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A b s t r a c t  

Certain clusters may be extremely influential on 
survey estimates from clustered samples and conse- 
quently contribute disproportionately to their vari- 
ance. We propose a general approach to down- 
weighting clusters using a robust estimation strategy 
based on M-estimation, using t-based weight func- 
tions. The method is motivated by a problem in 
census coverage estimation. In this context, both 
extreme weights and large errors can lead to ex- 
treme influence, and influence can be estimated by 
Taylor linearization. As predicted by theory, the 
robust procedure greatly reduces the variance of es- 
t imated coverage rates, more so than truncation of 
weights. On the other hand, the procedure may in- 
troduce bias into survey estimates when the distri- 
butions of the influence statistics are asymmetric. 
We demonstrate techniques for assessing the bias- 
variance tradeoff and consider the properties of the 
estimators in the presence of asymmetry. We also 
suggest design improvements to reduce the impact 
of influential clusters. 

1 I n t r o d u c t i o n  

In clustered samples, certain clusters may be ex- 
tremely influential on a survey estimate and con- 
sequently contribute disproportionately to its vari- 
ance. As noted in the review by Lee (1995), a cluster 
may be influential because it has an extreme sam- 
pling or poststratification weight compared to the 
weights for other clusters in the same area or con- 
taining similar population groups. A cluster may 
also be influential because it is an outlier, i.e., be- 
cause some measured quantity of interest is extreme 
relative to a postulated distribution for that quan- 
tity across clusters. Chambers (1986) distinguishes 
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between extreme values that are incorrectly recorded 
("nonrepresentative outliers") and those that are 
correctly recorded ("representative outliers"). Here 
we presume that incorrectly recorded values have 
been edited in the data being analyzed. 

Previous research on controlling influential obser- 
vations in surveys can be classified into two groups: 
research on methods for handling outlying data val- 
ues; and research on methods for handling extreme 
weights. We summarize briefly here; BSZ gives ref- 
erences. With regard to handling outliers, one strat- 
egy is to identify and edit them, possibly using the 
influence function as a diagnostic. A second strategy 
for dealing with outliers is to apply robust estima- 
tion techniques to the data. A common strategy for 
handling extreme weights is weight t r imming (Potter 
1990), which involves identifying a ceiling on allow- 
able weights. 

In this paper, we develop an approach to down- 
weighting clusters based on techniques from the the- 
ory of robust estimation, also related to jackknife 
estimation. For a given estimator, a derivative- 
based influence statistic is calculated for each clus- 
ter, which represents the amount by which the es- 
t imator would change if the cluster were dropped 
from the data. A new estimator is then calculated 
using modified weights, where the modification fac- 
tors are determined by fitting a t distribution to the 
influence statistics. 

Our approach differs from the robust estimation 
approaches cited above, in that the estimation tech- 
nique is applied to the influence statistics rather 
than to the raw data values. This provides a unified 
treatment of extreme weights and outliers, which 
is desirable since they determine influence together. 
For example, a cluster with a severely outlying data 
value but a somewhat low weight might only have 
moderately high influence. A robust method that is 
applied directly to the raw data values might down- 
weight such a cluster severely, and weight tr imming 
might not downweight the cluster at all. In contrast, 
our method would downweight the cluster moder- 
ately, which seems appropriate given the level of in- 
fluence of the cluster. Modeling the influence statis- 
tics directly also addresses influence due to more 
than one variable at the same time (e.g., census un- 
dercount and overcount in the application presented 
in this paper). 
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Our research is motivated by the problem of esti- 
mat ing coverage in the decennial census. We illus- 
trate our techniques using cluster-level data  from the 
1990 Post-Enumerat ion Survey (PES). As predicted 
by theory, the t-based procedure leads to large re- 
ductions in variance, but it may introduce bias into 
survey estimates due to asymmetry  of the distribu- 
tion of influence statistics. We demonstrate tech- 
niques for assessing the bias-variance tradeoff and 
consider the properties of the estimators when the 
underlying distributions are asymmetric.  

Section 2 discusses the 1990 PES, how the PES 
was used to est imate coverage in the census, and 
sources of influential clusters in the PES. Section 3 
presents a general formulation of our approach to 
downweighting influential clusters. The approach is 
applied to data  from the 1990 PES in Section 4. 
We conclude by discussing areas for further research 
(Section 5). 

2 I n f l u e n t i a l  C l u s t e r s  i n  t h e  1 9 9 0  

P o s t - E n u m e r a t i o n  S u r v e y  

2.1 Overview 

Coverage error in the 1990 United States Census of 
Housing and Population was estimated using a post- 
enumeration survey (PES), a stratified cluster sam- 
ple in which the primary sampling units were cen- 
sus blocks (typically either city blocks or rural areas 
containing several housing units) or groups of census 
blocks (Hogan 1993). The design and the processing 
of the PES caused some clusters to be very influen- 
tial in the estimation of coverage error. One set of 
influential clusters were those where large-scale er- 
rors in the census were detected by the P ES. Among 
these were clusters in which unusually many house- 
holds were misgeocoded (assigned to the wrong ge- 
ographic location) or missed altogether. Other clus- 
ters were influential because they had very high sam- 
pling weights. We postpone a formal definition of 
influence to Section 3, but we note that  in the con- 
text of census coverage estimation, the influence of 
a cluster is roughly proportional to the excess of the 
weighted number of cases contributed by the block 
to the est imated total undercount over the number 
that  would be expected at the general undercount 
rate for the posts t ra tum.  

Some of the processes that  result in influential 
clusters would be expected to yield equally many 
large contributors to estimated undercount and over- 
count. Other such processes would not yield such 
a balance. In either case, influential clusters can 
contribute disproportionately to the variance of es- 
t imates of coverage error. In estimating coverage for 

the 1990 census, the Census Bureau reduced the in- 
fluence of certain P ES clusters by truncating their 
weights on a post hoc basis. In Section 4, we explore 
our alternative t-based approach and compare it to 
some simple schemes for truncating weights. 

2.2 Coverage Est imat ion Methodo logy  

The 1990 PES consisted of two parts: a sample of 
the population called the P sample and a sample of 
census enumerations called the E sample. The P 
sample was used to estimate the proportion of the 
population that  was missed in the census, whereas 
the E sample was used to estimate the number of 
erroneous enumerations in the census. 

The 1990 PES was a stratified sample of 5,290 
block clusters. The P sample consisted of all people 
who lived in the sample clusters at the t ime of the 
P ES interview and should have been counted in the 
census. The E sample consisted of all enumerations 
that  the census placed in the same sample clusters. 

Clusters were sampled with known probabilities, 
with sampling weights equal to inverse probabilities 
of selection. In general, the weight for a cluster 
was applied to all the individuals in the cluster, al- 
though weighting adjustments were performed for 
households where no interview was obtained (Be- 
lin, Diffendal, Mack, Rubin, Schafer, and Zaslavsky 
1993). In certain clusters with large populations, 
subsampling was carried out to reduce field work, 
and weights were modified accordingly so that  per- 
haps half as many households would be interviewed 
but their weights would be doubled. 

Special consideration was also given in the sample 
design to "small blocks," defined from a pre-census 
housing unit count for every census block in the 
country. Small blocks include business areas, me- 
dian strips of highways, parks, rural areas, and bod- 
ies of water where people might dwell. The original 
plan for the 1990 PES included two sample small 
blocks for each of about 50 s trata  defined by ge- 
ography, but concerns about effects on variances of 
the large weights of small blocks led to the inclu- 
sion of a supplemental sample of about 3,000 small 
blocks. This supplemental sample was listed close 
to the t ime of PES interviewing, and block clusters 
with ten or more housing units in either the P or E 
sample were included in the P ES. 

To provide data  for est imating the proportion of 
the population that  was missed in the census, the 
PES determined where each P-sample person lived 
on the reference day of the census. The P sample was 
then matched against the census through a combina- 
tion of computer and clerical matching operations. 
A P-sample person was considered a census enumer- 
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ation if he/she had been enumerated in the census 
within a search area composed of the census block 
reported in the PES and a ring of surrounding cen- 
sus blocks (two rings in rural areas). Individuals 
found in the P sample but not in the census ("non- 
matches") were followed up to confirm their exis- 
tence. 

Erroneous enumerations in the census included 
duplicates, fictitious individuals, persons not alive at 
the time of the census, and persons counted in the 
wrong location ("geocoding errors"). Enumerations 
in the E sample were checked against the census to 
determine whether they were duplicates. In addi- 
tion, E-sample cases that  did not have matches in 
the P sample were followed up to determine whether 
they were erroneous enumerations other than dupli- 
cates. 

E-sample geocoding errors were defined by a rule 
similar to that  used for P-sample cases. With this 
rule, it was equally likely that a housing unit mis- 
geocoded in the census outside the search area for its 
correct location would appear as an erroneous enu- 
meration (if the erroneous location was in a sample 
cluster) or as a census omission (if the true loca- 
tion was in a sample cluster). Thus, the E- and P- 
sample rules "balanced" each other. Of the 21,063 
cases whose geocoding status was determined from 
follow-up operations, 42% were correctly geocoded 
in the E-sample block, 52% were classified as be- 
longing to a census block adjacent to the E- sample 
census block and thus were correctly geocoded in the 
search area, and 6% were erroneously geocoded. 

Estimation poststrata were defined by geogra- 
phy, race/ethnicity, tenure (i.e., owner/renter sta- 
tus), age, and sex. A sample cluster would typically 
fall into one geographic area but contain persons in 
several poststrata.  The estimator of the adjustment 
factor is given below by (2). Details of the design of 
the PES and the 1990 coverage estimation method- 
ology appear in Hogan (1993). 

2.3 S o u r c e s  o f  I n f l u e n t i a l  C l u s t e r s  

In this section, we briefly describe some sources of 
influential clusters in the 1990 PES. For a more 
detailed discussion and a descriptive analysis of 
these clusters, see Diffendal, Zaslavsky, Belin, and 
Schenker (1994) or BSZ. 

The clustered design of the 1990 PES facilitated 
field operations and matching, but also permitted 
cluster-level errors to affect the accuracy of the sur- 
vey. The results of the 1990 PES included over three 
dozen clusters in which there was a particularly poor 
match between census and PES rosters. These clus- 
ters were outliers in relation to general patterns of 

error. In other words, the high levels of nonmatch 
were not due simply to a generally high rate of census 
and PES errors in the area at the person or house- 
hold level, but rather to specific large-scale errors 
that affected whole clusters or substantial portions 
of them. 

Some of these large-scale errors were due to prob- 
lems in field operations. For example, a substantial 
portion of a cluster could have been missed by the 
census. Other large-scale errors were due to prob- 
lems in geocoding. For example, an entire housing 
development or apartment building in the P sample 
might have been geocoded outside the corresponding 
search area in the census, causing all of its residents 
to be classified as nonmatches in the P sample. Con- 
versely, a similar collection of households might have 
been geocoded erroneously into an E-sample block 
from outside the search area. Although geocoding 
errors should balance out in expectation, and al- 
though PES matching rules are designed specifically 
to enforce this balance across the PES sample (Sec- 
tion 2.2), particular poststrata may be greatly influ- 
enced by such errors since most of the population of 
each cluster falls into only a few poststrata.  

Even in the absence of a large-scale error, a clus- 
ter could still be very influential because of extreme 
weights, defined as sampling weights that are very 
large compared to weights for other clusters in sim- 
ilar areas or with similar population groups. (Con- 
versely, a large-scale error might not result in high 
influence if it occurs in a cluster with a very small 
weight.) For example, the intention of the 1990 
PES sample design was that the high-weight "small 
blocks" should have little population. In fact, due 
to errors in precensus listing and the census itself, 
some had substantial counts. In combination with 
their large weights, this made them very influential. 
The errors in these blocks were not necessarily large 
in absolute terms, but they were large in relation to 
the anticipated populations of the blocks. 

With a sample of a few thousand clusters, there 
is not enough information to identify accurately the 
systematic effects of large-scale errors and extreme 
weights, e.g., that  they lead more frequently to ur- 
ban residents being placed in suburban areas than 
the other way around. Therefore, downweighting in- 
fluential clusters, as was done in 1990, is appropriate. 
Post-hoc procedures for downweighting are subject 
to criticism, however, because of their reliance on 
expert judgement applied to individual blocks and 
because of the discontinuity between those blocks 
selected for downweighting and those not selected. 
The approach outlined in Sections 3 and 4 at tempts 
to provide an objective and systematic basis for 
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downweighting. 

3 R o b u s t  E s t i m a t i o n  W h e n  There  
a r e  I n f l u e n t i a l  C l u s t e r s  

We next present models and theoretical perspectives 
that  suggest methods that  reduce the contribution 
of influential clusters to variance and thereby poten- 
tially improve the quality of survey estimates. We 
first discuss how, in the context of variance estima- 
tion, estimates of the undercount (or other nonlin- 
ear multivariate statistics) may be approximated as 
a mean of values for each observation, the influence. 
We next review robust estimation of the mean using 
M-estimators. Finally, we propose combining these 
tools by using a robust estimator applied to influence 
statistics. 

3.1 T h e  Inf in i tes imal  Inf luence 

The "influence" of a unit (in our paper, a cluster) on 
an estimator may be defined as the negative of the 
amount by which the estimator would change if the 
unit were dropped from the data. Influence may be 
calculated directly by removing each unit from the 
data  and recalculating the estimate, as in jackknife 
methods for variance estimation. 

In some cases, an approximately equal influence 
measure may be obtained in closed form as a func- 
tion of data  values by taking the derivative of the 
estimator with respect to the inclusion indicator for 
each unit. Formally, suppose that  the estimator can 
be written as g ( X , I ) ,  where X -  ( x l , . . . , X N )  T is 
the matr ix  of data  values in the population with 
xi being the data  vector for unit i, and I = 
( I 1 , . . . , I N )  T is the vector of inclusion indicators 
(Ii - 1 if unit i is included in the sample, Ii - 0 
otherwise). Then the derivative-based, or "infinites- 
imal," influence measure is defined for units included 
in the sample as 

Di = @(X ,  I) (1) 
oIi 

Because of the close theoretical and practical corre- 
spondence between this measure and the jackknife, 
it was called the "infinitesimal jackknife" in early 
research (Church and Harris 1970; Jaeckel 1972). 
This statistic is the basis of "Taylor linearization" 
approaches to variance estimation. 

Variance estimates based on the jackknife, which 
is rooted in survey sampling theory, and based on 
the infinitesimal influence, which is an important  
tool in the theory of robust estimation, are essen- 
tially equivalent if the estimator is a smooth func- 
tion of the data  (Jaeckel 1972; Efron 1982). In both 
cases, we may estimate variance as if we were calcu- 

lating the sum of the influence statistics themselves 
rather than an arbitrary estimator based on the orig- 
inal data. Jackknife theory tells us that  this equiva- 
lence holds with weighted sampling schemes as well 
(ignoring finite population corrections in without- 
replacement sampling schemes, which are negligible 
in many applications). 

3.2 Long-Tai led  Di s tr ibut ions  and R o b u s t  
E s t i m a t i o n  

It is well known that  the sample mean is the opti- 
mal estimator of location for a normally distributed 
population. At the opposite extreme, with very 
long-tailed distributions (specifically, the Laplace or 
double-exponential distribution), the optimal esti- 
mator  is the median, which gives no weight to any 
observation other than the middle one. 

A large class of robust estimators of location is 
the M-estimators (Huber 1964; Huber 1981; Ham- 
pel, Ronchetti, Rousseeuw, and Stahel 1986). For a 
location-scale family, these are defined by the opti- 
mization/5 = arg min ,  ~ i  P((Yi - #)/or), or equiva- 
lently by the estimating equation ~ i  ¢((Yi -#) /or )  = 
0, where ¢ = y .  If p is a loglikelihood for a distri- 
bution, the M-estimator is simply a max imum likeli- 
hood estimator, but the usefulness of the estimator 
does not depend on whether a specific distributional 
assumption holds. 

The M-estimator of # may be calculated as an 
iteratively weighted mean, ~ - ~-,i w i Y i  , where 
wi = ~ ( ( Y i -  # ) / o ' ) / ( y i -  #) depends on the pre- 
vious estimate of # and or. Robust M-estimators, 
such as those based on long-tailed distributions, 
give reduced weight to the extreme observations. 
This downweighting is the source of the robustness 
of the estimator against outliers. The correspond- 
ing estimator of scale is derived by differentiating 
~ i  P ( ( Y i -  #)/G)/cr with respect to ~r and equating 
the derivative to 0. Both /5 and ~ are updated in 
each iteration. 

One suitable family of long-tailed distributions for 
defining an M-estimator is the t family, because the 
degrees-of-freedom parameter  ~ allows us to approx- 
imate the tail shape of an observed distribution be- 
tween the extremes of the Cauchy (very heavy tails) 
and the normal. The optimal M-estimator for the 
center of a t distribution with u degrees of freedom is 

defined by the weight function w ( z ) -  (1 + zy/u)  -1 
where zi = (yi - p)/cr; the weights depend on # and 
cr through zi. With this estimator,  the influence of 
extreme observations is bounded, and falls to 0 far 
from p. Note that  the variance of the corresponding 
scaled t distribution is ( u / ( u -  2))or 2, and is unde- 
fined for L, < 2. 

m 
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Another popular M-estimator is defined by the 
"Huber" @function; see BSZ for results with this 
alternative. 

The downside of robust estimation is that  it may 
be biased if the population distribution is asymmet-  
ric. This issue is commonly avoided in robust dis- 
tribution theory by postulating a symmetric error 
distribution, but this solution is not available to us 
in the survey context. There is no robust alternative 
to the usual unbiased estimators that  guarantees un- 
biased estimation with all populations. 

This presents us with a bias versus variance trade- 
off. If the outlying observations are symmetrically 
distributed, the robust estimators may do well. If 
the outlying observations are asymmetrically dis- 
tributed, however, the observations on the long- 
tailed side will be downweighted more on the average 
than those on the short-tailed side, which may make 
the estimator of location biased. By continuously 
varying the tuning parameter  t,, we can investigate 
a range of alternatives from a sample mean with no 
downweighting (corresponding to t, = ec) to strong 
downweighting. 

3.3 D o w n w e i g h t i n g  C l u s t e r s  B a s e d  on The ir  
I n f i n i t e s i m a l  In f luence  

Our downweighting strategy applies an M-estimator 
of the mean to influence statistics. The following 
steps are required: (i) we calculate the infinitesimal 
influence statistic Di as given in (1) for each cluster 
in the sample; (ii) we calculate M-estimates of loca- 
tion and scale for the influence statistics; from this 
step, we (iii) retain the M-estimation weight for each 
cluster. Then (iv) we multiply the original weight 
for each cluster by the robust estimation weight, and 
(v) we recalculate the parameter  (adjustment factor) 
for the pos ts t ra tum using the new weights. Step (ii) 
is iterative; we also iterate the entire sequence of 
steps because the influence statistics calculated in 
(i) may themselves depend on the current estimates 
of the parameter.  

We estimate the variance of the M-estimator using 
standard formulae (Huber 1981, eqn. 2-15). These 
formulae take into account the fact that  the robust 
estimation weights are not known in advance but are 
estimated using estimates of # and or. 

4 R o b u s t  E s t i m a t i o n  with  the 1990 
P o s t - E n u m e r a t i o n  Survey  

In this section we apply the techniques described in 
Section 3 to the data  on the clusters in the 1990 
Post-Enumerat ion Survey. We use our M-estimator 
and explore the effect of various choices of the tun- 
ing constant t,. We compare the robust procedure 

to schemes that  truncate large weights, and finally 
explore the issue of asymmetry  of the distribution of 
influence statistics. 

4.1 N e t  U n d e r c o u n t  a n d  t h e  I n f luence  
S t a t i s t i c  

The adjustment factor in a pos ts t ra tum is the ra- 
tio of estimated true population to the census count 
excluding substitutions, 

A = ( C / E ) / ( M / P ) ,  (2) 

where 

E = 2 WEiEi = weighted e s t i m a t e  of  t o t a l  

enumerations from E-sample, 

C = ~ WEiCi = weighted estimate of correct 
enumerations from E-sample, 

M = ~ Wpi Mi = weighted number of matches 
between the P sample and the census, 

P = ~ WeiPi = weighted estimate of the pop- 
ulation total from the P sample, 

WEi, WPi are E- and P-sample weights respectively 
for cluster i, and Ei, Ci, Mi, and Pi are the cor- 
responding unweighted counts of persons in cluster 
i. The above expression may be interpreted as the 
estimated fraction of census enumerations that  are 
correct, divided by the estimated fraction of all per- 
sons in the posts t ra tum who were enumerated in the 
census. 

By taking derivatives of (2) with respect to the 
inclusion indicators for the clusters, we obtain the 
(infinitesimal) influence of cluster i on the estimator: 

Di ,~ -1 /M[WEi(Ci  - ( C / E ) E i )  - (3) 

Wpi(Mi - ( M / P ) P i ) ] ,  

the approximation holding if A ~ 1 and the total 
number of PES matches in the posts t ra tum is close 
to the number of correct enumerations. Note that  
a similar procedure may be applied for any statistic 
that  is a function of estimated totals. 

The two bracketed terms in (3) may be interpreted 
as the weighted excess of correct enumerations in 
the cluster over the expectation given E-sample size 
and the average correct enumeration rate, and the 
weighted excess of matches in the cluster over the 
expected number of matches given P-sample size 
and the average match rate. The influence there- 
fore is approximately proportional to the excess of 
the weighted net number of cases contributed by the 
cluster to the estimated total undercount over the 
expectation for a cluster of that  size. Thus, heuris- 
tically variance estimation using influence statistics 
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is simply variance estimation for estimated net to- 
tal undercounted persons in the poststratum: the 
influence-based variance estimate is roughly equiva- 
lent to what we would obtain if the point estimate 
were the sample total of net undercount by cluster. 

4.2 E s t i m a t e s  f r o m  t h e  1990 D a t a  

For an investigation of the effect of using robust esti- 
mators, we poststratified the PES clusters and calcu- 
lated adjustment factors by poststratum. The post- 
stratification variables are racial composition, tenure 
(owner versus renter) composition, and urbanicity 
(defined differently than in the standard PES post- 
stratification); see BSZ for details. These variables 
define a 3 x 2 x 3 poststratification with 18 poststrata. 
Because our poststrata are defined by cluster char- 
acteristics, unlike those used in the actual 1990 P ES 
estimation procedure, each cluster falls into only one 
poststratum. Hence to avoid making the poststrata 
excessively small, we did not use a fourth potential 
stratifier, the census division, in this ana!ysis. 

Our poststratification is by cluster rather than by 
person or household. This was imposed on us by 
the use of a cluster file rather than a microdata file 
for the analysis. It oversimplifies the analysis, be- 
cause each cluster contributes to only one poststra- 
turn, so the posts t ra tum estimates are essentially 
independent. (Extensions to a more realistic situ- 
ation, with poststrata defined in terms of individual 
as well as cluster characteristics, are considered in 
Section 5.4). 

To assess the distributional form of the influence 
statistics within poststrata, we first drew quantile 
plots (shown in BSZ). In every poststratum, the 
distribution was long-tailed relative to the normal 
distribution. A single quantile plot for all post- 
strata was created by z-scoring the influence statis- 
tics within each posts t ra tum and then combining all 
the z-scores into a single distribution. The deviation 
in the tails of the normal plot from a straight line 
indicates a heavy-tailed distribution. We created t 
quantile plots for various values of ~,. By eye, the 
best fit appeared to occur for 2 < u < 4, and closer 
to 2 than to 4. 

The maximum likelihood estimate of the degrees 
of freedom ~, of a t distribution fitted to the com- 
bined z-scored influence statistics was 0.86. It would 
be quite disturbing if this were the underlying dis- 
tribution of the influence statistics, since it would 
imply a distribution that  is longer tailed than the 
Cauchy (L, = 1) and has neither a variance nor a 
mean. The estimate ~ is very sensitive to a few 
particularly extreme observations, however, and we 
instead focus on a value ~, = 2.5 derived from the 

graphical investigation. 

We calculated the robust estimate of the adjust- 
ment factor for each posts t ra tum and the com- 
bined national data for the t-based ~-function with 
L, = 100, 20, 8,4, and 2.5. To demonstrate the ef- 
fects of varying the tuning parameter of the estima- 
tors, "trace plots" show the estimated undercount 
for each poststratum against the tuning parameter L, 
(Figure 1), with the unbiased survey-weighted mean 
at the left of each plot. (We use the term "unbi- 
ased" loosely to distinguish these estimates from the 
robust estimates, although because they are ratio es- 
timates they are not strictly unbiased.) The heavy 
line toward the bot tom represents the national un- 
dercount rate estimate. The poststrata whose esti- 
mates are most affected by downweighting appear 
as sharply rising or falling lines. The estimates for 
some poststrata change rapidly from the unbiased 
estimate ("Mean") to the L, = 20 robust estimate, 
but move little beyond that point. 

A similar plot for estimated standard errors (BSZ) 
shows that the estimated standard errors fall for ev- 
ery poststratum, and dramatically in a few, with 
a few exceptions at the smallest values of the tun- 
ing constant. The trace plots provide a graphical 
tool for considering the possible tradeoffs of bias 
against variance as the parameter which controls 
downweighting is varied. 

Estimated undercount rates and their standard er- 
rors for the unbiased estimator and the "t" estima- 
tor with L, = 2.5 are compared in Table 1. Of the 
18 poststrata, the robust estimates for 7 differ from 
the unbiased estimates by over 1%. The largest dif- 
ference is 4.0% for the Black suburban renter post- 
stratum. Estimated standard errors for the robust 
estimator are from 15% to 88% as large those for the 
standard estimator; the average ratio is 39%. 

4.3 A s y m m e t r y  and Bias  

The discussion in Section 4.2 focused on considera- 
tions of variance and relative etIiciency of estimators. 
As noted in Section 3.2, however, if the distribution 
of influence statistics is not symmetric, the robust 
estimators may be biased. If the bias were equal in 
every poststratum, it would be of relatively minor 
concern, because estimates of relative undercount 
would be unaffected. On the other hand, substantial 
differential biases in estimates would defeat the pur- 
pose of the entire undercount estimation program. 
We now consider the available evidence about bias. 

Because of the balance designed into the P ES, 
large geocoding errors should equally generate out- 
lier undercount and overcount clusters. On the other 
hand, some other types of errors may not balance in 
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this way, and therefore may generate a longer tail 
on one or the other side of the distribution of in- 
fluence statistics. For example, there is no strong 
reason a priori to assume that high-weight clusters 
will contribute equally to extreme overcounts and 
undercounts. 

In order to explore possible asymmetry of the 
influence statistic distributions, we prepared a 
quantile-quantile plot of the left side of the combined 
z-score distribution against the right side (split at 
the median). The left tail, corresponding to obser- 
vations with positive influence on undercount esti- 
mates, is shorter than the right tail at the extremes, 
but there is an intermediate range at which the 
tail on the undercount side is heavier. This implies 
that the extreme observations will tend to be down- 
weighted more on one side or the other (depending 
on the tuning parameter of the estimator), creating 
a bias. 

One approach to determining whether down- 
weighting of extreme clusters biases estimates of un- 
dercount rates is to ask whether the extremely influ- 
ential clusters systematically affect differential un- 
dercount rates, or whether on the contrary these in- 
fluential clusters are essentially randomly scattered 
among all poststrata.  Differential bias is important  
because shares of population rather than absolute 
counts are critical to many uses of census data, such 
as apportioning representation or dividing up mon- 
etary benefits. A constant bias in undercount esti- 
mates might therefore have little importance. 

We construct a randomization test whose null hy- 
pothesis is that  the distributional form of the z- 
scores of influence statistics is the same in every 
poststratum. If this is true, the effect of applying 
downweighting is the same in every poststratum, on 
the scale of the z-scores. The alternative hypothe- 
sis is that  the pattern of asymmetry differs between 
poststrata, so that  the shifts due to downweighting 
are systematically different. The test statistic is the 
sum of the squared centered shifts, i.e., the squared 
differences between the mean z-score in each post- 
s t ra tum and the corresponding weighted mean after 
applying robust downweighting and centering the 
differences so their mean is zero across poststrata. 
The randomization distribution to which the ob- 
served value is referred is that  obtained by z-scoring 
influence within each posts t ratum and then repeat- 
edly randomizing the z-scores among the poststrata 
(without replacement) so that the number of clusters 
in each posts t ra tum is the same as the number in the 
corresponding posts t ratum in the observed data set; 
10,000 draws were taken for each test. 

For the t estimator with ~, = 2.5, the observed 

value of the test statistic fell at the 93rd percentile 
of the randomization distribution. With u - 20, 
the test statistic fell at the 96th percentile, and with 
u -- 1000 at the 95th percentile. Thus, although 
the the statistical evidence that the bias differs by 
poststratum is stronger for u - 20 or u - 1000 than 
for u = 2.5, the absolute magnitude of the changes 
in estimates in the former cases is smaller. 

Another approach to exploring possible biases is 
to compare an estimate of bias, the difference be- 
tween the unbiased and robust estimates, to the 
standard error of that difference. We estimate the 
standard error using the same Taylor linearization 
approach used for the adjustment factor, applied 
to the difference of two ratios. (We use an ap- 
proximation that treats the robustifying weights as 
fixed, which probably slightly underestimates the 
variance.) Nationally (ignoring poststratification), 
downweighting with u = 2.5 reduces the under- 
count rate from 1.76 percent to 1.75 percent, an 
insignificant difference. We calculated the differ- 
ence between poststratum and national undercount 
rate (relative undercount) for each poststratum. AI- 
though four relative undercounts change by more 
than 3 percent with u = 2.5 weighting, the t- 
statistics for testing significance of these changes 
were 2.09, 1.81, 1.75, and .97, and the largest of 
these was in a poststratum with only 11 clusters. 
Hence there is little evidence that these differences 
represent bias in the robust estimator rather than 
excess sampling error of the unbiased estimator. 

Yet another approach compares the accuracy 
(MSE) of the unbiased and robust estimators in a 
way that allows us to aggregate across poststrata. 
We use the relationship MSE[y]-  MSE[x] = Var[y]-  
Var [y -  x] + E [ ( y -  x) 2] - Var[x], where x is an unbi- 
ased estimator and y is a possibly biased estimator 
(in this case, the robust estimator); the third term 
is estimated by the observed ( y -  x) 2 The esti- 
mated difference in MSE is negative for some post- 
strata and positive for others, but the unweighted 
average (-2 .45% 2) and population-weighted average 
(-0 .82% 2 ) of the independent estimates of the dif- 
ferences by poststratum are both negative, evidence 
that the MSE of the robust estimator is smaller. The 
largest negative term is from the "other renter rural" 
poststratum, where there is a large reduction in SE 
with only a modest change in the estimate; however, 
even excluding this posts tratum the means are still 
negative ( -0 .45% 2 and -0 .48% 2 respectively). The 
largest positive term is for the "Black renter subur- 
ban" poststratum; although the change in the under- 
count estimate is large, the robust estimate (4.97%) 
may be more plausible than the unbiased estimate 
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(0.95%), given the generally high undercount rates 
for renters and Blacks. 

For a more powerful test of whether downweight- 
ing tends to differentially bias estimates for post- 
s trata  with high undercount rates, we tested the re- 
lationship between the change due to downweighting 
(with v = 2.5) and the estimated undercount rate. 
We fit a weighted linear regression, with weights in- 
versely proportional to the estimated variance of the 
difference. Using the raw undercount rate as the pre- 
dictor in the regression, the relationship appeared 
significant (t = 3.99); this effect would be expected, 
however, due to the correlation between the predic- 
tor and the error in the outcome variable. Using ro- 
bust estimates of undercount rates as the predictor, 
there was weaker evidence (t = 1.89) of a relation- 
ship. 

These analyses suggest that  substantial decreases 
in variance can be achieved by downweighting, per- 
haps without a significant increase in the biases of 
posts t ra tum estimates. Given the potential for bias 
due to asymmetry,  it may be preferable to use an in- 
termediate level of downweighting, like our example 
with v = 20, rather than a more drastic downweight- 
ing (e.g., using v = 2.5) that  would be more nearly 
optimal for a symmetrical  distribution. 

4.4 Truncation of Weights 

An alternative approach to robust estimation is to 
truncate weights of extreme clusters. This approach 
bears discussion for several reasons. First, the anal- 
ysis of estimates using truncated weights offers in- 
sight into how much of the effect of the robust 
downweighting procedure described above can ob- 
tained by controlling weights alone. Second, trunca- 
tion of weights might be less controversial than the 
influence-based procedure, if the downweighting is 
based purely on the design and not on the observed 
outcomes in each cluster. Finally, by investigating 
the variance of the truncated-weight estimators, we 
can evaluate the benefits that  could be obtained by 
changing the design to avoid extreme weights. 

We compared (BSZ) estimates and estimated 
standard errors nationally and by posts t ratum with 
the unbiased estimator,  when both P- and E-sample 
weights are truncated at 2000 (affecting the weights 
in about 200 clusters for each sample), and when 
weights are made equal for all clusters. We find that  
in several posts t rata  (notably Other Rural Renters 
and Black Suburban Renters), the effect of trun- 
cating weights at 2000 is similar to that  of ro- 
bust estimation with y = 20: both methods lead 
to similar reductions in standard error and simi- 
lar shifts in point estimates. In these poststrata,  a 

redesign that  avoided such extreme weights (which 
were largely due to the lower sampling rate for small 
blocks) would probably have similar effects on vari- 
ance. In other poststrata  (notably Hispanic Rural 
Renters and Hispanic Suburban Renters), trunca- 
tion of weights at 2000 has very little effect even 
though the robust estimator substantially shifts the 
estimates and lowers the estimated standard error. 
This underlines the fact that  extreme influence can 
result from either extreme weights or extreme un- 
weighted net undercounts (or a combination of the 
two). Truncation of weights may be a more con- 
servative procedure, but it also has less potential 
payoff. 

5 D i s c u s s i o n  

To conclude, we suggest some topics for future re- 
search related to the work in this paper in the con- 
text of census coverage estimation; these ideas are 
elaborated in BSZ. 

5.1 Improved Sample Design and Process- 
ing 

As suggested in Section 4.4, extreme weights con- 
tribute substantially to variance, especially in some 
poststrata.  Some of these extreme weights appeared 
because of undersampling of small blocks, which in 
some cases turned out unexpectedly to have sub- 
stantial populations and sometimes substantial un- 
dercounts or overcounts. It may be worthwhile in fu- 
ture coverage measurement efforts to select a larger 
sample of small blocks and screen them so that  the 
ones that  turn out to be heavily populated will not 
have such large weights. 

Large-scale errors resulting from geocoding errors 
may be avoided by changing the procedures used 
in coverage measurement.  If the search area had 
been extended for clusters with large errors, then 
some of the large nonmatched structures found un- 
der the 1990 design would have been matched in the 
extended area. On the other hand, our investiga- 
tions suggested that  other large-scale errors are not 
of a form that  readily can be defined away by im- 
provements in PES processing. 

5.2 Non-Normality and Smoothing Models 
Observations that  are extreme and therefore influen- 
tial on the mean also have extreme influence on vari- 
ance estimates. If the data  (or, more precisely, the 
cluster influence statistics) are normally distributed, 
then the sample mean and variance estimates are 
stochastically independent of each other. This is not 
the case when the data  are t-distributed. Some of 
the well-known robustness of inference based on the 
t distribution stems from the fact that  when there 

80 



are extreme observations in the sample that  greatly 
affect the mean, the variance estimate will also be 
inflated. If, however, variances are smoothed toward 
some model-based estimate, then this robustness is 
lost, even though the smoothed variance estimates 
may well be better than the unsmoothed estimates. 
This led to problems in empirical Bayes inferences 
under the normali ty assumption. We conjecture that  
better results might be obtained by using hierarchi- 
cal models with t error structure (Liu and Rubin 
1998), extending our robust approach to a hierar- 
chical structure. 

5.3 M o r e  on  A s y m m e t r y  

The t-based downweighting algorithms described 
above give unbiased estimates with reduced variance 
under the assumption that  the distribution of cluster 
influence statistics is symmetric  in each poststratum. 
If this is not the case, downweighting may reduce 
variance but introduce an unknown bias. 

In our example, it is not difficult to conceive of 
reasons why the distribution of influence statistics 
would not be symmetric  and why this asymmetry 
might be systematically related to other character- 
istics of poststratification. 

For these reasons, we suggest caution in the ap- 
plication of our methods until further research gives 
us a better way to characterize their effects on es- 
t imates.  Several future extensions may extend the 
utility of these methods. For example, we might 
directly model the asymmetry  of the influence dis- 
tributions and thereby reduce the biasing effects of 
downweighting, by fitting truncated t distributions 
with possibly different scales and degrees of freedom 
to the two sides of the distribution. It may also be 
possible to estimate the downweighting parameters 
that  give an optimal bias-variance tradeoff according 
to a criterion of estimated MSE as in Section 4.3. 

5.4 M u l t i v a r i a t e  d a t a  

The estimation scheme of the PES is poststratified 
by characteristics of persons rather than of clusters 
(blocks). Consequently, more than one posts t ra tum 
appears in each cluster, and both the observation 
and the influence statistic for each cluster are mul- 
tivariate. 

Several alternative extensions are possible to ro- 
bustify est imation for multivariate estimands. If in- 
fluence statistics for a cluster are independent for 
the different poststrata,  it would make sense to cal- 
culate robust weights separately for each of the post- 
strata.  A second strategy would be to calculate 
a single robust estimation weight, replacing the t 
model used above with a multivariate t distribution 
(Liu 1996). This would be sensible, for example, 

if we were estimating relationships among the vari- 
ables and wanted to downweight values that  are out- 
liers from the usual relationships. 

Given what we know about the reasons that  some 
blocks are highly influential, the influence statistics 
of a block for estimates for several posts t ra ta  are 
likely to be dependent. Large errors that  cause many 
households to be omitted or erroneously enumer- 
ated affect estimates in the same direction for several 
poststrata.  Large weights similarly inflate the influ- 
ence of households containing members from a num- 
ber of poststrata,  who are likely to be omit ted or 
erroneously enumerated as a group. Consequently 
the influence of these blocks will usually have the 
same sign for a number of poststrata.  Hence, they 
can be more sensitively and specifically detected by a 
measure of influence that  sums across all poststrata,  
such as the influence of the block on the estimate of 
total population, or a weighted sum of influence on 
the population estimates by posts t ra tum. Further 
research using data  that  break down undercount by 
posts t ra tum within blocks will be required to de- 
velop these ideas. 

5.5 C o n c l u s i o n  

We have explored the use of a robust est imator in 
a survey with influential clusters due to extreme 
observations and large weights. Despite the many 
unknowns, we believe that  the large reductions in 
standard error suggested by Table 1 makes this is a 
promising area for future research. 

The analyses presented here may help with the de- 
sign of future coverage surveys to avoid the features 
that  caused some clusters to be overly influential in 
the 1990 P ES. Furthermore, even if there are some 
uncertainties about the properties of our estimators, 
a fairly good method that  is prespecified and applied 
in an objective manner may be more useful and ac- 
ceptable than one which is tailored to the data  after 
it is collected. 
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Figure 1" Traceplot of undercount estimates by post- 
stratum and nationally (heavy line) against tuning 
parameter u of robust estimator. 

Table 1: Undercount estimates and 
estimated standard errors, by post- 
stratum and nationally, for no down- 
weighting (normal) and downweight- 
ing based on the t distribution with 
2.5 degrees of freedom (t2.~). "SE%" 
gives the robust standard error as 
a percentage of that of the conven- 
tional estimator. 

Poststratum 

Black Rural Owner 
Black Suburban Owner 
Black Urban Owner 
Black Rural Renter 
Black Suburban Renter 
Black Urban Renter 
Hispanic Rural Owner 
Hispanic Suburban Owner 
Hispanic Urban Owner 
Hispanic Rural Renter 
Hispanic Suburban Renter 
Hispanic Urban Renter 
Other Rural Owner 
Other Suburban Owner 
Other Urban Owner 
Other Rural Renter 
Other Suburban Renter 
Other Urban Renter 
National 

Normal 
UC SE 
5.61 1.47 
1.19 1.34 
3.72 0.70 

11.75 2.62 
0.95 2.08 
4.63 1.48 
2.16 1.27 
2.64 0.85 
2.41 0.59 
8.02 2.33 
8.22 2.19 
4.94 0.89 
0.43 0.41 
1.12 0.32 
0.30 0.47 
8.64 5.00 
1.98 1.64 
1.68 0.75 
1.76 0.22 

~ 2 . 5  

UC SE SE% 
3.87 0.87 59% 
1.85 0.45 34% 
3.51 0.31 44% 
9.78 1.17 45% 
4.97 0.58 28% 
5.36 0.46 31% 
3.30 0.77 61% 
2.37 0.37 44% 
2.78 0.28 47% 
6.43 2.06 88% 
4.93 0.55 25% 
5.41 0.38 43% 
0.72 0.15 37% 
0.65 0.09 28% 
0.49 0.10 21% 
5.22 0.77 15% 
2.84 0.27 16% 
2.60 0.35 47% 
1.75 0.06 27% 
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