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1 Introduction

Generalized regression estimation under two-phase
sampling is a cost-effective and efficient technique
for estimation of a finite population total. Impor-
tant references are Sdrndal and Swensson (1987)
and Sdrndal, Swensson, and Wretman (1992, sec-
tion 9.7), where a thorough summary of general-
ized regression estimation under two-phase sampling
is given, and general results, covering all possi-
ble combinations of available auxiliary information,
are given for the generalized regression estimator
(GREG).

Even though all of the available auxiliary informa-
tion is used for estimation of the total, the two vari-
ance estimators suggested by Sarndal et al. (1992, p.
362), referred to as the reference variance estimators
in the sequel, are primarily based on second-phase
sample information. Thus, it seems reasonable to
ask whether the auxiliary information available for
the elements not included in the second-phase sam-
ple could, and if so, should, be used more extensively
for variance estimation as well. This is not a new
question. An early reference is Cochran (1953, sec-
tion 12.7), while more recent references are Dorfman
(1994), Rao and Sitter (1995), Axelson, Breidt, and
Carriquiry (1996), and Sitter (1997).

In this paper a new approach to variance estima-
tion using linearization techniques is proposed. The
new approach is general, in that it allows for arbi-
trary sampling designs in each of the two phases,
in combination with any possible set-up of available
auxiliary information. Compared to the reference
estimators, this new approach makes more exten-
sive use of the available auxiliary information. If
the available auxiliary information can be utilized to
obtain reasonably accurate predictions of the study
variable, the new approach is expected to result in
less variable variance estimators than the reference
alternatives. The paper is concluded with a few ex-
amples, that relate the new approach to variance es-
timation to results given by Rao and Sitter (1995),
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Axelson et al. (1996), and Sitter (1997).

2 Two-phase sampling

Let U = {1,...,k,...,N} denote a finite popula-
tion. Associated with each element k& € U is a value
Y, where y denotes the study variable. The pa-
rameter of interest is the population total of y, i.e.
ty = D peu Yk = > yYk- To estimate t,, we will use
information collected through a two-phase sampling
procedure.

A first-phase sample s,, of size n,_, is drawn from
U according to a design denoted p,(-). The first-
phase first- and second-order inclusion probabilities
are denoted 7, and mw.p respectively. Given s,, a
second-phase sample s, of size n,, is drawn from s,
according to a design denoted p(:|s,). The second-
phase first- and second-order inclusion probabilities
are denoted g, and mys, respectively. By as-
sumption, e > 0 for all k&l € U, and myy,, > 0
for all k&I € s,. For the elements included in the
second-phase sample, the value of the study variable
is obtained, i.e., ultimately, y;, is known for all k € s.

To simplify expressions derived in subsequent sec-
tions, set Agkr = Tarr — TakTar a0d Agyys, = Tpyps, —
Tkjs. M|s.- Moreover, let the symbol ~ symbolize
division by m.k, and, in analogous manner, let the
symbol © symbolize division by TakTk)s, - Hence, for
example, §Jx = Yr/Tak, which is defined for all k € U,
and Jx = i /Th(s. = Y&/ (TakTk|s, ), which is defined
for all k£ € s,.

3 The generalized regression estimator un-
der two-phase sampling

Assume that in addition to yy, there is also a vector
x, of J auxiliary values associated with each element
k € U. In the GREG, the auxiliary information
available at the element level ultimately serves to
get predicted values of the study variable. Following
Sarndal et al. (1992, section 9.7), we partition xg
as x; = (x’lk,x’%)', where x5, denotes a J; x 1-
vector comprised of auxiliary values known for all
k € U beforehand, while xz; denotes a (J — Jy) x
1-vector comprised of auxiliary values unknown at
the onset of the study. In the sequel, it is assumed



that x; and x;; differ, and that the very purpose
of the first-phase sample is to obtain xg; for all k €
sq. Typically, x5 is chosen because it is assumed
to be a strong, yet relatively inexpensive, predictor
for y, whereas x; often primarily is of administrative
character and therefore can be assumed to be weaker
than x5 as a predictor for y.

In its most general form, the generalized regres-
sion estimator can be written as

fr = fyﬂ‘ + (txl - mrr) Bls

. - (1)
tzw*)lBsa

+ (tor —

S°.Uk is unbiased for ty, tg,
= Zsaklk is unbiased for t,,, t

where fy,{*
Zleka t
is analogous to tzix, tM* is analogous to fyﬂ ,
Bls = Mxlxls B, = Mxstxyg, with
1}\/Ix1xls = Z xlkxlk/wlk; Mxlys = stlkyk/wlka
MXXs = stkxk/wk, and Mxys = Zsf(kyk/wk. In
ﬁu and ﬁs, wyg and wy, respectively, are weights,
pre-specified by the statistician, that reflect the rel-
ative importance, based on a priori knowledge, as-
signed to element k by the survey statistician.

It is not uncommon that no auxiliary information
is available at the onset of the study, i.e. x = xs.
Under these circumstances, all terms involving x;
drop out of (1).
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x1ys, and B

4 The variance of i,

Clearly, since By, and B, are stochastic, #, is not
unbiased for t,. However, using a linearized ver-
sion of the GREG, it is possible to conclude (see,
e.g., Sarndal and Swensson, 1987) that £, is approx-
imately unbiased for ¢,, provided that the sample
size is large in each of the two phases. N
Let Brixy = yx — X'lwa and Eis, = yr — X, Bs,,
where By M;lxIUwaU with My, x,u =
ZUXlkxlk/wlk and MxlyU = Y yX1kYk/wik, and
BS = M: Mxys with Mxxsa > anXk/wk

XXS
and Mxysa = Zsaikyk/wk. Hence, E1xp is defined

for k € U, while Ey,_ is defined for all k € s,. Sérn-
dal and Swensson (1987) show that the variance of
t», which can be written as

V(t) =W + Ve,
where Vi =V, [E(t|s.)] and V2 =
.is well approximated by
AV () = AV; + AVs,
where AV; YA ekt EwevEuy and AV,

pa(ZZ AkllsaEksaElsa), where 3737, is short
for ey ey and ZZSG is analogous to 3.5 .

(2)
Ep[V (tr1sa)],

3)
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5 Estimation of the variance of ¢,

5.1 The standard approach

As an estimator for V (¢;) in (2), Sirndal et al.
(1992, section 9.7) suggest

Vog1:g — Vlgol + V2go’ (4)
where
> Agkt 3 .
Vo =y G1ks. E1kG1Us E11 (5)
TakliTkl|s,
and
-, Apllsa  «  «
Vi, =320, o Jrs€rGis€r, (6)
Tkl|sa

where ey and e are the sample-based counterparts
to E1xy and Eyg, respectively,

1
MXXS

grs = 1+ (f"wn - ) Xk/wiq

and

91ks, = 1+ (tzl - £z17r),1\//\l;llxlsaxlk/w%k’
where ﬁxlxlsa is analogous to 1/\\/[xxsa. This esti-
mator follows from an extension of the g-weighted
residual technique for one-phase sampling, which
was proposed by Sarndal (1982) and further elab-
orated in Sarndal, Swensson, and Wretman (1989).
A simplified estimator for V (£,) is given by

Vol = Vi, + Vi, (7)
where V' and V3. follow from (5) and (6) respec-
tively, by setting all g-weights equal to unity.

The estimators V' and V' are both known
to have acceptable large sample properties, in that
they both are approximately design unbiased and
yield satisfactory results when used for construction
of confidence intervals. However, considering condi-
tional inference, as advocated by, for example, Holt
and Smith (1979) and Rao (1985), we expect V{1
to be the better estimator, in analogy with the find-
ings regarding one-phase sampling in Sirndal et al.
(1989). R

Despite the fact that V¢ and V' have accept-
able large sample properties, the variability of the
estimators may be unduly large. In Section 5.2, we
propose a new approach to estimation of V; which
makes more complete use of the observed sample
information. If the available auxiliary information
has strong predictive power, we expect the new ap-
proach, when combined with either Vj"o or Vb, to
yield estimators for V( ) that are more efficient

than either of V¢ and f/ol“.



5.2 The new approach

In the search for a new estimator for Vi, we start
by considering a variance estimator, implicitly sug-
gested by the term AV; in (3), that could be used
if y was recorded for k € s,. That is, using the
g-weighted technique with Eyg,, = yx — X1, B1s,,
where ]§1sa is analogous to ﬁsa,

=

Sa ,n.
will serve as the starting point in the search for an
alternative estimator for Vi. Since Eygs, = Dgs, +
Eys,, where Dy, = x,,B;s, — x| B1s,, (8) can be
rewritten as

g1
Vl yhypisa

(8)

glksa Eiks. gus. Es,

‘/lg}zyp,sa ClDDs + 2Ciqus + ClEEs ’ (9)
where
ThDs, = 2.0 glksaDksa gus.Dis,, (10)

s"7r

and C7}, Es, and C{}p, are obtained from (10) by
substitution of, respectively, Elsa for Dlsa and Eksa
for Dksa and Elsa for Dlsa- By focqsing on estima-
tion of the conditional parameters C{}p, , ce, Es,

and C’lg‘E Es,» an alternative approach to estimation
of V is suggested.

Now consider two-phase sampling, with x4
known for k € U, X observed for k € s,, and y;
observed for k € s. If Blsa and B,, were known,

\bps, could easily be computed andAconditionally
unbiased estimators for C’1 pEs, and Cipg, would
be given by

g = —— " g1ks, D Ey,, (11

1DEs ZZ 7rakl7rkl|sa G1ks, Dis, 9i1s, E1s,  (11)
and C1 EEs respectively, where 09 5. is obtained

from C?% . by substituting Ej,, for Dy,,. Hence,

Ve = Ctbpe, + 201, + Cbis (12)
would be conditionally unbiased for V;’} hypise
Despite the fact that Vf}w is purely hypothetical,

it nevertheless suggests an estimator of practical in-
terest. Replacing the unobservable Dy, and Ej,, in
(12) with dy = x}cﬁs - X'lkﬁm available for k € s,,
and eg, available for k € s, we get, in obvious nota-
tion,

Ve =

Clg(lids + Zszlies + Clees (13)

Rather than replacing Eys, with ey, one might con-
sider using giser, in analogy with using Vi, as an
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estimator for Vo = AV,. Thus, an alternative esti-

mator for V; is given by

+ Coe

‘/lgal!7 = Clgllidsa + 20193123 lees? (14)

g19 919
where Cldes and Clees

tively, C?3 . and C{!, by substituting gisey. for ey.

In deriving V! and V2, I/'l‘“hyl[)s in (9) served
as the starting point. Thus, using
Aaki

e Mokl

are obtained from, respec-

= ZZ ElksaEllsa

71

lhypisa
as the starting point, rather than (9), the above ap-
proach results in yet two more estimators for V.
Setting gixs, = 1 for all k € s, in (13) and (14), we
get, respectively,

Vlla = Cvllddscl + 2011des + Cllees (15)

and

Vi “‘Cldds +201des+C (16)

lees*

Theoretically, in order to construct an estimator
for V(£,), any one of (13), (14), (15), and (16) can
be combined with either V£ in (4) or V. in (7).
Thus, the new approach to estimation of Vi leads to
no less than eight possible estimators for V (£,), all
of which are given in Table 1 below.

At present, little is known about the performance
of the suggested estimators, why further work is
needed before any general recommendations can be
made about which estimator to use in practice.
However, by examining the simplified expressions for
the two special cases when (i) ey = 1 forall k e U
(ie. sg = U), and (ii) my,, = 1 for all k € s,
(i.e. s=s,), and comparing them to the reference
estimators given in (4) and (7), a group of four esti-
mators emerges as more interesting than the remain-
ing ones. Note that under (i) and (ii), we are sim-
ply studying generalized regression estimation un-
der one-phase sampling, the auxiliary information
being either (i) x, or (ii) x;. Thus, it follows from
(4) that V1 simplifies to V£ under (i) and V!
under (ii). Similarly, it follows from (7) that Vi
simplifies to V., under (i) and V;, under (ii). Thus,
no matter if the auxiliary information used is x or
X1, using V£ under one-phase sampling amounts
to using the g-weighted residual technique for vari-
ance estimation, whereas using V"' amounts to us-
ing the simplified approach that completely ignores
the g-weights. This feature of V' and V"', which
we choose to label phase-compliance, is attractive.
As indicated, only four of the estimators in Table 1



are phase-compliant, namely e Ve Va“, and
Vs, Since phase-compliance is a desirable feature of
any estimator for V (£,) under two-phase sampling,
we restrict our attention to these estimators in the
sequel.

Estimator Simplified expr. Phase-
Tak =1 |75, =1 |compl.
for for
kelU k€ s,

A0,1 i = ‘71111 + ‘A/Qlo ‘,}v210 ‘A/IIO y €8

S R v, Vi, no

Aag;1 = Vlga + V2lo V21o Vllo yes

Aag;g = / ga + A2go A2go Vllo no

ot = Vi 4 Vs Vo v no

Ve =V Vg Vg | V| ves

Vet = Ve + vy, Vs, v no

Vaglg;g = Vlgalg + A2g0 V2go A1901 yes

Table 1: Simplified expressions for V1 ! V1 R V" !
Voo ot pgne pest o oang Vg when (1) all
mor = 1 for all k € U, and (ii) all my,, = 1 for
all k € s,.

6 Discussion

As mentioned in Section 5, the new approach to vari-
ance estimation makes more complete use of the ob-
served sample information. Therefore, it should re-
sult in estimators for V(fr) that are more efficient
than either of V¢ and V"', given reasonable cir-
cumstances, i.e. c1rcumstances such that two-phase
regression estimation is preferred to ordinary double
expansion estimation. To exemplify, let us compare
Vit = VL o+ Vo with V= =V} 4 V3. in terms of
variances.

ExaMPLE 1. We start by noting that

(i) () = () v(1)
+2C( V107V20)( 17)

Now, given the relation ey, = dy, + ey, it follows from
(5), setting all g-weights to unity, and (15), that Vi
can be rewritten as

- Clldds + Vllo’

Vlla = éiddsa (18)
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where Cldds is analogous to C’{ees. Under reason-
able circumstances, we expect dj, = ey for a major-
ity of k € s,, regardless of the particular second-
phase sample obtained. This implies that condi-
tionally on s,, the term Ci, — C’lldds in Vi, will
serve as an adjustment term, calibrating V;\ to-
wards its conditional expected value and thus re-
ducing its conditional variance. Consequently, since

E(Vfa|sa) = E(Vfolsa), we conclude from (18)
that V (V) - V(¥
deemed reasonable from a practitioner’s point of
view. Furthermore, since x = (x},x})’ is a stronger
predictor than x; by assumption, using arguments
from standard regression theory, we expect e to
be larger than e, in absolute value, for most & € s.
Moreover, we expect a majority of the paired residu-
als e and ey, to coincide in terms of their sign. Indi-
rectly, this indicate that V%, and V., should be posi-
tively correlated under circumstances deemed rea-
sonable from a practitioner’s point of view, since
the observed estimate of Vi, in a sense imposes
a restriction on the possible range of outcomes of
V,.. Since Vi, to a large extent is based on in-
formation observed for k € s, — s, we expect the
correlation between V7, and Vi to be negligible.

Hence, since E(Vfa|sa> = E(Vfolsa), we expect
¢ (Vlla - ‘/1107 210
reasonable from a practitioner’s point of view. From
(17) we thus conclude that the above arguments, al-
though rather heuristic by nature, indicate that V!

should be more efficient than V}* under reasonable
circumstances. O

< 0 under circumstances

< 0 under circumstances deemed

Given a reasonably large sample size in each
phase, each one of the four phase-compliant estima-
tors V;”, V;;l, /419 and Vg9 g approximately
design unbiased for V (£,) and should yield approx-
imately valid confidence intervals. However, using
the same arguments as in Section 5, we expect Ve
and f/}f”;g to exhibit better conditional behavior.
Two references regarding conditional vs. uncondi-
tional behavior, relevant for this paper, are Rao and
Sitter (1995) and Sitter (1997). The references are
similar, in that they both concern variance estima-
tion for the GREG when simple random sampling
without replacement is used in both phases, SI,SI
for short, no auxiliary information is available at the
onset of the study, and the auxiliary information ob-
served for k € s, is scalar valued.

EXAMPLE 2. In Rao and Sitter (1995), the point
estimator of interest is §, = (§5/%s) &s, = Bsis,,
where §s = Y yr/Ns, T, is defined analogously, and



Zs, is the first-phase analogue to Z,. Using wy o zy
in (1), it is a matter of simple algebra to show that
¥, = t,/N under the design SI, ST. It is straightfor-
ward to show that the reference variance estimator
considered by Rao and Sitter,

0o (@) = = (BISI + 2BuSees) + 8%, (19)
Ns,

where ¢;, = 1 —n,, /N, ¢s = 1 —ng/N, S2, =

25 (@ — z,)° [(ns — 1), SZ, = Y e}/(ns — 1) with

= yp — Byxg, and Sges = Esmkek//gns -1), is
identical to the variance estimator for g, given by
V11 /N2, Two variance estimators included in the
study are the linearization-type estimators

Vi) = = (BISk, +2BSeca) + 15 SE, (20)
and
%) = S (B, + 22 s,
~(‘”—) S, (21)
Ng \ Tg

where SZ,

Vi @T) is derived using arguments somewhat similar

is the first-phase analogue to S2,. While

in spirit to those given in Section 5.2, Va(,) is a
linearized version of a jackknife estimator. It is a
matter of simple algebra to show that (20) and (21)
are identical to V' /N? and V" /N? respectively,
under the given model and design. a

In the simulation study conducted by Rao and
Sitter (1995), V1 (7,) and V5 (7,) are both found to
be substantially more efficient than V;(7,) uncon-
ditionally, under reasonable circumstances. How-
ever, from results regarding one-phase sampling (e.g.
Royall and Cumberland, 1981a, 1981b; Wu and
Deng, 1983; Siarndal et al., 1989), one may expect
V2(3,) to outperform V; (§,) conditionally, given the
approximately ancillary statistic Z,, /Zs. This hy-
pothesis is supported by the results of the simulation
study; V,(3,) reveals acceptable conditional behav-

ior, whereas V; (9,) does not.

ExaMPLE 3. In Sitter (1997), the point estima-
tor of interest is yr = ¥Js + B, (Zs, — &), where

S2,/S2, with 523 analogous to S2,. Using
Xp = (1 zx) and wp = 1 in (1), it follows that
7, = tr/N under the design SI,SI. Apart from the
reference estimator, which is identical to Vit N2,
based on e = yr — Js — Bs (T — Ts), ﬁve other
variance estimators are studied, including two esti-
mators suggested by Dorfman (1994). Of these, two
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are linearization-type estimators that are of interest
within our context, namely

. Cs, ~ c
Vi(y,) = 2=BS;, + =S, (22)
Mg, Ns
and
(= * 1 *
V2(y,) =V1 (¥,) + —R} + —R3, (23)
s Sa
where
1
Ry =—3", 62 (aks + 2aks)
Ng
and
* nsa o *
RZ = Ny Mo, — B Z (wk msa)ekaks’
where a}, = axs/(1 — brs), with
Qs = Ng (zk - "Z's) (Esa - 1_75)/ [(ns - 1) S;Es]
and
ks = 1/ + (z — )%/ [(ns — 1) S2,] .

The derivation of the estimators (22) and (23) is sim-
ilar to the derivation of the estimators (20) and (21)
respectively, and it is easy to show that, under the
given design, (22) is identical to V' /N2, Moreover,
from Vaglg;g we get

Vgl gig
a

o - Cs,,
Va(f,) = S = Vi) + —Ri+ —= Ry, (24)
S Sa
where
1
Ry = - 12362 (afs + 2aks)
and
Ry = — IBSZs (:I?k - f:sa) €rQks-

When the second-phase sample size, ng, is large,
aj, = ags, which implies that the estimators (23)
and (24), while not identical, have similar large-
sample behavior. O

The properties of the variance estimators consid-
ered in Sitter are studied through simulation. Both
Vi(7,) and Vi(g,) are found to be substantially
more efficient than V;(§,) unconditionally, with
Vi (7,) being slightly better. However, when study-
ing the properties conditional on the approximately
ancillary statistic Z,, — s, a slightly different picture



emerges. Both Vi (7,) and V3(7,) perform well when
the population data conform to a homoscedastic re-
gression model, but vy @T) continue to perform well
also when the population data deviates slightly from
such a model, whereas V; (,) does not. These find-
ings are in line with what might be expected; consid-
ering one-phase sampling, some support is given in
Royall and Cumberland (1981b) and Sérndal et al.
(1989). Furthermore, since V,(7,) and V»(y,) are
approximately equivalent in large samples, the sim-
ulation results regarding v, (ur) should hold approx-
imately for V2 (,) as well.

The final example concerns the problem of nega-
tive variance estimates, which indeed may be a prob-
lem of practical concern under two-phase sampling.

EXAMPLE 4. Axelson et al. (1996) consider two-
phase regression estimation for the special case when
no auxiliary information is available at the onset of
the study. For the first phase, they consider two-
stage sampling, such that stratified simple random
sampling is used in the first stage, whereas an arbi-
trary design is allowed for in the second stage of the
first phase. For the second phase, any design such
that 7y s, > 0 for all k&l € s, is allowed for.

As a first choice of variance estimator, they con-
sider Vyr = V1 HT + Vg, where V; HT 18 a shghtly
modified version of V;, while V3 is identical to V.
Through a simulation study, Axelson et al. show
that VHT, due to unstable performance of V1 HT,
results in negative estimates unacceptably often un-
der circumstances deemed relevant for the particu-
lar application considered. In order to avoid this,
an alternative estimator for Vi, denoted V1 regs 1S
suggested. Vl,reg utilizes more of the available aux-
iliary information than Vl, HT, why the authors ex-
pect Vreg = Vueg + Vg to perform better than
Vi under conditions such that the GREG outdoes
the double-expansion estimator. This expectation is
confirmed in the above mentioned simulation study.
Although derived using a different line of argument,
it is easy to show that Vl,reg alternatively can be
derived using the approach suggested in Section 5.2

with E(V1,HT|SG) as the starting point. ]
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