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1 I n t r o d u c t i o n  

Robust estimators for sampling have emerged over 
the last years. Design based (e.g. Searls 1966, 
Hidiroglou and Srinath 1981, Oehlert 1985, Fuller 
1991, Rivest 1993, Hulliger 1995), model assisted 
(e.g. Gwet and Rivest 1992) and model based (e.g. 
Chambers 1986, Chambers 1997) approaches to out- 
lier robust estimation have been explored. However, 
few practical applications of robust estimators are 
reported. The practical application may have been 
hindered by lacking software and by the computa- 
tional complexity of most of the estimators. Fur- 
thermore robust estimators need tuning constants 
to be chosen, are basically nonlinear and thus create 
problems when aggregating subpopulations. Out- 
liers are tied to variables rather than to units. Since 
in practical applications there may be hundreds of 
variables the proper application of robust estimators 
becomes cumbersome. Last but not least robust es- 
timators are difficult to explain to the users of statis- 
tical information. A more technical problem is that  
the classical robust estimators have to be adapted 
to cope with sampling and calibration weights. 

The ideal robust estimator for sampling would ful- 
fill the following objectives: 

1. Robustness: The reaction to outliers should be 
mild. 

2. Simple to implement (No iteration, at most one 
auxiliary variable) and simple to explain. 

3. One set of weights for all variables and subpop- 
ulations. 

4. Low variance. 

5. Low bias. 

In this article we first show how medians, win- 
sorized means and trimmed means may be adapted 
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to sampling weights. Then we discuss one-step 
W-estimators, which are approximations to M- 
estimators. The formulation of a one-step robus- 
tiffed ratio estimator contains as special cases a one- 
step robustified weighted mean and a one-step robus- 
tiffed Horvitz-Thompson estimator (HT-estimator). 
These one-step robustified estimators may be ex- 
pressed by weighted means. In other words the ro- 
bustness aspect may be expressed as an additional 
weight. A simple variance estimator for these one- 
step estimators is given. 

A strategy for the application of these estimators, 
covering the choice of tuning constants, the aggrega- 
tion of subpopulations and the extension to several 
variables, is discussed. 

2 E s t i m a t o r s  

Suppose we have a sample S from a population 
U = {1, . . .  , N}. Our variable of interest is yi, i C 
U. The characteristic to estimate is the popula- 
tion mean Yu = ~ u  y i /N.  A weight wi is attached 
to each observation in S. The weights reflect the 
inclusion probabilities of the sample design, non- 
response corrections and calibrations. We assume 
that  ~-~ies wi = N. 

2.1 W e i g h t e d  m e a n  

The weighted mean is 

T M =  
~ S  wiYi 

}-~'- s wi 

We suppose that  the weights are constructed in 
such a way that  under the sample design und under 
reasonable hypotheses on the non-response mech- 
anisms TM is approximately unbiased. If wi is 
the inverse of the inclusion probabilities 7ri then 
TM is a Hajek-estimator. We do not consider the 
pure Horvitz-Thompson estimator for the popula- 
tion mean because in practice it is seldom used. 

2.2 W e i g h t e d  m e d i a n  

A weighted median is calculated as follows: Or- 
der the observations Y(1) _< . . .  < Y(~)- Let w[q 
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be the weight of Y(i). The partial  sums of the 
weights of the ordered observations are defined as 
kj - -  E i = l J  w[i]/Ei=ln wi. In fact, kj is the est imate 
of the distribution function of y at the point y(j). 

Find the index jd  with 

j d -  min{j  • kj > 0.5}. 

The weighted median is 

TD -- med(yi, wi)  - -  Y ( j d ) "  

In fact this is the upper median and it may be 
improved for the est imation of the median. But  since 
we use the median only as an intermediate  step we 
stick with the upper median for simplicity. Note 
tha t  the weighted median may not be expressed as 
a simple weighted mean. 

2.3  W i n s o r i z a t i o n  

A weighted version of the winsorized mean is defined 
as follows. Choose c~ E [0, 0.5). Find the indices jl 
and j~ with 

jl -- m i n { j "  kj  >_ c~} 

j~ - m a x ( { j ' k j  < 1 - c ~ } , j z ) .  

The weighted winsorized mean is 

z...,V~S w[j]y(j) + 
j =j~ 

r w  -- 

\ 

j t  --1 n \ 

j = l  j = j , , ~ + l  

Winsorized means may not be expressed as weighted 
means with weights adding to 1. 

A very simple form of winsorization was proposed 
by Rivest (1993) for the use in sampling: Only 
the largest and smallest observations are winsorized. 
This simple form has the advantage tha t  the robus- 
tification effect tends to 0 for large sample size where 
bias becomes predominant  in the mean squared er- 
ror. 

2.4 T r i m m e d  m e a n s  

Trimmed means simply set the weight of observa- 
tions outside jl and j~ to zero, where jz and j~ are 
the same indices as for a winsorized mean. More 
formally 

1 i f c ~ _ < k j < l - c ~  
u[jl - 0 otherwise. 
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The weighted t r immed mean is 

T T  --~- 
E S  wiuiYi 

~ s  w iu i  

Trimmed means may have a larger bias than 
the corresponding winsorized means. On the other 
hand, the weighted t r immed mean may be expressed 
as a weighted mean. 

Again a simple version of the t r immed mean 
just  tr ims the smallest and largest observa- 
tion. A slightly more subtle variant tr ims t = 
max(int(logl0 n), 1) of the smallest and largest ob- 
servations. While still t / n  tends to zero with increas- 
ing n some more allowance for t r imming is made in 
large samples by this choice. 

2.5  U n i v a r i a t e  o n e - s t e p  e s t i m a t o r  

We need a s tar t ing value to make a step from it. 
Let To be a first es t imate of the population mean. 
To could be any of the above est imators (weighted 
mean, weighted median, weighted winsorized mean, 
weighted t r immed mean) but if we want robustness 
we may not use the weighted mean as a start ing 
value. We want to declare outliers those observa- 
tions which are far away from the initial est imate 
To. We therefore define a residual scale by 

- med(ly~ - rol ,  w~) /0 .67 .  

This est imator is weighted, thus est imating the 
residual scale in the population. It is the median 
absolute deviation MAD in case of equal weights 
and if To is the median. Again we use the upper 
median. The est imator  & could be replaced by, e.g. 
the interquarti le range. However, we stick to it for 
simplicity. 

Now we choose a tuning constant  c > 0, e.g. c = 5 
and define robustness weights 

1 if lY~ - r0l ~ c& 
ui - c a / l y i  - Tol if lY~ - T01 > ca 

Finally a univariate one-step est imator is defined 
as the weighted mean 

E S  wiuiYi 
Tos( ) - E s  

We denote a one-step est imator  with an index S for 
step. The weights ui correspond to the Huber-¢-  
function for M-estimators:  

Ui  - -  
Yi - To 



where %b(x) = min (max(x , - c&) , c&) .  We use this 
simple ~-function throughout  this article. The main 
reason is its simplicity. But  it also seems tha t  re- 
descending ~-functions downweight extreme obser- 
vations too much. 

The iteratively reweighted least squares algori thm 
for the calculation of M-est imators feeds back Tos 
into To and iterates until convergence. The one-step 
est imator Tos is the first robustification step in this 
algorithm. Here we don' t  want to i terate in order to 
keep the procedure simple. The start ing value To is 
impor tant  for the behaviour of Tos and the choice of 
the tuning constant  should be adapted  to To as well 
as to the distribution of y. If the distribution of y 
is skewed to the right Tz) is usually smaller than TT 
and the choice To = TD needs rather  large values of 
c, like c = 5 or even c = 10, while for To = TT values 
like c = 3 or c = 5 might be bet ter  suited. 

2.6 O n e - s t e p  r o b u s t i f i c a t i o n  of  t h e  H T -  
e s t i m a t o r  

Now we apply the idea of one-step robustification 
to the Horvi tz-Thompson est imator  (cf. (11) in Hul- 
liger 1995). Suppose a positive measure of size xi 
is known before sampling for the whole of the pop- 
ulation and is supposed positively correlated with 
impor tant  variables of the survey. Denote by xu+ 
the population total of xi. For a Horvi tz-Thompson 
s t ra tegy the weights wi are the inverse of inclu- 
sion probabilities 1/Tri with 7ri = nxi /xu+.  Thus 
wi = xu+/(nx i )  and, conversely, xi = xu+/(nwi) .  
(Note that  }-~s wi = N cannot be guaranteed here.) 
The Horvi tz-Thompson est imator  is 

1 

S 
wiyi. 

The model which inspires the HT-es t imator  is yi = 
flxi + Ei, with expectat ion of the error EEi  = 0 
and variance Var Ei = xicr 2 (cf. Hulliger 1995). Of 
course, the HT-es t imator  may be applied without  
any reference to this model. However the model 
assists in the development of the robustification. 
Thus the residual for the robustification of the HT- 
est imator proposed by the author (Hulliger 1995, 
Section 3.4) is 

- > - = > - 

v ~  v/Xu+ / (nwi ) 

Now we replace xi by xu+/(nwi)  and fl by 
NTo/xu+.  Thus we use NTo as our first est imate 
of Yu+. Here To is again an initial est imate of the 
population mean. We could use To = THT but we 

prefer TD or TT to obtain some robustness. Assum- 
ing for the moment  tha t  we still know xu+ we may 
calculate the empirical residual 

( T o )  - > - N T o  / 

v/Xu+/(nwi)  

For the robustification we need an est imate of 
the scale of the residuals cr or of cr Zv@-~-. We 
use the median of the absolute residuals 5 = 
med(Ir~(T0)l ,w~)/0.67. Let c be a tuning constant 
chosen by the statistician, e.g. c - 5. Construct  
robustness weights 

1 if Irk[ _< c& 
ui -- c&/lr~ I otherwise. 

As is easily seen ui does not depend on a common 
factor in ri. Therefore we may drop the factor 
in the denominator  Of ri. Thus,  in fact, xu+ needs 
not be known at the moment  of applying this esti- 
mator.  

Finally a one-step robustification of the HT- 
est imator is 

1 ~~s wiuiyi 
THTS = -~ }-~s u i /n  " 

The denominator  ~ s  u i /n  is itself interesting. It 
is the average robustness weight. It equals 1 if all 
observations have their full weight and drops below 
1 according to the degree of downweighting for ro- 
bustness. 

We may replace N by ~-~s m{. This corresponds 
to passing from the Horvi tz-Thompson est imator to 
the Hajek-est imator.  The resulting est imator is 

E S  WiuiYi 
THS -- E S  w{ E S  u i /n '  

2.7 O n e - s t e p  ratio e s t i m a t o r  

We have already introduced auxiliary informa- 
tion for the inclusion probabilities of the Horvitz- 
Thompson strategy. Now we suppose an auxiliary 
variable xi, xi > 0, i E U, is positively correlated 
with our variable of interest and tha t  the popula- 
tion mean 2u is known. In this si tuation the classic 
est imator for Yu is the ratio est imator  

TR --  2,U ~_,s wiy~ 
E S  WiXi 

For constant  weights wi - N / n  the ratio est imator is 
the best linear unbiased est imator  under the model 
y~ -- ~xi + Ei with Var Ei - xicr 2. 
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We construct  a one-step ratio est imator  as follows. 
Start  with a robust  estimate/3o of the slope, e.g. 

/~0 - -  ,~med  - -  m e d ( y i ,  wi)/med(xi, wi) 

We also might choose the weighted median of the 
slopes m e d ( y i / x i , w i )  as s tar t ing value. However, 
the weighted median of the slopes corresponds to the 
least-squares est imator  ~-]-s w i ( y i / x i )  which assumes 

2 a 2  In an underlying residual variance Var Ei - x i . 
practice the weighted median of slopes seems to 
downweight the observations with large xi too heav- 
ily and thus looses too much efficiency. 

We now est imate the s tandard  deviation of the 
residuals by the median of the absolute s tandard-  
ized residuals. The s tandardized residual is ri = 
ri (/30) - (yi - ~ 0 x i ) / x / ~ .  We standardize with 
1 / x / ~  to keep in line with the assumed underly- 
ing model Var Ei -- a2xi. The residual scale is esti- 
mated by the weighted median of the absolute resid- 
uals 5 - -  med([r~(/3o)l, w~). 

We define robustness weights 

1 if Iril < c5 

These weights ui robustify only against extreme 
residuals. Ext reme values of xi may still have un- 
due influence on the estimate.  In practice x~ is of- 
ten negatively correlated with w~ because the model 
Ey~ e( x~ is already taken into account in the sam- 
ple design. In tha t  case the influence of large xi is 
compensated by small weights wi. For generalized 
M-est imation of a ratio in sampling see, e.g. ,Gwet 
and Rivest 1992. 

Finally compute a robustness and sampling 
weighted est imate of slope 

~RS - -  EiE s WiUiYi 
EiES wiuixi 

The final es t imate for Yu is 

T e s  - ~v  ~Rs.  

2.8 S p e c i a l  cases ,  d o m a i n s  

If there is no useful auxiliary information we may set 
^ 

x i -  1, i E U. Then we get /~med - -  med(y{, w{) /1  - 
TD and ri(/30) - (Y i - -TD)  and therefore TRs  -- r ids .  
Thus the one-step ratio es t imator  reduces to the uni- 
variate one-step est imator  if there is no auxiliary in- 
formation to predict y{. 

If xi -- x u + / ( n w i )  we almost get back the 
one-step robustified HT-est imator .  In tha t  case 

E s  - E s  - E s  
and 

which is the same form as for the robusti- 
fled HT-es t imator  THTS.  The only difference 

^ 

to THTS is tha t  the s tar t ing value ~ m e d  - -  

m e d ( y i , w i ) ( n m e d ( w i ) ) / x u +  is slightly different 
from N T D / X U +  because N is est imated by 
nmed(wi ) .  Thus the robustness weights ui of this 
TRS and of THTS differ slightly. 

Because of its relative generality we may use the 
one-step ratio es t imator  for programming purposes. 
As with univariate one-step est imators TRS is the 
first step for the calculation of a M-est imator  with a 
Huber-~p-function. 

A set of robustifying weights may be fixed and 
used for robustification in domains. The correspond- 
ing ratio will usually be re-est imated by 

~d -- ESd WiUiYi 
ESd WiUiXi 

In order to use a ratio es t imator  the domain mean 
of x, i.e. 2u,, must  be known. A variance est imator 

may be built on the residuals ei - yi - ~ a z i .  The 
form of the variance est imator  (cf. Section 3) is the 
same as for the whole sample with the exception 
tha t  the sums extend over the sample in the domain 
only. However, such a variance est imator  does not 
est imate the variability induced by the random size 
of the domain in the strata.  

3 V a r i a n c e  e s t i m a t i o n  

The above est imator  ~RS -- ~-~S w i u i p i /  ~J~'~S w iu i x i  
can be wri t ten as a solution to an est imating equa- 
tion involving a residual ri( f l )  - ( y - f l x i ) / x / ~ .  We 
derive a variance es t imator  for the robustified one- 
step ratio es t imator  by using this implicit definition 
of the est imator  (cf. Binder 1983). The est imating 
equation is 

Xi 

S 

The solution to the equation with /3o - /3 is the 
M-est imator  with the Huber-¢-funct ion.  The fac- 
tor x i / x / ~  stems from the derivative of the residual 
ri(/3) - ( y i - / 3 x i ) / x / ~  in the minimisation prob- 
lem that  underlies the M-estimator.  It cancels with 
x / ~  in the denominator  of the s tandardized resid- 
ual. For the est imation of the variance we use the 
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unstandardized  error 
^ 

yi - ~ R s x i  x i  ^ 
ei = = y~ - / 3 R s x i .  

We treat  the robustness weight u~ : u i ( r i ( / 3o ) )  

as an observed variable, i.e. we neglect tha t  it de- 
pends on the es t imator  /30. We linearise the above 
est imating equat ion around ¢)Rs and obtain the vari- 
ance approximat ion 

i 

Var(C)Rs) = ( E S  w i u i x i )  2 
S 

To est imate  Var(~-~ s w i u i e i )  we may use the so- 
called "With-Replacement"  formula and arrive at 
the following variance es t imator  for T R s  -- 2 U ~ R S  

v ( T R s )  - -  (XU)2n d 2, (1) 

where d 2 : ( ~ - ~ s ( W i u i e i -  ~-~s w i u i e i / n ) 2 ) / (  n - 1). 
According to the es t imat ing equat ion ~-~s w i u i e i  = 

0, but  we include the mean of the residuals to have 
a general formula which applies also for combined 
ratio est imators.  We might  include a finite popu- 
lation correction ( 1 -  n / N )  with the known risk of 
underes t imat ing  the variance. For other variance 

3 0-2 the functions of the residuals, e.g. Va rE i  - x~ 
formulae may become more complicated. 

For the one-step robustified HT-es t imator  the un- 

s tandardized residual is ei = yi - N T H T S  / ( n w i  ). 

The variance es t imator  becomes 

1 n ~ s ( W i u i e i )  2 
V ( T H T s )  -- N 2  n - 1 (~-~s u i / n )  2 

If we know the joint  inclusion probabilit ies we 
may use the Yates-Grundy-Sen or the Horvitz- 
Thompson  variance es t imator  instead of the "With- 
Replacement"  formula. 

For the one-step robustified weighted mean we get 

= 

n -  1 ( E s  w i u i )  2 ' 

where e~ = yi - T o s .  

In stratified sampling with H s t ra ta  we might ro- 
bustify the s t r a tum mean or ratio es t imator  for each 
s t r a tum separately. Then  the variance of the corre- 
sponding one-step robustified es t imator  may be esti- 
mated  per s t r a tum and combined to an overall vari- 
ance es t imator  in the usual way. Since the biases 
due to the separate  robustification may accumulate  
across the s t ra ta  we prefer to robustify the stratified 
mean for all s t ra ta  together  or the combined ratio 

est imator.  Only if the model  of a common ratio for 
all s t ra ta  is clearly not adequa te  we would consider 
the separate  ratio est imator .  As a variance estima- 
tor for the one-step robustified stratified mean we 
propose 

H 
1 

h = l  

where d2h -- E s , ,  ( w i u i e i  - Es,,. w i u i e i / n h ) 2 / ( n h  -- 

1). The  variance of the one-step robustified com- 
bined ratio es t imator  may be es t imated by 

H 

 (Tc s) - (Es 
h = l  

where d~ is as above, but  with the residual corre- 
sponding to T c R s .  

4 R e f e r e n c e  f o r  r o b u s t i f i c a t i o n  

Two problems arise when one applies the above es- 
t imators  to a sample. We have to choose a part i t ion 
of the popula t ion  or sample on which we want to 
robustify. And we have to choose the variable or the 
set of variables which should be considered. 

4.1 S u b p o p u l a t i o n  l eve l  

An outlier may be masked by other  extreme obser- 

vations in the popula t ion  and appear  as an outlier 
only in a certain subpopulat ion.  For example, a 
large retail t rader  may look quite innocent in the 
whole populat ion.  But  when looking at retail t rade 
alone it may clearly stick out as an outlier. This 
phenomenon may happen  at any level. 

On the other  hand  an observation may appear  in- 
nocent  in a subpopula t ion  because the variability is 
large and the subpopula t ion  may have a ra ther  flat 
distribution. But  looking at the whole populat ion 
the variance may be much lower and the bulk of the 
da ta  may be much more concentrated.  Therefore an 
observation which looks innocent  in a subpopula t ion 
may appear  as an outlier in the whole population.  

If we can decide for a reasonable level of subpop- 
ulations tha t  form a par t i t ion of the populat ion (a 
poststrat i f icat ion) then we may apply the robustifi- 
cation at tha t  level and derive results for aggregates 
by summat ion .  The  level of subpopula t ions  should 
allow for a large enough subsamples to es t imate  vari- 
ances well. For example we may use economic activ- 
ity in sectors defined by a classification of economic 
activity (like NACE at two digits). We should check 
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whether  global outliers are hidden in the subpopu- 
lations. A relatively large variance est imate for a 
subpopulat ion may give a hint. 

Maybe even more impor tant  for the choice of 
the part i t ion is whether  there are models that  
fit the part i t ions well. The problem is tha t  
outlier-robustification is rather  model-dependent  
than model-assisted. It is not possible to speak of 
outliers without  a model for the non-outlying obser- 
vations and if the model does not fit well at least the 
majori ty  of the da ta  the loss of efficiency due to the 
robustification is large. 

The advantage of fixing a level of robustification 
is, tha t  there is one weight for all units in the sample. 
Totals for aggregates of subpopulat ions may be cal- 
culated by summation.  However, if we analyse sub- 
populations below the chosen robustification level we 
may encounter problems with "new" outliers. One 
may argue tha t  these "new" outliers in domains are 
representative for the whole sample and should not 
be downweighted. A careful analysis may still sug- 
gest that  a new robustification on the domain level 
is necessary. This may lead to different robustness 
weights and thus to domain est imates which do not 
aggregate to the corresponding est imates on higher 
levels of the population. 

4.2 V a r i a b l e s  

The outlier problem is mainly tied to variables and 
not to units. The robustness weights u~ depend on 
the variable yi considered. Since most surveys have 
multiple variables the outlier problem is genuinely 
multivariate. However, it seems rather  difficult to 
convince practi t ioners to use multivariate est imation 
methods or to use a specific weight for each variable. 
How can we proceed without  going directly to mul- 
t ivariate robustification? 

A first proposal is to derive a set of robustifica- 

tion weights ~I 1), . . .  , ul k) for the set of variables 
(1) y}k) 

Yi , ' . ' ,  under consideration. In practice one 
will often be able to concentrate on a few key vari- 
ables such tha t  the number  of weights to calculate 
is low. Our proposal is then to use the minimum of 
the weights per unit as the final weight: 

u~ min(u} 1) (k) - -  ~ ' ' "  ~ t  i ). 

This ensures robustness. However we must check 
with the average robustness weight 1 = ~ s  ui/n or 
alternatively with the weighted average robustness 
weight 1 = ~ s  wiui how much weight is lost. Of- 
ten outliers in one variable turn  out to be outliers 
in other variables, too. Therefore u~ may not have 
a much smaller average robustness weight than any 

(k) If the average robustness weight of u~ of the ui . 
is too small no simple solution exists and we will 
have to use multivariate robustification. Of course 
the variance of the final es t imator  should be used as 
a guideline, too. However, the bias which should be 
considered as a counterweight to variance, is basi- 
cally unknown. 

Once the weight is chosen on the basis of a set of 
key variables we have to test whether  the robustness 
is sufficient for other variables. Strictly speaking 
there is no guarantee at all. 

5 V a l i d a t i o n  

In practice the big problem is to judge whether 
a robust est imator  is actually less biased than a 
non-robust but approximately unbiased estimator. 
One aspect of the question is tha t  so-called non- 
representative outliers (cf. Chambers  1986) should 
not be included in the estimand. Since we seldom 
know for sure, whether  an outlier at hand is repre- 
sentative or not, the robustification may in principle 
as well lessen or enlarge a possible bias. 

The results will always go through a final vali- 
dation of the results by subject  mat te r  statisticians 
who know the field of application very well. They 
may compare the results over time and with other 
statistical and non-statist ical  informations. From a 
methodology point of view this external validation 
is not totally satisfactory but nevertheless it is very 
important .  

There is another way to judge the validity of the 
approach, in part icular  whether  the choice of the 
tuning constant  c in the esimators is reasonable. Our 
proposal is to submit  the observations with robust- 
ness weights ui < 1 to the editors of the survey. 
They may classify these observations as "no out- 
lier", "possible outlier", "clear outlier". In fact this 
judgement  could be routinely given in the edit and 
imputat ion phase. But  often the focus of edit and 
imputat ion is more on consistency than on outlying- 
ness. To reduce the burden of the editors for the 
validation one could submit  only a subsample of the 
outliers to their judgement .  The aim of the proce- 
dure is not to "correct" outliers but simply to tune 
the robustification. It has the further advantage to 
give the practi t ioners a feeling for the robustification 
and helps to build t rust  in the estimators.  Note that  
if all possible and clear outliers were edited out in the 
edit phase of a survey, there might be no work left 
for robust estimators.  Knowing the high costs and 
long time-delays due to editing, a more balanced in- 
tegration of robust est imators  and editing may save 
cost and time. 
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Of course various values of the tuning constant 
should be tested. The est imate and its variance 
could be plotted against the tuning constant and 
often a region can be defined where the choice of the 
tuning constant  is not too sensitive. Hulliger 1995 
proposes an adaptive choice of the tuning constant 
such tha t  an est imate of the mean squared error is 
minimized. 

6 Sampling weights 

The weights wi may contain outliers, too. Look- 
ing at the ratio between the maximal  and minimal 
weight w(~)/w(1) one gets a first impression of the 
spread of the weights. Further measures may be de- 
rived from the Lorenz-Curve of the weights. 

The inclusion probabilities of a sample design can 
and should be checked for outliers before the sample 
design is chosen. Thus from the sample design no 
outlying weights should emerge. But  non-response 
corrections and calibrations may lead to quite ex- 
t reme weights and good methods to ensure tha t  no 
outlying weights are introduced by these corrections 
still have to be developed. In the mean time a sim- 
ple winsorization of extreme weights is often used in 
practice (Hulliger et al. 1997). 

In practice the choice of calibration constraints 
and methods to correct for non-response often take 
into account preliminary estimations which involve 
variables tha t  possibly contain outliers. Thus out- 
liers may influence the sampling weights. One has 
to s tar t  with a first choice for the sampling weights 
and develop robustness weights. Then one should 
check whether  the sampling weights combined with 
the robustness weights are sufficiently close to cal- 
ibration constraints and yield results which do not 
throw doubts on the sampling weights again. 

7 Examples 

7.1 S i m u l a t i o n  w i t h  h o u s i n g  rent  data  

Data  on four room appar tments  from the 1990 cen- 
sus of Switzerland was used to check the est imators 
with simulations. The sample design is stratified ac- 
cording to economic age of the appar tment  and uses 
simple random sampling inside strata.  The sample 
design mimicks the one of the quarterly survey on 
housing rents and uses the net sample size n = 1662 
of this survey. The differences in net sampling frac- 
tions were mainly due to nonresponse. Therefore 
the weights are not too different (cf. Table 1). In 
addition to the whole population of four room ap- 
par tments  a domain of four room appar tments  of 

somewhat  higher standing was considered. 

The characteristic of interest is the population 
mean of net monthly housing rent: CHF 945.08 for 
the whole of the population, CHF 965.41 for the do- 
main. The populat ion contains several observations 
which could be considered outliers, but we include 
them fully in the estimand. An auxiliary variable, 
surface, is used in the simulations to construct ratio 
estimators.  

The est imators  used are the stratified mean 
(sine), a univariate one-step est imator  from the log- 
t r immed mean (ts) and a one-step ratio est imator 
(rs). For both robust est imators  the tuning constant 
was set to c = 3. The three est imators were used for 
the domain mean, too (smed,tsd,rsd).  For the ro- 
bust est imators the robustness weights produced by 
the est imator  on the level of the population were 
used at the domain mean, too. The variance esti- 
mator  (1) was used throughout ,  though clearly it is 
not the best for the stratified mean. The results for 
a simulation of 800 random samples are shown in 
Table 2. 

The robust est imators  are more efficient in vari- 
ance than the stratified mean as well for the whole 
population as for the domain. However, due to their 
bias, the robust est imators  have larger root mean 
squared error than the stratified mean. We com- 
pare the Monte Carlo mean of the variance estima- 
tor (mc.meanvar) with the Monte Carlo variance of 
the estimator.  The variance est imators for the ro- 
bust est imators underest imate,  namely 9% and 8% 
for the whole population, 15% and 12% for the do- 
main. The variance es t imator  for the stratified mean 
seems to be approximately unbiased for the whole 
population but underest imates  for the domain. The 
variability of the variance est imator  (mc.varvar) is 
much larger for the stratified mean than for the ro- 
bust estimators.  This is due to very few exceptional 
samples with outlying variance estimates. 

The Monte Carlo mean of the average robustness 
weight was 99.75% for the TS-es t imator  and 99.37% 
for the one-step ratio est imator.  The Monte Carlo 
variation of these values was very low. 

To see the effect of the sample size the same set 
of simulation was run for sample size n = 554, i.e. 
three times smaller and just  large enough to avoid 
problems with empty  domains for some strata.  The 
bias of the robust est imators  is less than half of the 
s tandard  deviation for the populat ion mean but still 
the robust est imators  have larger mean squared er- 
ror than the stratified mean. On the level of the 
domain, the bias is of the order of 20% of the stan- 
dard deviation and the mean squared error of the 
robust est imators  is smaller than  for the stratified 

60 



Table 1' Population and sample sizes for simulations with housing rents 

Age 0-5 6-10 11-20 21 + all 
population 28761 34364 72259 263769 
sample 167 210 400 885 
weight 172 164 181 298 
domain-pop. 4361 3952 9400 46430 
expected domain-sample 29.8 27.3 59.8 189.1 

399153 
1662 

64143 
306 

Table 2" Simulations with housing rents 

Sample size n -  1662 
sme ts rs smed tsd rsd 

mc.mean 945.19 939.37 935.72 967.73 959.5 953.57 
mc.var 115.11 85.76 8.7.28 885.16 756..09 6.63.17 
mc.rmse 10.73 10.88 13.23 29.84 28.13 28.35 
mc.meanvar 115.77 82.31 80.69 825.33 663.27 638.75 
mc.varvar 61393.55 31.96 22.68 147973.7 10810.35 7926.1 
Sample size n -  554 
mc.mean 945.29 939.63 936.40 966.77 959.37 953.29 
mc.var 293.07 263.75 259.73 2747.82 2407.36 2176.93 
mc.rmse 17.12 17.13 18.31 52.44 49.43 48.21 
mc.meanvar 295.94 246.9 240.52 2351.1 1975.25 1889.17 
mc.varvar 17285.8 853.93 601.7 2568819.01 272031.02 187387.93 

Table 3: Domain estimates for one sample 

ts usd drs ursd 
T 953.00 952.94 962.87 955.00 
SD(T) 26.45 26.44 26.78 25.83 

mean. The variance estimator for the univariate one- 
step estimator again underestimates by 10% (popu- 
lation) and 24% (domain), the variance estimator 
for the one-step ratio estimator understimates by 
2% (population) and 21% (domain). It seems that 
the asymptotic approximation behind the variance 
estimator does not hold too well for subsamples of 
size 106 as is the case for the domain. Again the 
variance estimator for the stratified mean has much 
larger variability than for the robust estimators. 

Applying the robust estimators on the level of the 
domain directly for one of the samples, we obtain the 
results in Table 3. We compare the robustification 
on the level of the domain (ts and drs) with the 
estimators that  use the population level robustness 
weights (usd and ursd). The univariate estimates 
agree closely while the ratio estimates differ by 7.87, 
some 30% of the standard deviation. 

It seems that  the weights developed on the level of 
the whole sample may serve for the robustification 

of subdomains. Though, of course, in certain cases 
there are considerable differences. 

7.2 P r o d u c t i o n  S u r v e y  

The estimators were applied to preliminary data of 
the Production Survey 1997. One class of economic 
activity at two digit level of NACE was chosen to il- 
lustrate the methods. However, in the practical ap- 
plication finer partitions were used if a subclass was 
poorly fitted by the common ratio and, as a con- 
sequence, downweighted all together. The sample 
design is stratified according to size (3 strata) with 
heavy oversampling of the largest enterprises. For 
this example the s t ra tum fo the largest enterprises 
was subsampled and some s t ra tum jumpers were 
lumped into the corresponding size class. There- 
fore the results of this example cannot be compared 
with the official figures. The sample sizes n and pop- 
ulation sizes N of the 3 strata are shown in Table 
4. The weights were derived from sampling weights 
with some non-response correction added. The val- 
ues of the weights range from 2.7 to 189.5. 

The variables of interest are production (prod), 
intermediate consumption (icons) and labour force 
costs (lfcost). The auxiliary variable is number 
of full time equivalent jobs. The estimators were 
the stratified mean (sine), the log-trimmed mean 
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Table 5: Production survey: estimates 

sme ltrim ds ts cr rs rm 
large c 0 0 40 20 0 20 20 

prod T 2009.54 1973.27 1811.35 1907.29 2009.54 1984.19 1982.67 
prod SD(T) 97.45 88.39 75.67 80.72 62.33 57.32 57.18 
prod ~s 0 99.03 96.4 98.8 0 99.56 99.52 

moderate c 0 0 20 10 0 10 10 
prod T 2009.54 1973.27 
prod SD(T) 97.45 88.39 
prod gs  0 99.03 

1663.85 
73 02 
89 27 

1805.33 2009.54 1953.87 1946.00 
75.75 62.33 48.46 47.48 
96.22 0 98.2 97.73 

icons T 956.28 932.51 
icons SD(T) 56.13 50.84 
icons ~2s 0 99.03 

780 37 
42 92 
90 45 

841.36 956.28 915.16 907.81 
43.92 48.03 38.46 37.61 
96.13 0 98.26 97.79 

lfcost T 898.11 881.94 
lfcost SD(T) 43.71 39.19 
lfcost ~s 0 99.03 

756 09 
33 24 
90.04 

817.63 898.11 894.02 894.65 
34.45 16.63 15.32 15.47 
96.64 0 99.72 99.79 

Table 4: Production survey: sizes 

St ra tum small medium large Total 
N 19287 2122 1021 22430 
n 102 20 291 413 

(ltrim), a one-step robustified univariate estimator 
with the weighted median as starting value (ds) and 
with starting value ltrim (ts), the combined ratio es- 
t imator (cr), a one-step robustified ratio estimator 
(rs) and a fully iterated M-estimator (rm). 

We first tried out some constants to see how much 
robustification might be suitable (see Table 5). In 
fact we plotted the function of the difference of the 
estimator to the stratified mean and the standard de- 
viation of the estimator versus the tuning constant. 
A tuning constant that  yields roughly a difference 
of half the standard deviation seemed to work quit 
well. The average robustness weights shown in the 
tables indicate that  for these data  rather large tun- 
ing constants might be suitable. For the variables 
prod and icons c -  15 might do well .  The v a r i a b l e  
lfcos has somewhat less outliers and c - 10 might be 
more appropriate. 

The difference between the one-step ratio estima- 
tor and the fully iterated M-estimator is small com- 
pared with the difference to the ratio estimator. 

We took the minimum of the individual robust- 
ness weights ui for the three variables prod, icons, 
lfcost from the one-step ratio estimator with tuning 
constants 15, 15 and 10 respectively and recalculated 
the robustness weighted estimators for the variables 
with this common weight (see Table 6). The average 
robustness weight of the common weight is 99.74%, 

Table 6: Common vs. individual weights 

prod icons lfcost 
common weight 

T 1970.84 925.30 892.50 
SD(T) 52.25 40.02 15.37 

individual weights 
c 15 15 10 
T 1974.11 931.41 894.02 
SD(T) 53.53 42.54 15.32 

very close to the average robust weights for the indi- 
vidual variables. The correlation of the robustness 
weights ul k) is very high. The estimates with the 
common weight are slightly lower than with individ- 
ual weights.  For prod and icons also the standard 
deviation is lower than with individual weights. 

8 C o n c l u s i o n  
. . 

. .  . - . . .  . . . .  . 

One-step estimators are relat ively simple to imple' 
ment, to explain :and to handle. The resul t  of the 
robustification is an  additional robustness weight. 
One-step ratio estimators give a suitable unified 
framework for many practical situations including 
Horvitz-Thompson estimators. External validation 
and checks by the editors of a survey can help to 
choose an appropriate tuning constant. For uni- 
variate estimators and skew distributions a tr immed 
mean seems to be better suited as starting value than 
the weighted median. The choice of an appropri- 
ate subpopulation level and the combination of ro- 
bustness weights for different variables needs careful 

62 



analysis. In the two examples presented these prob- 
lems were not too severe. The proposed variance 
estimators are only slightly more complicated than 
for the classical estimators. They tend to underesti- 
mate the true variance moderately. The application 
of the robustness weights to domains is possible but 
again needs careful analysis. 
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