
OUTLIERS IN SAMPLE SURVEYS- INVITED SESSION 
DISCUSSION 

Hyunshik Lee, Westat 
Westat, 1650 Research Boulevard, Rockville, Maryland 20850 

Key Words: Robust estimation, Working model, 
Variance-bias trade-off 

First of all, I would like to congratulate the 
authors for their excellent papers on the subject. To my 
best knowledge, this is the first invited session devoted 
to the outlier problem in sample surveys. I hope this is 
the beginning rather than the end. I will discuss Papers 
1 and 3 first because they are somewhat related. 

Paper 1" "Simple and Robust Estimator 
Sampling" by Beat Hulliger 

for 

A vast amount of robust estimation literature for 
handling of outliers under non-survey setting is 
available and there have been some attempts to transfer 
this knowledge to survey sampling. Notably some 
forms of M-estimation technique have been proposed to 
use (Chambers, 1986; Lee, 1991; Gwet and Rivest, 
1992; Hulliger, 1995). The weighting procedure of 
these estimators is complicated or appears so and there 
seems some resistance in the survey community in 
adopting these methods besides other cultural barriers. 
The current author of Paper 1 is trying to break this 
barrier by proposing simpler and more understandable 
ways of deriving the estimation weights yet based on 
the traditional robust estimation principle. 
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To solve the estimating equation (2) with (3), an 
iterative procedure is needed. A popular iterative 
algorithm is the weighted least square algorithm. It is 
often the case that the estimator obtained from the first 
iteration is as good as the one obtained from full 
iteration (Lee, 1991). The current author is exploring 
this possibility further. The one-step robustified 
estimator obtained this way is given by 

~ s w i u i y J  (4) 

where, with some robust estimator d for the scale, 

1 
H i = 

-Tol 
if[), ,-Tol<_cd 

otherwise 

and T o is an appropriate initial estimator used in the 
iteration. 

To estimate the population mean 

Yu = ~ v  Y~ I N ,  often is used the Haj6k-type estimator 

given as 

Z S  Wi Yi 
Tar = ~  (1) 
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The estimator in (4) appears to be a (sampling) 
weight-modified version of the estimator in (1). 
However, the basic underlying principle here is not to 
modify the sampling weight but to curb the influence of 

large [r [ where r = (y~ - T)/cy with no involvement of 
the sampling weight. Therefore, if an outlying weight 
causes a problem, it is not treated in this formulation. 

-1 It can be considered that the estimator where w i = ~ i • 
is obtained from the following estimating equation 

~ s  a i ~ ( Y i - T )  O c y  = (2) 

When an auxiliary variable (x) is available, the 
usual model is 

y, =13x,+e,, e,-~iid(O, rl(X,)a 2) (5) 

Under this model, the projection estimator is given by 

with a i = w  i and ~ = I  (identity function), which 
allows unbounding influence of outlying y-values. To 

robustify T M , we need to use a bounding u~ -function 
such as Huber's proposal, 

(6) 

for some estimator [3. The current author uses this 
estimator. Other estimators, however, can be 

constructed using the [3. For example, the prediction 
estimator (model-based) is given by 
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and the generalized regression (GREG) estimator 
(model-assisted) has the form of 

To~o=I[z  -' (x -~ )] - N  s T~ i y i  ak ~ u - Z s  Tr, i x i (8) 

Based on the model given in (5), a ~ can be 
obtained by solving the following estimating equation: 

I x, 
( y4] , ] ( x i )  ~/]~(xi)  

~ : 0  (9) 

If q ( x , ) :  x, (the usual ratio model), with ~ = I and 

--~= X U/(nx~) the solution for 13 is given a i : W  i :TT, i 
by 

~ = E s W ,  xiyi/q(x,)_lZsY,_ (10) 

Then TPROJ =" 6 X U -  THT. For this reason, the author 
asserts that the motivating model for the HT estimator 
is (5) with q (x i )= x i. However, it has been shown and 
can be easily seen that the HT estimator is a BLUE 

under the model (5) with rl (x~)= x 2 - the HT estimator 

is obtained using ~ = 1 ~]s Y_L, which is the solution of 
H X i 

(9) with ~ = I and a i = 1. The robustification of the 

HT estimator under the model with rl(x i )=  x/2 is given 

by the same form as THT S but the u i is defined 
differently as 

1 if[ri 1_< cd 

u, = cd  /] r, [ if l r~l>cd 
(11) 

where r~ = Yi /x i  - [3 o with some initial estimator 130 

such as med(y~/xj). (If the sampling weight (w~) is 
incorporated in the estimating equation, a different 
estimator than the HT estimator will be obtained, which 
can be robustified similarly.) 

Robustification of an estimator by the M- 
estimation technique is inherently model-based or at 
least model-assisted. Therefore, it is important to 
choose a plausible working model. If the chosen model 
fits well with the set of the nonoutliers in the 

population, a robustified estimator based on that 
working model should be better than other estimators 
based on a different working model. 

Some good practical advices in application of the 
one-step procedures are provided. For example, when 
outlying weights are present, the author advises to treat 
them separately. However, separate treatment of 
outlying y-values and outlying (sampling) weights 
could still leave some outlying weighted y-values. Also 
variable-by-variable treatment can destroy the relational 
structure of a multivariate data set. 

The proposed procedures may work well for 
symmetric populations but they could have a serious 
bias for skewed populations, which are often 
encountered, in establishment surveys. This was clearly 
demonstrated in the simulation study. 

The availability of a variance estimator for the 
procedure is an important advantage. It is yet to see 
how well the procedures work in interval estimation. 

Paper 3" "Down-weighting Influential Clusters in 
Surveys, with Application to the 1990 
Post-Enumeration Survey" by Thomas R. 
Belin, Gregg J. Diffendal, Nathaniel 
Schenker, and Alan Zaslavsky 

This paper is somewhat related to the first in the 
sense that it discusses how to down-weight data with 
outliers. 

The PES uses T M -type of estimator, which is not 
robust. This paper presents the first attempt to use a 
systematic robust estimation technique in social 
surveys. Weight truncation (or Winsorization) is 

sometimes used in an ad-hoc fashion. To robustify TM, 

the down-weighting factors uj are derived assuming 

that the underlying distribution is a t v -distribution as 

I 1' . i -  1+ v--?.  (12) 

It is not uncommon that a t-distribution fits 
actual data better than a normal distribution. Note, 
however, the distribution here is that of weighted 
cluster values. In this way, the sampling weights are 
incorporated in the formulation. If we look at the 
estimation problem in terms of an estimation equation 

given in (2), a i are set to 1, and yi are weighted 
cluster values. If these weighted values follow closely 

the normal distribution, T M is the best estimator. 
However, the authors found that the weighted values 
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follow more closely a Student t-distribution. The M- 
estimator under a t-distribution is then given by (4) with 

u i defined by (12). If weighted values can be modeled 
like this, we can obtain a more efficient estimator than 

T M by using the down-weighting factor derived from 
the model. 

The authors showed that the gain in variance 
efficiency is very large with the t-distribution of a lower 
degrees of f r eedom-  the variance reduction is over 
90 percent for the national estimate. However, bias 
seems to be quite serious and bias-variance trade-off is 

needed. The robust estimator based on t20 seems good 
- the bias is limited and the variance reduction is still 
large (70 percent for the national estimate). 

The Q-Q plot also suggests that other robust 
estimators (Huber type or bisquare M-estimators) may 
work well as well. Particularly, I suggest studying the 
Huber-type because it provide a systematic weight 
truncation procedure, which will be more readily 
acceptable to survey practitioners because such a 
procedure is already being used in an ad-hoc fashion. 

Paper 2: "Stratum Jumpers: Can We Avoid 
Them?" by Louis-Paul Rivest 

This paper discusses an important problem for 
business surveys, where stratum jumpers are very 
troublesome for repeated business surveys. The usual 
treatment methods of stratum jumpers are down- 
weighting or Winsorization. 

Stratum jumpers occur due to faulty size 
measure. The size measure used for stratification might 
be good at the time of the sample design but might have 
been deteriorated over time. 

Optimal stratification procedure such as Lavall6e 
and Hidiroglou (1988) based on the assumption that 
size measure (x-variable) is a perfect predictor of the 
study variable (y-variable) is vulnerable to the problem. 
The author is trying to address this problem by 
generalizing Lavall6e/Hidiroglou algorithm based on 
two stratum jumper models: multiplicative model and 
random replacement model. 

Hidiroglou and Srinath (1993) considered a 
similar algorithm based on the model given in (5). The 
algorithms proposed by Hidiroglou and Srinath and the 
current author provide more realistic stratification 
boundaries than the one by Lavall6e and Hidiroglou 
(1988). The principle of the algorithms is the same 
between these alternatives but the underlying models 
are very different. Therefore, the resulting boundaries 
can be quite different as well. It would be interesting to 
compare these procedures. 

The proposed procedure focuses more on smaller 
size strata and tends to allocate more to the smaller size 
strata and less to the larger size strata than the 
procedures that do not consider stratum jumpers. This 
makes sense since it is more likely that a unit with a 
small size measure jumps over to a large size stratum 
than the other way around. In addition, such jumpers 
are more trouble some because of its large weight. On 
the other hand, a unit in a large size stratum that jumps 
down to a smaller size stratum is less problematic 
because its weight is small. 

If the model (5) is correct, model-based 
stratification also works well (Sgmdal et al., 1992). 
However, the model decays quickly over time in 
repeated business surveys, which creates stratum 
jumpers (outliers). 

It is important to prevent the occurrence of 
stratum jumpers (outliers) at the design stage as much 
as possible. However, can we avoid them completely? 
I believe the answer is negative. If we cannot prevent 
them completely, we need a strategy to handle them 
when they occur. Therefore, a stratification strategy 
such as this together with an effective robust estimation 
method should be used. If the core part of the data 
follows closely the assumed model, stratification using 
the procedure by Hidiroglou and Srinath or the model- 
based method with an effective method of stratum 
jumpers treatment at the estimation stage would be 
another workable alternative. 
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