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A b s t r a c t :  

This paper suggests stratification algorithms that 
take into account discrepancies between the strat- 
ification variable and the study variables. Two 
models are proposed for the occurrence of s tratum 
jumpers. Under these models the stratification vari- 
able and the study variable are equal for most sam- 
pling units; important  discrepancies between the 
two occur for a limited number of units. Then, 
Lavallfie and Hidiroglou (1988) stratification algo- 
rithm is modified to incorporate the models for the 
s t ratum jumpers in the determination of the sample 
sizes and of the s t ratum boundaries. An example 
illustrates the performance of the new stratification 
algorithms. 

1 Introduct ion  

In business surveys, the size of the enterprise is an 
important  stratification variable. The survey popu- 
lations have skewed distributions and a good sam- 
pling design has one take-all s t ratum for big firms, 
where the units are all sampled, together with take- 
some strata  for businesses of medium and small sizes. 
Typically the sampling fraction goes down with the 
size of the unit; this gives large sampling weights to 
small businesses. 

Stratum jumpers occur when a small business ex- 
periences a rapid growth and becomes a large firm 
over a short period of time. When such a unit is sam- 
pled, its large sampling weight combined to its large 
size unduly inflate survey estimates. Lee (1995) re- 
views techniques, such as winsorization and weight 
reduction, that  have been proposed to limit the im- 
pact of s t ra tum jumpers on survey estimates. This 
paper investigates techniques for dealing with stra- 
turn jumpers when designing the survey. It proposes 
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stratification algorithms that  that takes into account 
the possible occurrence of s t ratum jumpers. 

Stratification in situations where the survey vari- 
able differ from the stratification variable is consid- 
ered briefly in Cochran (1977, chapter 5A) and in 
Dalenius and Gurney (1951), see also Hidiroglou and 
Srinath (1993) and Hidiroglou (1994). This paper 
constructs generalizations of Lavall~e and Hidiroglou 
(1988) algorithm that  incorporate explicitly differ- 
ences between the survey and the stratification vari- 
able. Stratification algorithms accounting for the 
possible presence of s t ratum jumpers are presented. 
A numerical example illustrates that  some gains in 
precision results form using the new stratification 
algorithms. 

Model ing  the Occurrence of Stra- 
tum Jumpers  

In this section {xi, i -  1 , . . . ,  N} denotes the known 
stratification variable while {y i , i  - 1 , . . .  ,N}  rep- 
resents the unknown study variable, and N is the 
population size. In an ideal situation xi - yi for 
each i; many stratification algorithms (see Cochran, 
1977, chapter 5A) rely on this assumption. To model 
the presence of s t ratum jumpers we want xi and yi 
to be very different for at least a few data points. 

For the sequel, it is convenient to look at X and 
Y as continuous random variables with respective 
density f ( x )  and g(y)  for x and y in R. The data 
{ x i , i  - 1 , . . . , N }  is looked at as N independent 
realizations of the random variable X. Allocations 
rules and stratification for Y knowing only X was 
considered by Dalenius and Gurney (1951), see also 
Hidiroglou (1994). I f - o e -  b0 < bl < b2 < 
. . .  < bL -- oe denote s t ratum boundaries, the strat- 
ification process uses E ( Y l b h  >_ X > bh-1) and 
Var(Ylbh  >_ X > bh-1),  the conditional mean and 
variance of Y given that  the unit falls in s t ratum 
h. Two models for s tratum jumpers are given next 
with, for each one, the conditional means and vari- 
ances of Y. 
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2.1 A Mul t ip l i ca t ive  M o d e l  

The first model considers that  Y - X Z  where Z is 
a random variable distributed independently of X 
with the following probability function" 

- z ) -  f 1 - e  i f z - 1  Pr (Z  
e i f z -  M ' 

where 0 < e < 1 is a small positive probability that 
unit is a s t ra tum jumper and M > 1 is a multi- 
plicative inflation factor for s t ratum jumpers. The 
conditional mean for Y under this model is easily 
evaluated, 

E(Ylbh >_ X > bh-1) -- {1 + ( M -  1)e} 

E(X[bh > X > bh-1) 

while Var(Ylbh > X > bh-1) is equal to 

Var(E(Y[X)Ibh > X > bh-1) 

+E(Var(YlX) lbh > X > bh-~) 

= {1 + ( M -  1)e}2Var(Xlbh >_ X > bh-1) 

+ ( M -  1)2e(1-  e)E(X2lbh > X > bh-1). 

2.2 A R a n d o m  R e p l a c e m e n t  M o d e l  

The multiplicative model depends on 2 parameters. 
The random replacement model, on the other hand, 
depends only on the probability ¢ that  the value of 
Y for unit is equal to the X-value for a randomly 
selected unit in the population. In other words, 

X with probability 1 -  e 
Y - Xnew with probability e ' 

where Xnew represents a random variable with den- 
sity f(x) distributed independently of X. The con- 
ditional mean for Y under this model is given by 

E(Ylbh > X > bh_~) 

= ( 1 -  e)E(Xlbh > X > bh-1)+ cE(X) 

while Var(Ylbh > X > bh-1) is equal to 

( 1 -  e)E(X21bh >_ X > bh-1) + eE(X 2) 

- - { ( 1 -  ()E(Xlb h >_ X > bh-1) + (E(X)} 2. 

3 A R e v i e w  of Stratif ied R a n d o m  
Sampl ing  

s tandard  notations of stratified random sampling 
are: 

Wh -- Nh/N is for h -  1 , . . . ,  L the relative weight 
of s t ra tum h, thus Nh is the size of s t ratum h 
and N -  ~ Nh is the total population size; 
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nh is for h - 1 , . . . ,  L the sample size in s t ra tum h 
and fh -- nh/Nh is the sampling fraction; 

Yh and Yh a r e  the population and sample mean of 
Y within s tratum h; 

Syh is the population standard deviation of Y 
within s tratum h. 

The survey estimator for Y can be expressed as y~t - 
~_, Whflh; its variance is given by" 

L 

V a r ( f l s t ) - E W ~ (  lnh Nhl ) S2h (1) 
h=l 

In business surveys all the big firms are sampled; 
this means that  s tratum L is a take-all s t ra tum and 
nL = NL. For h < L, the sample size nh can be 
expressed as ( n -  NL)ah where n is the total sample 
size and ah depend on the allocation rule. The two 
allocation rules that  are considered here are 

• The power allocation rule for which 

(WhYh)P , h -  1 . . . , L -  1 (2) 
ah -- .L-1 

where p is a positive number in (0, 1]; 

• Neymann allocation rule where 

WhSyh , h -  1 . . . , L -  1. (3) 
ah = L--1 ~k=~ WkSyk 

Solving (1) for n leads to 

n - -  NWL + ~ L - 1  2 2 h=l Wh S y h / a h  (4) 
L-1 

Var(f,t)  + E h = l  W h S 2 h / N  

The optimal strata boundaries are the values of 
bl, . . . ,  bL-1 that  minimize n subject to a require- 
ment on the precision of '38t such as Var(98t) - Y2c2 
where c is the target coefficient of variation; c - 1% 
or 10% are common choices. 

4 A M e t h o d  for Construct ing  Strati-  
fication Algor i thms  

The aim of a stratification algorithm is to determine 
the optimal s t ratum boundaries and sample sizes for 
sampling Y using the known values of variable X for 
all the units in the population, {xi; i = 1, . . . ,  N}. A 
model, such as those given in Section 2, character- 
izes the relationship between X and Y. This section 
extends the stratification algorithm of Lavall~e and 



Hidiroglou (1988)to  situations where X and Y dif- 
fer. 

It is convenient to consider an infinite population 
analogue of equation (4) for n. Since random vari- 
able X has a density f (x) ,  the first three moments 
of Y given that  bh-1 < X <_ bh can be written in 
terms of 

Wh - fb bh 
h - - I  

and 

~b bh f (x)dx, Ch -- x f (x)dx, 
h - - 1  

fb bh ¢h x2 f (x) dx. 
h - - 1  

For stratification purposes, it is convenient to 
rewrite (4) in terms of the conditional means and 
variances for Y, 

n -  N W L  (5) 
~ L - 1  

h=l W~Var(Ylbh > X > bh-1)/ah,X + 
yc  2 -Jr- E L-1 h=~ WhVa~(Ylbh > X > bh_~)/N 

where ah,x denote the allocation rule written in 
terms of the known X. For instance, under power 
allocation, 

{WhE(Ylbh ~ X > bh_~)} p 
ah,X -- E L _  1 k=l { ~ E ( Y l b k  >- X > bk_l)} p 

for h = 1 , . . . ,  L -  1. For a given model for the rela- 
tionship between Y and X, Var(Ylbh >_ X > bh-1) 
and E(Ylbh >_ X > bh-1) can be written in terms 
of Wh, Ch, and Ch. Thus, the partial derivative of n 
with respect to bh can, for h < L -  1, be evaluated 
using the chain rule, 

0 On OWh 

Obh OWh cgbh 
On OWh+~ + 

(~Wh+ l Oqbh 
On O~h+l + 

C~/)h+ 1 Oqbh 

On OCh On 0¢~ 
4 

OCh Obh O~h Obh 
On 0¢h+l 

-Jr- Oq d/) h_t - 1 O b h 

Observe that  

OWh __ _OWh+ f(bh), 
Obh Obh 
(~¢h OC~h-t-1 

-- =bhf(bh), 
Obh Obh 

O~bh _ a~bh+l _ b2hf (bh ). 
c)bh Obh 

This leads to the following result, for h < L -  1, 

n f(bh) 
Obh OWh OWh+l 

( ) On On bh + 
0¢h 0¢h+1 0~)h 

= f(bh)(ah + ~hbh + 7hb2h). 

0n 

Similarly, 

0 { On + 
n - f(bL-1) N + OWL-1 ObL-1 

} On bL-1 + b2L_l 
OCL-1 Oq@L-1 

= f(bL-1)(CtL-1 + flL-lbL-1 -t-~'L-lb~_l). 

To solve On/Obh = 0, thereby hopefully finding the 
optimal s t ratum boundaries, one uses Sethi's (1963) 
algorithm. It considers that  the partial derivatives 
are proportional to quadratic functions in bh. The 
updated value for bh is given by the largest root of 
the corresponding quadratic function. For any h < 
L, this gives 

--flh + (~2 _ 4Cth~h)l/2 
b'hCW= 

20~h 

The partial derivatives of n with respect to Wh, Ch, 
and ¢h depend on moments of order 0, 1, and 2 of x 
within s t ratum h. When implementing a particular 
algorithm, they are evaluated using the N x-values 
in the population. For instance, 

1 
Z 

i:bh-l<Xi~_bh 

Applications of this general method are given in the 
next section. 

Construction of Stratification Al- 
gorithms 

Several illustrations of the general method of Section 
4 for constructing stratification algorithms are now 
presented. 

5.1 Lavall6e and Hidiroglou Algor i thm 

Lavall6e and Hidiroglou assumed that  Y - X. Thus 
one has, in the W, ¢, ¢ notation defined at the be- 
ginning of Section 4, E(Ylbh > X > bh-1) -- Ch/Wh 
while Var(Ylbh >_ X > b h - ~ ) -  ~h/Wh (¢h/Wh) 2. 
Using this notation the power allocation rule is 
ahx  -- ¢ ~ / ~ ¢ P  for h 1 L -  1 Formula 

k ' " " " ' " 

(5) for the optimal n then becomes 

n- -  NWL + 
L-1 2 p Eh=l  (Wh~)h -- Ch)/¢Ph Eh--1L--1 (~h 

X2c2 ~_ E L-1 ¢2 h = l  ( ~ h  - h/Wh)/N 
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The partial derivatives needed to implement Sethi's 
(1963) iterative algorithm are, 

On 

OWh 

On 

O¢h 

ACh/¢Ph A B ( ¢ h / W h ) 2 / N  

F F 2 
/(~p-t-1 p-1 

A{--p(Wh¢h -- ¢~) h - -  2/¢h } 
F 

--1 - p ¢ ~ -  1 B ~ + 2  A B ( ¢ h / W h ) / N  
F F 2 

On AWh/¢Ph A B / N  
- - - -  m 

OCh F F z ' 

where A -  E L-1 CPh, B - E L - I ( W h C h -  ¢~)/¢~, 
L-1 2 and F -  2~c ~ + Eh=l (¢h -Ch/Wh)/N. 

5.2 Stratification for Stratum Jumpers" The 
Multipl icative Model  

For the multiplicative model of Section 2.1, one has 

W~Var(YIb h > X > bh-1) - 

{1 + (M - 1)e}2{WhCc,M¢h - ¢~}, 

where 

Ce,M - -  1 + ( M -  1)2e(1 - e ) / { 1  + ( M -  1)e} 2. 

Neymann allocation gives 

{ w .  c ~ , M ¢ .  - ¢~ }~/: 
ah,X = 

E I L - I {  w k c e  __ ¢~}1/2 '  

where Ch and ¢h involve, as in Section 4, the first 
2 moments of X in stratum h. For this model, (5) 
gives 

n -- N W L +  

ELI -I{WhCe,M~Jh -- ~ } 1 / 2 ]  2 

L-1 2 / W h ] / N  X2c  2 -t- E h = l  [Ce,M~)h -- ~)h 

The partial derivatives needed to implement Sethi's 
(1963) iterative algorithm are, 

On 

OWh 

On 

O¢h 

On 

ACe,M~)h/{Whee ,MCh -- ¢~}1/2 

F 

A 2 ( ¢ h / W h ) 9 / N  

F 2 
--2ACh/{WhC~,MCh - ¢~}1/2 

F 

2A2¢h / (WhN)  
+ 

F 2 

AVe,MWh/  {WhCe,M~h - ~fl~} 1/2 

A2Cc,M/N 
y 2 

F 
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where A - y~L-1 1 {WhCe,M~h -- ¢~}1/2, and F = 
L--1 2 / W h ) / N "  X2c2 ~- E h = l  (Ce.,M~2h -- Ch 

Under power allocation, one has ah,x -- CPh/E CPk 
and the partial derivatives of n with respect to Wh 
and Ch are given by the formula of Section 5.1, with 
Ch replaced by C,,MCh, while the partial derivative 
with respect to Ch is equal to that given in Section 
5.1 multiplied by C,,M. 

5.3 Stratification for Stratum Jumpers:  The 
Random Replacement  Model  

The conditional variance of Y, under the random 
replacement model of Section 2.2, satisfies 

W~Var(Y]bh > X > bh-1) 

= (1 - ~)Wh~h + W ? ~ E ( X  ~) - 

{(1 - e)¢h + eWhf(}  2 

-- th 

Under Neymann allocation, formula (5) gives the fol- 
lowing for this model 

~LI -~ oh~/2] 2 
n - N W L  + _ L-1 X2c2 + }-~'-h=l [ th/Wh]/N 

The partial derivatives for Sethi's (1963) algorithm 
are written in terms of th -- W2Var(Ylbh >_ X > 
b h - 1 )  and mh - WhE(Ylbh > X > b h - 1 ) .  

On 

OWh 

A{(1 - e ) ~ h  + 2WheE(X  2) - 2ef(rnh}/th/2 

F 
A2{eE(X  2) + (1 - C)2(¢h/Wh) 2 + e2 f ( 2 } / N  

F z 

On 

0¢~ 

On 

OCh 

-2(1 -~)Amh/t 1/2 h 
F 

2A2(1 - e)rnh/(NWh) 
+ 

F 2 

A(1 - e)Wh/th/2 A2(1 - e ) /N  
F F 2 

where A - E L-l÷l/2 and F - J72c2 + 1 ~h ' 
L-1 ~ h = l  ( t h /Wh) /N .  The partial derivatives under 

power allocation are not given here. They can be 
derived in a similar way. 



Example-  Stratif ication of the 
R E V 8 4  Populat ion  with 2 Stratum 
Jumpers  

The REV84 population contains the 1984 real es- 
tate values for 284 Swedish municipalities, see Ap- 
pendix B of SSxndal, Swensson and Wretman (1992). 
REV84 is the stratification variable for this prob- 
lem, the study variable Y is equal to REV84 ex- 
cept for municipalities 39 and 40 whose revenues 
have been increased to 8644 from respectively 655 
and 637. The revenues for these 2 municipalities 
have been increased from the 5th to the 95th per- 
centile of REV84; these two sampling units are stra- 
tum jumpers. This section presents stratified design 
for Y using REV84 as a stratification variable. We 
use L - 5 strata and set the target coefficient of 
variation at c -  .05. 

Assuming no discrepancies between the stratifi- 
cation variable and the target variable, the design 
obtained using Neymann allocation in Lavall~e and 
Hidiroglou algorithm has n - 19. It is given in Table 
1. Because of the 2 s t ratum jumpers, the coefficient 
of variation calculated for Y is c - .094 rather that  
the target value of .05. Furthermore the distribution 
of yst is presented in Figure 1. It is bimodal with a 
probability of about 10% of overestimating the true 
Y by more that  33%. 

To incorporate the occurrence of s tratum jumpers, 
three strategies are investigated, namely 

1. Use Lavall~e and Hidiroglou algorithm with a 
coefficient of variation lower than .05; 

2. The stratification algorithm derived from the 
multiplicative model; 

3. The stratification algorithm derived from the 
random replacement model. 

The three stratified designs obtained using algo- 
rithms constructed in Section 5 are given in the Ta- 
ble 2. 

The three strategies considered in Table 2 increase 
the total sample size from 19 to 28. The respective 
coefficients of variation for the Y stratified sample 
mean for the increase in sample size strategy, the 
multiplicative and the random replacement model 
are .074, .067 and .057 respectively. The two models 
for s t ra tum jumpers give good results. The random 
replacement model is much better that  the other al- 
ternatives. Note that  this design has a much larger 
minimum sampling fraction, min fh = .07, as com- 
pared to minimum values of .03 and .04 for the other 
two. This explains the better performance of this 

stratification scheme since, under the random re- 
placement model, the maximum sampling weight is 
around 50% of the maximum sampling weight un- 
der the other 2 models. This example suggests that  
constructing a stratified design using the random 
replacement model to account for the possible oc- 
currence of s t ra tum jumpers reduces the impact of 
s tratum jumpers on survey estimates. 

7 Discuss ion 

Slanta and Krenzke (1994) encountered some numer- 
ical difficulties when using Lavall~e and Hidiroglou 
algorithm with Neymann allocation: convergence 
was slow and sometimes the algorithm did not con- 
verge to the true minimum value for n. Indeed 
Schneeberger (1979) and Slanta and Krenzke (1994) 
showed that, for a particular bimodal population, 
the problem has a saddlepoint; that  is the partial 
derivatives are all null at boundaries bh which do 
not give a true minimum for n. 

When using the algorithms constructed in this pa- 
per, we also experienced the numerical difficulties 
mentioned by Slanta and Krenzke (1994). The al- 
gorithms constructed under power allocation were • 
generally more stable than those using Neymann al- 
location; numerical difficulties were more  frequent 
when the number L of s trata was large. Further- 
more as the distribution for Y moved away from 
that  of X, i. e. when the constants C~,M and the e 
of the multiplicative and of the random replacement 
model increased, non convergence of the algorithm 
and failure to reach the global minimum for n were 
more frequent. In these situations, the stratification 
algorithm's starting values are of paramount impor- 
tance. The numerical strategy used in Section 6 is 
to apply a sequence of stratification algorithms to 
get to the sampling designs given in Table 2. The 
stratum boundaries obtained at one step are used as 
starting values for the algorithm at the next step. 
At step 1, the initial boundaries are such that  all 
the strata have the same size. The designs given in 
Table 2 result from the following three steps: 

1. Lavall~e and Hidiroglou algorithm for power al- 
location allocation with p = .7; 

2. Lavall~e and Hidiroglou algorithm for Neymann 
allocation used as starting values the bh's from 
step 1; 

3. Sethi's algorithm for s t ratum jumpers with the 
bh's from step 2 as starting values. 

Once the numerical obstacles have been circum- 
vented, stratification algorithms accounting for dif- 
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ferences between the survey variable and the strat- 
ification variables give good results. Over the past 
years, these designs have been used successfully on 
several consulting projects at the Statistical Con- 
sulting Unit of Universit6 Laval. 
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Table 1" A stratified design for the REV84 population using Lavall~e and Hidiroglou algorithm 

REV84 with L-5 ,  CV-.05 and Neymann all. 
e - 0 bh mean 

stratum 1 1273 878 
. . . . .  

stratum 2 2336 1701 
s t r a tum3 4619 3114 
s t r a tum4 11776 6921 
s t r a tum5 59878 28418 

variance N h  nh f h  

57260 87 2 0.02 
99688 81 2 0.02 
351547 65 3 0.05 

3724610 46 7 0.15 
10 s 5 5 1 

n 

19 
19 
19 
19 
19 

O 

O 
Ckl - -  

O 
O - -  
,,t-,, 

O 
GO 

O 

O 

O 
Ckl 

O - -  

~I~N~I~..,..~ .,'.̧  N N N i  

iii~iii~l!.~/~ ............................... i i ~  ~,~,,~.,.~.,~,., ................................. 

! I 1 I I 

2500 3000 3500 4000 4500 

resul 

Figure 1' Distribution of the stratified mean for the population with 2 stratum jumpers under the sampling 
design of Table 1. 
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Table 2- Three Sampling Designs Accounting for the Presence of Stratum Jumpers. For each design the 
mean and the variance of REV84 in each stratum are given. 

Lavall~e and Hidiroglou algorithm with Neymann all. 

c=.037 bh mean variance Nh nh fh n 
stratum l 1273 878 57260 87 3 0.03 28 
s t r a t u m 2  2335 1701 99688 81 3 0.04 28 
s t r a t u m 3  4501 3114 351547 65 5 0.08 28 
s t r a t u m 4  9845 6442 2027436 41 7 0.17 28 
s t r a t u m 5  59878 19631 275502518 10 10 1 28 

Multiplicative model with Neymann all. 
Ce,M 1.04 bh mean variance Nh nh fh n 

s t r a t u m 1  1574 1023 97245 121 5 0.04 28 
s t r a t u m 2  3032 2219 168204 81 5 0.06 28 
s t r a t u m 3  5597 4022 464471 44 5 0.11 28 
s t r a t u m 4  11911 7709 2952313 33 8 0.24 28 
s t r a t u m 5  59878 28418 426851844 5 5 1 28 

Random Replacement Model with Neymann all. 
bh mean 

1706 1070 
3193 2343 
5657 4117 
11797 7709 
59878 28418 

s = 0.011 
stratum 1 
s tratum 2 
s tratum 3 
s tratum 4 
s tratum 5 

variance Nh 
116419 131 
159431 75 

, , ,  

410190 40 
2952313 33 

. . . . .  

426851844 5 

?~h f h n 
9 O.07 28 
5 0.07 28 

3 O:os 28 
6 0.18 28 

, ,  

5 1 28 

71 



NN~ 

NN!iN NNNi 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  <.-.~...,::~.~ , . , . ~ . ~ . . . ~  . . . . .  ,,.<.<...~.~ . . . . . .  ~ • ~.-, ........ e ~ . : , ~  ~ .~,,,.,. .... 

3000 

Lavallee 
and Hidiroglou with c=.037 

3500 4000 4500 

Distribution of the sample mean 

Multiplicative Model with C=1.04 

iiiiiiNt~i~NN!~ 

. . . . . . . . . . . . . . .  i l i ! i l N N N ~ N ~ i i i ~  NiiliN~!!iNliiN .......................... 

. 

3000 3500 

Distribution of the sample mean 

4000 4500 

Random Replacement Model with .011 Replacement 

Niii! ............................. 

N®NN~ 

iiNiiN~Ni~N NN!iNiN 

3000 3500 4000 

Distribution of the sample mean 

4 5 0 0  

Figure 2" Distribution of the stratified means for the population with 2 s t ra tum jumpers under the three 
sampling designs of Table 2. 
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