lead to a larger sample of items allocated to 
individual outlet/ELI combinations, and, thus, has 
some important sample design implications. 

5.2 Sample Allocation 

To achieve the multiple goals of an index 
program, the allocation of the sample to psu's, outlets, 
and groups of items must be a compromise between 
one that minimizes the variance of the overall index, 
meets precise goals for subindexes, and respects any 
cost constraints. Leaver, et.al. (1987, 1996) used 
constrained, nonlinear optimization methods for the 
U.S. CPI. 

Creating an accurate cost function is a critical 
step in determining the sample allocation. In the U.S. 
CPI, there are costs associated with initiation data 
collection and processing, personal visit and telephone 
pricing, and data processing costs. To be useful, these 
must be decomposed into parts associated with the 
stages of sampling. Leaver, et.al. (1996) give 
extremely detailed breakdowns for costs, some of 
which are: 

• outlet related costs of initiation (i.e., recruiting an 
outlet into the pricing survey), including field 
personnel and data processing. 

• individual item related costs of initiation, 
including personnel time for sampling items 
onsite. 

• on-going price data collection costs, including 
travel and personnel time distributed between 
personal visits and telephone pricing. 

A key step is to set up a cost-tracking system that 
captures the quantities needed to develop the cost 
function. Generally, the costs will have to be 
recorded in more detail than needed to develop an 
annual survey budget. 

A general optimization problem for index 
estimation can be stated in words as follows. 

Find the sample sizes of psu's, outlets within 
psu's, ELI's within psu's, and items within. 
ELI's that 

• minimize var(1) 

• subject to 

• an upper bound on total cost 

• upper bounds on the variances of a 
set of important subindexes 

lower bounds on the numbers of 
items selected from particular 
groups of important items 

• workload constraints in each psu 

This is just one of many ways in which the problem 
could be formulated. We might, for example, (a) 
minimize total costs subject to constraints on 
variances and workloads or (b) minimize a weighted 
combination of variances of indexes for different 
groups of items subject to cost and workload 
constraints. 

6. Areas for Research 

Index estimation is a fertile area for both 
economic and statistical research. We reiterate a few 
of the possibilities here that were noted in earlier 
sections and introduce some additional topics. Some 
of these issues require both economic and statistical 
thinking to resolve. Others require clever survey 
operations to handle. Areas previously noted are: 

• Variance component  estimation 

• Cost function construction: This may be 
facilitated by on-line cost accounting systems that 
allow field office personnel to record expenses in 
new ways. 

• Sample allocation optimization 

Other areas not previously mentioned are: 

• Model construction for use in estimators: Some 
items have price structures that are determined 
nationally~Internet sales, catalog and phone 
sales, for example. Other items have regional 
and/or seasonal variations--fruits, vegetables, 
gasoline. Prices also have a complicated time 
series structure. Local economic 
conditions--unemployment rate, wage & salary 
levels~also affect price changes. How to account 
for this structure in constructing index estimators 
is an open question. 

Model bias of estimators under model- 
misspecification: Any estimator can be analyzed 
with respect to an underlying model whether one 
favors design-based or model-based inference. 
The models that underlie price populations are 
likely to be extremely complicated. Although 
accounting for this structure in estimation may not 
be feasible, model-based analysis may pinpoint 
characteristics of samples (e.g., balance on certain 
variables) that are important in producing model- 
unbiasedness. Different types of highly controlled 
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systematic samples (see, e.g., Dorfman and 
Valliant 2000) may approximately achieve such 
balanced samples. 

• Universe coverage and frame construction: 
Internet sales have created new and difficult 
problems of universe coverage. As this type of 
transaction begins to occupy a larger share of the 
economy, coverage of on-line auction sales and of 
other items with variable on-line, transaction 
prices becomes more important. Retail purchases 
from off-shore vendors will also become more 
prevalent. 

• Folding in prices for new items: An item often 
becomes unavailable for pricing because its 
specifications change so radically that it cannot be 
considered as the same item between two periods. 
Computer equipment is an obvious example. How 
best to introduce these new items is an issue 
because the new item may involve a large price 
change. When a prescription drug goes off patent, 
for example, its generic equivalent may be sold at 
a far lower price. 

• Estimation of aggregation weights" Estimates 
like (8) and (9) are usually made for classes of 
items and then weighted together. The 
aggregation weights may be estimated from a 
consumer expenditure survey conducted 
independently from the pricing survey. Ghosh and 
Sohn (1990) and Lahiri and Wang (1992) 
investigated the use of empirical and hierarchical 
Bayes methods for improving estimates of 
aggregation weights. These methods were 
promising but have not been implemented in a 
national index program. 

• Quality Adjustment using Models: The standard 
econometric procedure, known as hedonic 
regression, for doing this is to predict the price of 
an item based on its characteristics and then 
compare that to the actual price. Improvements in 
current practice are needed. In fact, Moynihan 
(1999) in his Presidential Address to the 1998 
Joint Statistical Meetings felt that this was one of 
the most important statistical issues facing the 
U.S. government. 
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