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1. Introduct ion 

There are two basic requirements in rotation sam- 
pling" all rotation groups are included in any given 
time period, and there are some sample units over- 
lapping and other units are systematically replaced, 
either completely or partially, in successive time pe- 
riods, according to rules of rotation. Rotation is 
used to avoid undue reporting burden expected from 
survey respondents and to obtain the information of 
changes from overlapping units. In semi one-level ro- 
tat ion design, sample units in a rotation group drops 
out from sample and then return to that  sample later 
time. 

In this paper, we present some formal rules for 
semi one-level rotation design. In this design, each 
pr imary sampling unit(psu) is divided into rotation 
groups in such a way rotation groups are homoge- 
neous within psu. Each of rotation groups includes a 
number of clusters. These clusters are the final sam- 
pling units. The clusters within the rotation group 
are rotated. For instance, in U.S. Current Popula- 
tion Survey(CPS) there are 8 rotation groups in a 
psu, and each rotation group includes clusters, and 
each cluster consists of four households. A sample 
cluster in each of 8 rotation groups stays in the sam- 
ple for four months, leave the sample for the next 
eight months. Then the same cluster returns to the 
sample for the following four months. We call it 4- 
8-4 design. From now on, we will use month for the 
time period. 

In Section 2, we present some formal rules regu- 
lating the number of months for certain clusters to 
stay, leave, or return again to the sample. In order to 
satisfy the basic requirements, three necessary rules 
are proposed in this section. In Section 3, based on 
these formal rules in Section 2, we present algorithms 
and overlapping rules by which rotation groups are 
allocated. In Section 4, we show new designs of rota- 
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tion sampling, and obtain the variances and optimal 
coefficients of the Generalized Composite Estima- 
tors(GCE) for each design. We also investigate the 
efficiency of the GCE of new design over GCE of the 
usual 4-8-4 design. 

@ G e n e r a l i z e d  s e m i  O n e - L e v e l  R o t a -  

t i o n  D e s i g n  

The generalized semi one-level rotation sampling de- 
m-1 is defined as follows: sign expressed as r ~ -  r 2 

Some of clusters in each rotation group are inter- 
viewed for consecutive rl  months, drop out for the 
next r2 succeeding months, and return to the sam- 
ple for another rl months. This process is repeated 
m times before the cluster drops out of the sample. 
For example 4 -  8 -  4 design can be expressed by 
42_81"  

We assume the followings for the generalized semi 
one-level rotation design • 

(1) The sample size is the same for all survey 
month. 

(2) The overlapping percentage between month t 
and month t + l, depends on only time lag 1. 

The CPS satisfies these assumptions. However, 
4 2 -  81 design uses only one cluster as a sample in 
each of 8 rotation groups, and estimates only year- 
to year change since no overlapping occurs between 
months t and t +  12k for k > 2. We now are free from 
such restrictions in r ~ -  r ~ - 1  design by allowing one 
or more clusters as a sample and overlapping to oc- 
cur 2 or more years later to estimate changes. We 
investigate the relationship among rl ,  r2, m, and the 
number of rotation groups satisfying these assump- 
tions. 
When rl  - 0 or m - 0, this implies no sample. And 
r~ n - - r~  n-1 is a fixed sample design when r2 - 0 

m - - 1  or m -  1. Therefore, we only consider r~  - r  2 
rotation design for rl  ~ 1, r2 ~ 1, and m _ 2. 

T h e o r e m  1. Suppose that for rl  ~_ 1, r2 ~_ 1, and 
m-1 design satisfies the assump- m > 2, r r ~ - r 2  

tions (1) and ( 2 ) ,  and has at most k years over- 
lapping(i.e, the overlapping between months t and 
t-t- 12k). Then 
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(a) For all survey months, the number of sample 
clusters appearing in the sample for the first 
time, 2nd t ime , . . . ,  and mr i  th time are all the 
same° 

(b) For each k - 1 , 2 , . . . ,  l -  1 , 2 , . . . ,  such that 
r2 - lrl < 12k, m, rl,  and r2 are determined 
with the constraint 1 2 k -  rl  -}- 1 < ( m -  1)(r~ + 
r2) < 12k+ 1 2 -  r l  except for the cases o fr l  and 
r2 satisfying 1 2 k -  r2 - 1 < (rn~ - 1)(rl + r2) < 
12k-r l - t -1  where r n ; -  {rn*; ( m * - l ) ( r l + r 2 )  < 
12k _ m*(ra + r2), m* - 1, 2 , . . . ,  m}. 

(c) The necessary number of rotation groups is 
m r l ,  unchanged in time and all rotation groups 
are included in the sample for any survey month 
if  the sample clusters in a rotation group are ro- 
tated in and out simultaneously. 

Proof. (a) By the definition of r~  - r ~  -1 design, 
since the sample clusters can be interviewed for 
the maximum of mr1 months, we can part i t ion the 
sample clusters into rn r l  individual subsets by the 
number of appearance in the sample at any survey 
month.  Define gt - -  { g t , i , j ,  1 <_ i <_ m, 1 <_ j <_ r l }  
where  gt , i , j  is a subset of clusters which appear in 
the sample ( i -  1)rl + j times at a survey month 
t, t - 1, 2, . . . .  Assume that  the size of gt,i,j, the 
number of clusters in g t , i , j ,  n t , i , j .  Consider two sets 
of ~t and ~t+l.  The followings can be shown easily 
by the definition of r~  - r ~ - i  design " 
(i) For each J1 - 1 , 2 , . . . ,  r l -  1, only { g t , i , j }  and 
{gt+l,i,j}, 1 <_ i <_ rn, 1 <_ j <_ r i -  J1 return to the 
sample at month  t + J1 and t + 1 + J1, respectively. 
Here define J i -  0 when r i -  1. 
(ii) For each I - 1,2, o . o , m -  1 and J2 - r l -  
1, r l -  2 , . . . ,  0, only {gt,i,j} and {gt+i,i,j}, 1 <_ i <_ 
I, J2 + 1 <__ j _< rl  come back to the sample at month 
t + ( m - I ) ( r l + r 2 ) - J 2  and t + l + ( m - I ) ( r a + r 2 ) - J 2 ,  
respectively. 
(iii) For each I - 1 , 2 , . . . , m -  1 and J3 - 
1, 2 , . . .  ~ r l -  1, only {gt,i,j} and {gt+i,i,j}, 1 <_ i <_ 
I, 1 _ j _< r l -  J3 return to the sample at month  
t + ( m - I ) ( r i + r 2 ) + J 3  and t + l - 4 - ( m - I ) ( r l  +r2)+g3, 
respectively. Define J3 - 0 when r l  - 0. 
Therefore, the overlapping proport ion between two 
m o n t h s t a n d t + J l ~ a n d  t + l  a n d t + J l + l a r e  

m ~-~,  2F=~ ~*-~ ~j=l nt+l,,,j 52,=1 E~=I ~'"'~ and (1) 
~_,,,j nt,,,: ~_~,,j nt+l,i,j 

respectively, for each J1; the overlapping proportion 
between t and t + (m - I ) ( r i  + r2) - J2, and t + 1 
and t + ( m -  I ) ( r i  -t- r 2 ) -  J2 + 1 are 

E :  , E ~ -,  ,,j E.'.=, E "x 
'= J=J~+~ ' and j=j~+~ -,+x,,,j Ei , jn t , i , j  Et , jnt+l , i ,J  (2) 

respectively, for each I and J2; the overlapping pro- 
portion between t and t + ( m -  I ) ( r l  + r2) + J3, and 
t + 1 and t + (m - I ) ( r l  A- r2) + J3 -4- 1 are 

E C_ rl -- J3 

(3) E~=I ~,,,J and E~=~ ~x- :~  
~ t , j  nt,t,j ~ t , j  nt+i,t,j 

respectively, for each I and J3. Since ~-~i,j nt,i,j --  

~i , j n t+ l , i , j  and the overlapping percentage de- 
pends on only time lag by the assumptions (1) and 
(2), recursively solving (3) from J3 - -  r l -  1 to 1 for 
each I, we have 

nt,i,j - -  nt+l,i,j, 1 < i < m -- 1, 1 < j < r l  -- 1. 
(4) 

Similarly, from (2) with together (4), we have 

nt,i,rl -n t+l , i , r~ ,  1 _ i < m -  1. (5) 

Finally, the equation (1) with (4) and (5) 

n t , m , j  - - n t + l , m , j  1 < j < r l -  1. (6) 

(4)-(6) and ~ i , j  n t , i , j - 1 -  ~-~i,j n t + l , i , j  yield 

nt,i,j --  nt+l,i,j for all i, j. (7) 

Note that  since gt,i,j-1 --  gt+l,i,j, 1 < i < m- -1 ,  2 < 
j < r l ,  we have 

n t , i , j - 1  - - n t + l , i , j ,  1 < i < m -  1, 2 < j < r 1 (8 )  

These (7) and (8) show that  nt,i,j's and n t + l , i , j ' s  are 
all the same. Since this is true for any two consecu- 
tive survey months, the claim holds. 

(b)  Suppose that  the sample clusters in a rotat ion 
group are off for r2 months.  Then, during these r2 
months,  the clusters will be replaced by new clusters 
and the new clusters remaining in the sample for 
r l  successive months.  If such replacement happens 
1 times, 1 - 1, 2 , . . . ,  during these r2 months,  we 
have r2 - lrl since each replaced clusters have to be 
surveyed for exactly r i  successive months.  
In order to get an estimate of change between month  
t and t + 12k, t - 1, 2 , . . . ,  we need to overlapping 
over k years. Whether  or not the overlapping occurs 
depends on m, rl ,  and k. From ( i i ) i n  (a), after 
month  t + r l  - 1, {gt,i,rl, gt,2,rl,"" , gt,m,~} in ~t 
appears to the sample at month t + r2 + 1 for the 
first time. This implies that  r2 < 12k since no k 
years overlapping occurs when r2 >__ 12k. From (iii) 
in (a), the last appearance of Gt occurs at month  
t + mr1 + (m - 1)r2 - 1. Hence, when mrl  + (m - 
1)r2 - 1 < 12k we have no overlapping for k years. 
If mr1 + ( m -  1)r2 - 1 > 12k + 12, then we may have 
overlapping for ( k + l )  years. This gives 1 2 k - r l + l  _ 
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( m -  1)(rl + r2)~ 12k + 1 2 -  r 1. 
The clusters only in { g t , l , 1 , "  " " ,  gt,m-m~+l,1} return 
to the sample at month  t + (m~ - 1)(ri  + r 2 ) +  r l -  1, 
and all clusters in Gt do not return to the sample 
from the month  t + (m;  - 1)(rl  + r 2 ) +  r l  to the 
month  t + m~)(rl + r 2 ) -  r l  by (iii) in (a). And then 
only girl,  g 2 r l , " " ,  g m - r n ~ , r l  appear to the sample 
at month  t + m ~ ( r l + r 2 ) - r l +  1. Therefore, by 
the definition of m~, there is no overlapping between 
month  t and t + 1 2 k  when ( m ; - 1 ) ( r l + r 2 ) + r l - 1  < 
12k and mT)(rl + r2) - rl  + 1 > 12k. 

(c) Since nt,i,j for 1 _< i <__ m, 1 <__ j ~_ rl  and 
t - 1, 2 . . . .  are all the same by (a), let nt,i,j - -  n c .  

This nc is greater than 0 because nc - 0 means 
• t* -- t t +  l, be the no sample. Define Rt ,i,j, , . . .  

rotat ion group which contains g t* , i , j  a s  the sam- 
ple clusters appearing in the sample at month  t* 
for the ( i -  1)rl + j times. Thus for the initial 
t* -- t, we have mr1 rotat ion groups, Rt,i,j, 1 ~_ i ~_ 
rn, 1 < j <_ r l in which each Rt,i,j contains gt,i,j. 
Since the sample clusters in a rotat ion group are 
rotated in and out simultaneously, and the sample 
clusters are rotated within the same rotat ion group, 
for t* _> t + 1 affiliate gt*+l,l,1 to the rotat ion group 
Rt*,m,rl and gt*+l,i,j+l to the rotat ion group Rt. , i , j  
for 1 <_ i < m -  1, 1 < j < r l -  1. For the re- 
maining gt .+l , i+l , l ,1  <_ i <_ m -  1, each clusters 
gt.+l,i+l,1 are a t tached only one of m -  1 rotat ion 
groups, {Rt.,i,~l, 1 < i _ m -  1}. This affiliation 
rule guarantees that  the number  of rotat ion groups 
is mr1 and invariant in t ime because nc > 1, and sat- 
isfies the basic requirement that  all rotat ion groups 
are included in any given t ime period given in Sec- 
tion 1. Now, suppose that  the number of rotation 
groups is less that  mr1. Then at least one rota- 
tion group contains more than one gt,i,j at month 
t. Since different gt,i,j~s have different rotat ion pat- 
terns, the sample clusters in the rotat ion group con- 
taining more than one gt,i,j can not be rotated in 
and out simultaneously. This complete the proof. 

E] 

Although the t ime period is month  in Theorem 1, 
it could be a quarter  or a half  year. Then, simply, 
change 12k and 12 in (b) into 4k and 4 for a quarterly 
data,  and 6k and 6 for a semiannual data.  

E x a m p l e  1. The following examples are only for 
(b). Consider 33-62 When k - 1. Since r l  - -  3 ,  r 2  - -  

6, m -  3 and 1 - 2, 3 3 -  62 satisfies r2 - lrl < 12k 
and 1 2 k -  r l  + 1 4_ ( m -  1)(ri  + r2) < 12k + 1 2 -  rio 
Observe m~) - 2. It is easy tha t  3 3 -  62 satisfies the 
exception case of 1 2 k -  r i -  1 < (m~ - 1)(ri  W r2) < 
1 2 k - r l  + 1. Thus, 3 3 -  62 design can not be a 
member  of our r~ n - r ~  n - i  designs. However, one can 

easily check tha t  5 2 -  101 design satisfies (b). From 
(b), one can also obtain 31 rotat ion designs when 
k = 1 such as 14-53 ,  26-25 ,  32-91 ,  42 -81 ,  52-101,  

and 8 2 -  81 etc. There are 51 designs for k = 2, 57 
designs for k - 3,73 designs for k - 4 and 82 designs 
for k = 5. 

0 A n  A l g o r i t h m  h o w  t o  a l l o c a t e  r o -  

t a t i o n  g r o u p s  

The algori thm in this section comes form the affili- 
ation rule in the proof (c) of Theorem 1. More pre- 
cisely the algori thm is a rule by which we determine 
Rt,i,j and Rt.,i , j ,  t* >_ t + 1, 1 < i < m, 1 < j < r l  

systematically to satisfy two assumptions (1) and 
(2), and the properties of Theorem 1. Since once 
Rt,i,j 's are determined, Rt. , i , j 's  are straightforward 
as discussed in the proof (a) of Theorem l, call 
{Rt,i,j,  1 < i < m, 1 < j < r l )  to be the first sam- 
ple. To develop the algorithm, let us identify mr1 
rotat ion groups by numbers 1, 2 , . . .  , mrl ,  and define 
the a t h  panel, P~, to be the set of a t h  clusters in 
each of mr1 groups. To denote that  which clusters 
come from which rotat ion group, we use the rota- 
tion group numbers 1 , 2 , . . . , m r 1  in the P~. Tha t  
is, P ~ -  { 1 , 2 , . . . ,  mr1}. 
Before developing the algori thm consisting 6 steps, 
take an example for easy understanding of the al- 
gor i thm and the reason why we need P~. Figure 1 
illustrates 2 4 -  23 design. Since m -  4 and r l  - -  2 ,  

we have 8 rotat ion groups and P o -  ( 1 , 2 , - . . ,  8). 
As seen in Figure 1, the first sample(Jan,  of Year 
1 ; Rt,i,j~s) consists of group numbers 1, 2, 5 and 6 
in the panel P1, and 3, 4, 7 and 8 in the panel P2. 
The second sample(Feb, of Year 1 ; Rt+l,i,j 's) is 
determined by simply going one step to the right 
from the first sample. Generally, with appropriate 
panels, the qth sample(Rt+q,i,j 's) is made by going 
exactly q -  1 steps to the right from the first sam- 
ple. This sampling procedure ensures the consis- 
tent overlapping and r l  - -  2 months  on and r2 - 2 
months off. One can easily see that  2 4 -  23 design 

Figure 1" 2 4 -  23 system 
Panels  and ro ta t ion  groups  

P 1  P 2  P 3  
Y E A R ,  ~ 4 O N  1 2 3 4 5 6 7 8 [ 3 4 5 6 7 8 1 2 1 2 3 4 5 6 7 8  

..... Y 1  J A N  ~ o  o o  p o  oo  

F E B  oo  oo  oo  oo  

M A R ,  oo  oo  oo  oo  

A P R  o o  o ~ o o  o a 
M A Y  o o  ~ o  o o  o o  

J U N  oo  oo  oo  oo  

J U L  oo  oo  oo  oo  

A U G  o ~ o o  o :~ oo  

SEP ~ o o o o o o o 

O C T  oo  oo  oo  oo  

N O V  oo  oo  oo  oo  

D E C  o o o o o o o 

Y 2  J A N  o o O o o o 

F E B  o o o o o o 

P4 
3 4 5 6 7 8 1 2  

in Figure 1 enjoys two assumptions as well as the 
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properties given in Theorem 1. However, in Figure 
1, when we choose 1, 2, 3, 4 instead of 1, 2, 5, 6 in P1, 
and 5, 6, 7,8 instead of 3,4, 7,8 in P2 as the first 
sample, the 4th sample(April  of Year 1) would not 
have rotat ion group number 3. This is a violation of 
(c) in Theorem 1. Reordering P2 = (34567812) to 
P2 = (12567834) also violate the (c) in Theorem 1. 
These observations show that  the de terminat ion  of 
Rt,i,j and Rt*,i,j depends on the ordering of rotation 
group numbers in each panel P~. 
We specify the subscript a for the panels P ~  a = 
1 , . o . , L ,  where L = l, if mr1 = ( m - 1 ) r 2  and 
L = ~ +  1 otherwise° P1, P : , . . .  ,PL  are the basic 
panels, each with mr1 rotat ion groups and 1 comes 
from the equation re = lr l .  

We now discuss how to allocate rotat ion groups 
r n -  1 rotat ion to meet the two assumptions for r~ n - r 2 

designs that  also meet the conditions given in The- 
orem 1. This allocation procedures are explained 
in the following 6 steps with example for 2 4 -  23 
system in Figure 1. 

S t e p  1. For P1, allocate the rotation group numbers 
by increasing order. Namely, P1 - ( 1 ,  2, 3 , . . .  , mr1) .  
In Figure 1, P1 = (1, 2 , . . .  , 8). 
S t e p  2. Write the basic panels P1, P~, . . . .  PL, each 
occupying mr1 positions. The c~th panel, P~, in- 
eludes positions from the position ( a -  1)mr1 + 1 
to ar nr l .  In Figure 1, L = 2, we have Lrnr l  = 16 
positions, and P2 has the positions from the 9th to 
the 16th. 
S t e p  3. Indicate the symbol 'o' for the first r l  po- 
sitions. After the first successive r2 positions with 
no symbol, indicate the second rl positions with the 
same symbol. And so on until rnth rl  positions are 
indicated. See the row of JAN.YEAR1 in Figurel° 
S t e p  4. Fill the checked positions in P:, P a , " "  , PL 
by turn with the group numbers that  were not 
checked in P1. The rotation group numbers checked 
in this Step 4 are the first sample. 
In Figure 1, see the row of JAN.YEAR1.  The 
checked positions, the first and second, of P~ are 
filled by group numbers, 3 and 4, respectively. Other 
positions checked by 'o' in P2 are the 5th and 6th po- 
sitions, filled by the group numbers,  7 and 8. These 
3, 4, 7 and 8 were not checked group numbers in P~. 
S t e p  5. Fill the remaining rotation group num- 
bers by circular order in the empty positions of 
P~, c~ = 2 , . . . ,  L that  are partially occupied from 
Step 4. In Figure 1, there are 4 empty  positions, 
the 3rd, 4th, 7th and 8th in P2. The first 2 empty  
positions and the second 2 positions are filled group 
numbers 5 and 6, 1 and 2, respectively because the 
number 8 is followed 1 by circular ordering. 

When the panels P~, for a <_ L exist with no check 
m a r k ,  copy the nearest P~,, a ~ <_ a.  
Now, we have the arrangement  of L panels, P1, 
P 2 , ' " ,  PL. Copy these panels to the next L panels, 
PL+I, ' ' ' ,  P2L and so on. 
S t e p  6. Wi th  the first sample defined in Step 4 and 
Pc~ given in Step 5, Rt+q,i,j are determined by going 
exactly q -  1 steps to the right from the first sample 
as shown in Figure 1. 

3.1 O v e r l a p p i n g  

Let Yt be a monthly level est imator  at month t. The 
variance of t* months change, V a r ( y t + t .  - yt) - 

V a r ( y t + t ,  ) - 2 C o v ( y t + t , ,  yt) + V a r ( y t ) .  This means 
that  V a r ( y t + t ,  - y t )  depends on the overlapping 
percentage between months  t and t + t* as well as 
sample correlation. The overlapping percentage in 
r~ n - - r ~  n - 1  design depends on rx, r2, and rn. From 
the proof (a) in Theorem 1, the overlapping percent- 
age between months  t and t + t* are as follows. 

rl--t* if 1 < t* < rl - 1 
r 1 - -  _ _  

(rn-i)(rl-ljl) if t* = i(rl + r2) - j, 
O ( t ~ * ) - -  mr,. i = 1  . . . . .  m - i ,  

j - -  rl - 1,rl - 2 ..... l - r 1  
0 otherwise 

(9) 

For fixed k, the biggest monthly overlapping oc- 
curs m - 2. The reason is that  the smaller rn, 
the larger r 1 iS by (c) of Theorem 1. From (9), 
the overlapping percentage between month t and 
t +  (rl + r2) is ( r n -  1)/rn.  This implies that  the 
overlapping between month  t and t + (rl + r2) be- 
comes larger as rn is larger. For example, when 
k -  1, the largest monthly overlapping percentage 
of 87.5% is obtained in 8 2 -  81 ; the largest quar- 
terly overlapping percentage of 87.5% in 1 8 -  27 ; 
the largest 6 months overlapping percentage 75% in 
18-27, 112-111, 24-23 and 34-33 ; the largest yearly 

overlapping percentage 50% in 12 designs such as 
2 4 - 2 a ~ 3 4 - 3 3  , 3 2 - 9 1  4 2 - 8 1  and 7 2 - 7 1  

For fixed sample correlation, the variance for the 
change between months t and t + t* decreases as t* 
months overlapping increases since overlapping cor- 
relation is positive in usual sampling. Therefore, 
the choice of rotat ion design depends on amount  of 
change we like to choose. Note that  the designs with 
r l  - -  1 have no monthly overlapping and so the vari- 
ance reduction for monthly  change is not expected. 

0 Composite Estimator 

Several est imators have been developed for rotat ion 
sampling during the past several decades start ing 
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from simple composite est imators to more general 
forms. The lat ter  forms are developed with fixed 
weighting values(Hansen,1978; Huang and Ernst,  
1981; Kumer  and Lee, 1983). 

We quote a GCE from Cantwell (1990) and obtain 
its coefficients by minimizing the variance equation 
as follows. 
Denote an est imate by xt , i , j  for the j t h  cluster in 
the ith appearance,  j - 1 , . . . , n o  i = 1 , 2 , - - . M ,  
and month  t - 1 , . - . , o o  where nc is the size of 
clusters in the ith appearance.  Since the clus- 
ters are selected by simple random sampling~ define 

Xt, i -- 1 /nc  E ~ £ 1  Xt,i,J ; Xt, i measures some char- 
acteristic of the rotat ion group. The part  of this 
rotat ion group is included in the monthly sample 
as the ith appearance in month t. For the system 
of r ~  - r ~ - I  we can express the number  of total  
appearances in month  t as M - mr1;  then we can 
write the GCE for month  t as 

M M 

Yt -- ~ ai x t , i -  5o ~ b ix t_  1,i -~- ¢oyt-1 
i=1 i=1 

where the weight ¢0 is bounded as 0 < w < l o The 
other weights ai 's  and bi's may take any values sub- 
ject to y~il~l ai = 1, and ~ M  1 bi = 1. As we expect, 
the GCE become to be the simple est imator  when 
¢0--0° 

We assume the covariance between xt,i  and x s,j 

C o v ( x t , i ,  xs , j )  - O, if / ~k j ,  C o v ( x t , i ,  Xs,j) - 
ptscr2/nc,  if i - j ,  and two x t , i~x t , j  are in the 
same rotat ion group, where the subscript in pt~ is 
ts  - I t -  s I so tha t  the correlation is a function only 
on the absolute value of t ime difference t - s, and 

po -- 1. 
Under this covariance structure,  following the re- 

m- 1 design, it sults of (9) and Theorem 1, for r~  - r 2 
can be shown tha t  

- er2 {a ' a  + w2b ' (b - 2a) 
V a r ( y t )  n--7 

+ 2 ( a -  w 2 b ) ' Q ( a -  b)} / (1  - ~o ~) (10) 

_ 0 1  a I . .  i where the weights a '  (al ,  0 ~, a~, , 3, • ,am),  
b ' - ( b ~ , 0  ~ ,b~ ,0 ' ,  - - - , b ~ )  with the ith ele- 

' - ( a ( i _ l  , ' "  , , ment  a i )(~+~)+1 • airx+(i-1)r2) b~ - 
(b(i_l)(rl+r2)+ 1 , ' ' '  , birl+(i_l)r2 ) and 0 to be a zero 
vector of size r2 x 1, and for any given w, the cor- 
relation mat r ix  Q - (q i , j )TxT ,  qi,j -- w i - J P i - j  for 
1 <_ j < i <_ T ,  T - mr1  q- ( m -  1)r2. This cor- 
relation mat r ix  Q is partially responsible for the 
size of this variance. Note tha t  the variance of 
simple est imator  is ( r2 /nca 'a  which is minimized at 
ai - 1 / M ,  i - l ,  . . . , M .  

An est imator  of population change from one 
month to the next is d t  - Yt - Yt -1 .  It also can 
be seen tha t  for w -7(= 0, 

_ or2 (ala + w2b'b _ 2 w p i a ' L b ) / w  V a r ( d t  ) n--7 

- ( 1 - w 2) Y a r ( y t ) / w  (11) 

where a and b are given as above, and L - ( l i j ) T x T  
with elements lij = 1 when i -  j = 1, and lij - 0 
when i - j  ¢ 1. When k = 0, with the variance 
V a t ( d r )  = 2 c r 2 / n c a ' ( I -  plL)a .  This variance is 
called as simple est imator of monthly  change is min- 
imized at a i -  l / M ,  i -  1 . . . .  , M .  

4.1 D e r i v a t i o n  o f  o p t i m a l  w e i g h t s  a a n d  b 

Now, we find the coefficients of a and b to minimize 
V a r ( y t )  and Y a r ( d t ) ,  respectively for fixed w .  

Define 

A l - ( 1 - c 0 2 ) ( a ~ G - I )  1 - c o  2 I + ° 4 - ~ Q  , 

B I _ (  1 - w 2  ( w2 ) ~= )(~;a-I)  I _ ~ , + ~ : I Q  ' 

where a~ - I + Q + Q',  o~ - ~ 2 ~ G ' ( a ~ - 2 1 G ' ) - ~ ,  

and G and g are appropriate  matr ix  and vector 
with size ( ( m -  1)rl + 1) x (mr1 + ( m -  1)r2) and 
( ( m -  1)r2 + 1) x 1, respectively. Those are from the 

constraints of y~'~M 1 a , -  1 and ~2~1 b~- 1. 
As usual, using lagrange multiplier technique one 
can show that  the coefficients of a and b minimizing 
V a r ( y t )  are 

"£ - [I - A I B 1 ] - 1 [ I  - A1]acg  (12) 
A 

b - a*~g - Bl"~. (13) 

Similarly, the optimal coefficients, a and b for 
V a r ( d t )  are 

A2 = a ~  ~ ( I  - G ' a ~  G a m l ) ( a m  + ~m + 7m) ,  

1 
B2 - - - - o l - l (  I - etc~mec~nl) (Olrn + tim -~- ")'m)' ¢d 2 rn 

_ 2~ I - 1 - ~  , ~ [ a a 7 1 a , ] _ l  where a m  - -  l "bw  1---~( Q + Q' ) o~ - -  

tim - (1 - w)2Q ' - w(2 - w)I, 7,~ - wpL.  

a ~'~ - [ I -  A 2 B 2 ] - l [ I  + B 2 ] a ~ l G ' a ~ g  (14) 

- B2a";" + OlmiG'Olmg. (15) 

4.2 C o m p a r i s o n  o f  s e m i  o n e - l e v e l  rotat ion 
d e s i g n s  w i t h  o n e  y e a r  o v e r l a p p i n g  

Since the simple est imator  is a special case of the 
GCE as shown in section 4, one can expect tha t  the 
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variance of the GCE is smaller than that  of simple 
estimator.  For the numerical example, we assume 
the covariance structure given in Section 4 to have 
an exponential pat tern  as 

0-2 0-2 
plt-sl s -  1 2, oc Pts - -  - -  - - ~  , "" , " 

?lc nc 

Since the variances (10) and (11) with optimal 
coefficients given (12)-(15) are a function of only co, 

minimizing ( 1 0 ) a n d  (11) was chosen from 0.1 to 
0.9 with increment 0.1 in this section. 

The numbers in Table 1 indicates the ratio of the 
variance of GCE to that  of simple est imator for some 
selected rotat ion designs when rl  - 1. The compar- 
ison in Table 1 is conducted for monthly change. 
As we expect in section 3.1, the GCE for monthly 
change achieves negligible amounts  of variance re- 
duction when it compares to the variance of simple 
estimator° This is mainly because of no monthly 
overlapping when rl  - 1. 

Table 1: Compar i son  for var iance of G C E  (when r l  = 1 and  
k = 1) to the var iance of simple e s t i m a t o r ( o p t i m a l  w). 

Designs I P 
0.5 0.6 0.7 0.8 0.9 

12 - 111 1.000(0.8) 1 .000(0.8)1 .000(0.8)  1 .000(0.8)1 .000(0.8)  
17 - 16 0.998(0.1) 0.996(0.1) 0.992(0.1) 0.987(0.1) 0.977(0.1) 

10.998(0.1 ) 0.996(0.1) 0.993(0.1) 0.988(0.1) 0.980(0.1) 
]1.000(0.4) 1 .000(0.4)1 .000(0.4)  1 .000(0.4)0.999(0.4)  
10,999(0.1 ) 0.998(0.1) 0.995(0.1) 0.992(0.1) 0.986(0.1 ) 

18 _ 17 
18 _ 2 7 

1 t2 _ 111 

We now define the efficiency of alternative rota- 
tion designs~ new design .vs. 4 2 -  81 design when 
rl > 2o This efficiency is also defined by the rate 
of two variances, one from the new design the other 
from 4 2 -  81 design. Since we have two estimators~ 
yt and dt, from each design, we compare the sum of 
these two variances as 

Efficiency of Var(Yat) + Var(dat) 
alternative design = Var(yut )+ Var(dut) (16) 

where Yat and dat are GCE of alternative rota- 
tion design for monthly level and month to month 
change, respectively, and y~,t and dut are composite 
estimators for 42 - 8 ~ design. Although we did not 
present the separate results of Var(yat)/Var(y,~t) 
and Var(dat)/Var(d,~t), it is worth to observe the 
following. For monthly level with fixed p, the rota- 
tion designs with smaller monthly overlapping have 
smaller variance ; on the other hand~ for month to 
month change with fixed p, the rotat ion designs with 
larger monthly overlapping have smaller variance. 
The numbers in Table 2 are the efficiency defined 
in (16) with the same sample size 64. Smaller value 
less than 1 of efficiency implies that  the design in the 

first column is bet ter  than 42 - 8 1  design for given 
correlation. From 22 - 101 to 3 4 -  33~ all of them are 
worse than 4 2 -  81 except for 3 2 -  91 when p = 0.9. 
All designs with r l  > 4, i.e, from 52-51 to 82-81,  all 
of them are better  than 4 2 -  81 for p - - 0 . 5 ,  0.6, 0.7. 
There is no design consistently better  than 4 2 -  81 
for all p. However, one may choose last 5 designs, 
especially, 52-101 as we may ignore, p - 0.9 is an ex- 
ceptional case in practice. The main reason is that,  
as shown in (9), the monthly overlapping increase as 
rx is bigger° The results of Table 2 may be changed 
when we consider more than monthly overlapping. 
If we assume seasonal correlation pattern,  we scru- 
tinize lots of interesting properties of our general- 
ized rotat ion designs. However all of these require 
derivations of variance for GCE of more than one 
month change and optimal coefficients to minimize 
the variances. These study will be in later paper° 

Table 2: Efficiency of a l t e rna t ive  designs unde r  exponent ia l  
cor re la t ion  p a t t e r n  

Designs 

22 _ 101 
23 _ 42 
24 _ 23 
24 _ 43 
25 _ 24 
26 _ 25 
32 _ 91 

3 ~ _ 32 
3 4 _ 3 3 

5 2 _ 51 
5 2 _ 101 
6 2 _ 61 
7 2 _ 71 
8 2 _ 81 

P 
0.5 0.6 0,7 0.8 0.9 

1.0787 1.0900 1.0951 1.0881 1.0488 
1.0786 1.0897 1.0951 1.0913 1.0697 
1.0779 1.0895 1.0981 1.1046 1.1195 
1.0786 1.0897 1.0951 1.0917 1.0725 
1.0778 1.0894 1.0981 1.1049 1.1228 
1.0777 1.0893 1.0981 1.1051 1.1245 
1.0212 1.0223 1.0207 1.0134 0.9916 
1.0211 1.0226 1.0237 1.0253 1.0435 
1.0211 1.0227 1.0238 1.0264 1.0492 
0.9895 0.9900 0.9931 1.0024 1.0325 
0.9895 0.9900 0.9923 0.9985 1.0127 
0.9834 0.9848 0.9899 1.0037 1.0441 
0.9795 0.9818 0.9891 1.0066 1.0537 
0.9768 0.9800 0.9893 1.0105 1.0642 
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