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1. Introduction 

The Consumer Expenditure Survey (U.S. Department of 
Labor (1993)) collects information on expenditures and 
income in a consumer unit. Nearly fifteen percent of the 
sampled units have item nonresponse on the income 
questions even though they have enough expenditure data 
to count as "interviewed units". An important use of 
income variables is to study the correlation of income 
with expenditures and other related variables. Thus the 
objective is to impute the missing value of income for any 
person with missing amounts, so that the imputed 
variables are consistent with one another and with the 
characteristics of the person and the consumer unit. 

(Fomby, Hill and Johnson (1984), and Vinod and Ullah 
(1981)) hold: 

A~" X is non-stochastic, 

Az: r a n k ( X  rX) - q, 

XrX 
,43" lim - = Q, 

where Q is a finite and nonsingular matrix, and 

A4: g is multivariate normal with mean vector 0 and 
covariance matrix 02I. 

The imputation process models the relationship of income 
with other variables based on data from units with 
complete response, and uses these models to produce 
imputed values. The general goal is that the distribution 
of the imputed income values conditional on other 
variables describing the household should be realistic. To 
achieve this goal, a model is adopted for the relationship 
of the variables, and the parameters of this model are 
estimated from the observed units that have complete 
data. The imputed income values for any household are 
then generated from the distribution implied by the model 
with the estimated parameters. This paper explores 
simpler alternatives to produce such imputations and 
establishes their asymptotic equivalence. A simulation 
study demonstrates this equivalence at the various sample 
size levels. 

2. The Model 

The income vector Z = (Y, -.-Yn) of observable 
random variables representin~ the data from units with 
complete data, follows the regression model 

The least squares estimator b of l) is the maximum 
likelihood estimator under .4 4 , and is given by 

where 
b_ - ~ x r v ,  

4 

-- (X TX)-I 

This is an unbiased estimator of ~. with the covariance 
matrix given by 

v ( b )  = o 2 ~  

We can write 
d = ~  -Xb_ 

as an estimator of d, with d r d 
2 _ 

$ 

n - q  

being a consistent and unbiased estimator of 02. 

For a missing variable Y0with the corresponding 
observed (qxl) vector x the mean predicted value is 

m 0 ' 

given by 

r~ = x T b  
0 --0-- 

+ e  

where X is an nxq (n>q) matrix of known transformed 
values, ~_ is a qxl vector of unknown regression 
coefficients, e is an nx 1 vector of random errors, and the 
following assumptions from the econometric literature 

where 
m o - Xor~. 

3. Imputation of Missing Values 
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We consider three alternative stochastic imputations of 
Y0" The multiple imputation task is accomplished by 
independently drawing additional random variables for 
each of these three cases similarly as for the single 
imputation given below. 

The first type of imputation is obtained by drawing a 
N (0, 1) variate z o and taking imputed variable as 

U ( 1 )  - rh ° + s z  o 

This imputation is consistent with the random nature of 
the error term and its assumed distribution. This is a 
non-Bayesian imputation since it is based on the 
estimators b and s 2 as given by the model. 

The second type of imputation is derived by taking the 
conventional prior distribution of (D_, 02) as 

P (D_, 02) o~ 0 -2. 

Then the marginal posterior distribution of 02 given y_ 
is a reciprocal X2 given by 

2 
02"  VS 

2 

where 
v - n - q .  

We obtain the second type of imputation, which is partial 
- Bayesian since it is based on the above marginal 
posterior distribution of O 2 by drawing a ~2 v random 
variable and imputing Yo by the variable 

[-V S Z o 
U(2) - ??]0 + ~ '  

g 
2 

where g is the square root of the Xv variable. 

The third type of imputation, termed as fully Bayesian to 
be based on the posterior distributions of ~ and 0 2 , is 
derived as follows" 

Under the above joint prior distribution of (D, 02), we 
have, a posteriori, 

and 
~.- N(b, o 2 ~ )  

2 
02 - VS . 

2 
2~ 

This imputation is thus obtained by drawing additional q 
independent N (0, 1) variables giving a qxl vector 

Z_ - (7,1, . . . Z q ) ,  

and by imputing Y0 , under the assumption of positive 
definiteness of the matrix ~], by the variable 

v / V  S g o x T ~-a l /2 z V ~  

U (3) - rh + + 
o 

g g 

where ~1/2 is a square root of ~]. 

4. Expected Values, Variances, and Distributions of the 
Imputed Variables 

4a. Small Sample Results 

The expression for U (3) can be simplified to 

where 

U (3) _ ~ + 
0 

g 

Z - 

T 
Z0 + X0 y!1/2 

with 

h - h ( x 0 ,  ~ )  = ffl + x_0r~] x o. 

The positive definiteness of ~ implies that h exists and 
m 

is positive. Also, z has a normal distribution with 
mean 0 and variance 1. 

1 9 
Since the ratio of a N (0, l) variate to a ~/ v X /v  variate 
is distributed as a t variable with v degrees of freedom, 

! 

we can write 

U ( 1 )  - m o  + S Z o ,  

and 

U (2) = th + s t  v 0 

U 0)  - rh o + s h t  v, 

where t v is a t variate with v degrees of freedom. In 
addition, for i - 1 .... ,3,  we have, 
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E (  U (0) = E[E(UO)[ b, s)] 

= 

= m 0 

and letting 

V(0 - U(0 _ tho, 

it follows that 

- e[e(Z2oS21Sb] 

= g ( s  2) = 02 ' 

2 2 2) 1I( V (2)) = E [ E ( s  t v Is ] 

V E ( s  2) _ V (I 2 , 
v - 2  v - 2  

and 
2 2 2 2) v ( g  (3)) = E [ E ( h  tvs Is ] 

V 

V - 2  
Also for i = 1, ..., 3, we have, 

_ ~ h 2 0 2 .  

v(U(O) - v(V(O) = E[th o - mo ]2 

= O2X0._f~X0 = 02(h  2 - 1). 

4b. Large Sample Results 

Since the matrix Q given by 

Q = lim I I=*oo 

X r X  

is f'mite and nonsingular, the matrix 

Q-1  = lim ,= ( X r X /  n) -1 

is also finite and nonsingular. 

Therefore the sequence of elements within n (X TX)-I 
is bounded. Thus there exists a real number C such that 

x_ n(X rx)-lx_ ° 

for all n, or 

thatis, X_orZ x ° 

= xr~ , x  /n-1  <_ C 
--0 --0 

h 2 - 1 - x r ~ x  
--0 --0 

is at most of order 1/n. 

- o(l), 
n 

The following results follow: 

v( U (1)) = 0 2 h 2 

= o 2 [ 1  + o ( 1 ) ]  
n 

v ( U  (2)) = [ ~  + h V  2]02 
v - 2  

= o 2 [ ( O (  1 ) + 1 + 0 ( 1 ) ]  
V n 

= o211 + 0 ( 1 ) ]  
n 

v ( U ( 3 )  ) _ v h 2 02 + 02(h  2 - 1) 
v - 2  

= 02[(1 + O(  1 ) ) ( 1  + 0 ( 1 ) )  + 0 ( 1 ) ]  
31 n n 

= o211 + 0 ( 1 ) ]  
n 

Also, since the t v distribution converges to the normal 
distribution for large v ,  the following theorem follows: 

Theorem: 

The asymptotic mean ( ASY.E ) and the asymptotic 
variance ( ASY.v ) of each of the imputed variables U (0 
are equal and are given by 

A S Y . E (  U (0) = m o, 

A SY. v ( U (o) = o z, 

and the asymptotic distribution ( ASY.D ) of the random 
variable 
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U (0 - n] 
W( 0 = o 

is given by 

A S Y . D  ( W , )  ~ N (  O, 1) ,  i - 1, ..., 3. 

5. Inferences Based on the Complete Data Sets 

The complete data set consists of proportion w of known 

variables with mean V , ) being the 

correspondingmean of the remaining proportion (l-w) of 
k imputed variables resulting from applying the 

]th imputation of type i with associated variance 

2 
o i , i  = 1,...,3; j =  1 ,..., m.  

An estimate of the population mean M is 

M 0 - w #  + ( l - w )  5 !  0 j  

The average estimate over the m imputations is 

M i = w V  + ( 1 - w )  U(0 , 

where 

m 

0 ( 0  _ ( 1 / m ) E  ~ ! 0 ,  

J=l 

and the average of the corresponding variances is 

1~. = ( 1 - w )  

' k 
[ w o  2 + ( 1 - w ) o ~ ]  

The expected value of the between imputation variance 

for the ith type of imputation is 

m 

B. - 1 E E ( M q  - M r ) 2  
! m - 1  j=l 

m 

= (1 - w ) 2  E E ( ~}0 _ rY ('))2 

m -1 i=1 

B 

The total variance of M - M r is thus given by 

5~ - W~ + 
m + l  

m 
~ B .  

! 

Let 

C I  - C I [  M - Mr]  

denote the 100 ( 1- 0: ) % confidence interval for 

I 

M - M . .  Then 
I 

C I  - [ - 6 r t a (  0:/2 ), + 6rt  a ( 0 : / 2 ) ]  , 

where td(O:/2 ) is the upper 100 (0:/2) percentage 

point of the t distribution with 

(m - 1 ) 6~ 
d -  

2 -- )2 
(5~ - W t 

degrees of freedom and 

(6~ - W,) m +1 B ,  

W. m W. 
I I 

is the relative increase in variance due to nonresponse. 

Expressing U y  ) in terms of mean of the n~0 values 

and the randomly selected variables as in the earlier 

sections, we have, for i = 2, 3, 

l i m E  (M~ - Ml)  2 

= l i m . ~ o v ( M  i - M l) - 0 

The Chebyshev inequality now implies that 

p l i m . ~ g ( M  t - M 1 )  = 0 

In addition, the expression for B r simplifies to 

B. (1 -W) 2 : O211 + O ( 1 ) 1  
a k n 

Also since, 
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1~ = ( l - w )  O211 + O ( 1 ) ]  , 
s k n 

1 
we have, ignoring terms of order -- ,  

n 

C I  = [ - S t d ( ~ , / 2  ), + 6 t  d ( a / 2 ) ]  , 

where 

= m + 1  62 (1 - w )  (I 2 [1 + ( l - w ) ]  
k m 

and 

d : ( m - l ) [ 1  + 
m 

m + l  
~ ( 1  - w ) - l ]  2 , 

i = 1, ..., 3. 

6. Simulations 

The simulation study is based on the 1988-1990 
consumer expenditure data (U.S. Department of 
Commerce (1993)) resulting from the second interviews. 
The variable under consideration is the logarithm of the 
salary of the reference person in a consumer unit, who 
according to the survey respondent, is the one who owns 
or rents the unit. The number n of reference persons in 
this data set with observed salary and other related 
variables is 7,686. 

For comparing variances of U (0, i = 1, ..., 3, we 
consider the magnitudes of the following two 
expressions: 

O12 = 

and 

v ( V ( 2 ) )  - v(V(~)) 
v(V (~)) 

V - 2  

923 = 
v ( V ( 3 ) )  - v(v(Z)) 

v(V (z)) 

= xT~_~X 
--0 --0 

D~j = D~j (V) is the proportional difference in variance 

between V0) and V(0 ,  and since 
D ,j ( U) < D q( V) 

Dq (.V) gives the upper bound of the relative increment 
in variance in selecting U q) over U (0. 

The simulations are performed by taking 1,000 samples 
each of size 500 and 1,000 to 5,000 in increments of 
1,000 of the following set of design variables from the 

above data. 

The design matrix consists of the following five columns: 

X~" Intercept 

X2: Age 

X 3" Logarithm of the number of hours worked per week 

X 4" Logarithm of the weeks of work during the year 

X 5" Highest grade completed in school 

Table B provides relative mean difference values D12 
and D23 for the 1,000 samples for each of the selected • j 
sample size levels for the set of x j = (XoJ1, ..., Xos) 
vectors, j = 1, ..., 10, given in Table A. 

The table shows small relative differences in variances 
between U (1) and U (2) and extremely small such 
differences between those of U (2) and U (3), as 
indicated by the respective upper bounds. The 
desirability of the choice of U (2) is obvious considering 
both the magnitude of variance and the computational 
aspects of arriving at the multiply-imputed data sets. 
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Table A 

{ x oJi } Values 

xoJl - 1 

Table B 
Upper Bounds on The 

Relative Increment in Variance 
Number of Simulated Samples: 1,000 

Sample Size 

10 

Age 

xg,  
25 

27 

33 

38 

46 

49 

53 

57 

60 

66 

Log [Number of 
Hours Worked 

per Week] 

3.80666 

3.73767 

3.80666 

3.82864 

3.68888 

3.91202 

3.68888 

3.80666 

3.61092 

3.68888 

j/DI2 

10 

500 

.0041 

1,000 

.0020 

2,000 

.0010 

10 6 X D23 

1.0244 

.7337 

.6873 

.4885 

.9703 

.6886 

2.0704 

2.8979 

2.2295 

2.5000 

.5081 

.3640 

.3414 

.2429 

.4819 

.3404 

1.0274 

1.4377 

1.1058 

1.2412 

.2527 

.1815 

.1699 

.1211 

.2398 

.1694 

.5112 

.7156 

.5500 

.6179 

Table A (Continued) Table B (Continued) 

10 

Log [Number of 
Weeks of Work 

During the Year] 

3.91202 

3.93183 

3.91202 

3.95124 

3.89182 

3.87120 

3.91202 

3.87120 

3.87120 

3.85015 

Highest Grade 
Completed 

16 

14 

16 

15 

17 

14 

19 

20 

18 

17 

j/D12 

10 

3,000 

.0007 

4,000 

.0005 

106 x D23 

.1683 

.1208 

.1132 

.0807 

.1599 

.1126 

.3408 

.4768 

.3665 

.4116 

.1262 

.0906 

.0849 

.0605 

.1198 

.0843 

.2554 

.3574 

.2746 

.3084 

5,000 

.0004 

.1009 

.0724 

.0679 

.0484 

.0958 

.0675 

.2043 

.2858 

.2197 

.2467 
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