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1 I n t r o d u c t i o n  

Generalized regression estimation under two-phase 
sampling is a cost-effective and efficient technique 
for estimation of a finite population total. Impor- 
tant references are S/irndal and Swensson (1987) 
and S/irndal, Swensson, and Wretman (1992, sec- 
tion 9.7), where a thorough summary of general- 
ized regression estimation under two-phase sampling 
is given, and general results, covering all possi- 
ble combinations of available auxiliary information, 
are given for the generalized regression estimator 
(aREa). 

Even though all of the available auxiliary informa- 
tion is used for estimation of the total, the two vari- 
ance estimators suggested by SS~rndal et al. (1992, p. 
362), referred to as the reference variance estimators 
in the sequel, are primarily based on second-phase 
sample information. Thus, it seems reasonable to 
ask whether the auxiliary information available for 
the elements not included in the second-phase sam- 
ple could, and if so, should, be used more extensively 
for variance estimation as well. This is not a new 
question. An early reference is Cochran (1953, sec- 
tion 12.7), while more recent references are Dorfman 
(1994), Rao and Sitter (1995), Axelson, Breidt, and 
Carriquiry (1996), and Sitter (1997). 

In this paper a new approach to variance estima- 
tion using linearization techniques is proposed. The 
new approach is general, in that it allows for arbi- 
trary sampling designs in each of the two phases, 
in combination with any possible set-up of available 
auxiliary information. Compared to the reference 
estimators, this new approach makes more exten- 
sive use of the available auxiliary information. If 
the available auxiliary information can be utilized to 
obtain reasonably accurate predictions of the study 
variable, the new approach is expected to result in 
less variable variance estimators than the reference 
alternatives. The paper is concluded with a few ex- 
amples, that  relate the new approach to variance es- 
timation to results given by Rao and Sitter (1995), 

Axelson et al. (1996), and Sitter (1997). 

2 T w o - p h a s e  s a m p l i n g  

Let U = { 1 , . . . , k , . . . , N }  denote a finite popula- 
tion. Associated with each element k C U is a value 
Yk, where y denotes the study variable. The pa- 
rameter of interest is the population total of y, i.e. 
ty = ~ k c U  Yk = }-~vYk" To estimate ty, we will use 
information collected through a two-phase sampling 
procedure. 

A first-phase sample Sa, of size nso, is drawn from 
U according to a design denoted Pa('). The first- 
phase first- and second-order inclusion probabilities 
are denoted 7Oak and 7rakl respectively. Given Sa, a 
second-phase sample s, of size ns, is drawn from sa 
according to a design denoted p(.ISa). The second- 
phase first- and second-order inclusion probabilities 
are denoted 7rklso and 7rkll~a respectively. By as- 
sumption, 7rak I > 0 for all k&l C U, and 7rklls  ~ > 0 
for all k&l C Sa. For the elements included in the 
second-phase sample, the value of the study variable 
is obtained, i.e., ultimately, Yk is known for all k E s. 

To simplify expressions derived in subsequent sec- 
tions, set Aakl = 7rakl- 7rakTral and Aktl~o = 7rkll~o - 
7rkl~oTrtl~ . Moreover, let the symbol ~ symbolize 
division by 7rak, and, in analogous manner, let the 
symbol ~ symbolize division by 7r~kTrklso. Hence, for 
example, ~)k = yk/Trak, which is defined for all k E U, 
and ~k = [/k/rCklso = Yk/(TrakTrk,s,~), which is defined 
for all k C sa. 

The gene ra l i z ed  r e g r e s s i o n  e s t i m a t o r  un- 
de r  t w o - p h a s e  s a m p l i n g  

Assume that in addition to Yk, there is also a vector 
Xk of J auxiliary values associated with each element 
k c U. In the G R E G ,  the auxiliary information 
available at the element level ultimately serves to 
get predicted values of the study variable. Following 
Sgrndal et al. (1992, section 9.7), we partition Xk 

t ! as xk - (x~k,x2k) , where Xlk denotes a J1 x 1- 
vector comprised of auxiliary values known for all 
k C U beforehand, while x2k denotes a ( J -  J1) x 
l-vector comprised of auxiliary values unknown at 
the onset of the study. In the sequel, it is assumed 
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that  xk and Xlk differ, and that  the very purpose 
of the first-phase sample is to obtain x2k for all k C 
Sa. Typically, x2 is chosen because it is assumed 
to be a strong, yet relatively inexpensive, predictor 
for y, whereas X l often primarily is of administrative 
character and therefore can be assumed to be weaker 
than x2 as a predictor for y. 

In its most general form, the generalized regres- 
sion estimator can be written as 

t r  --  tyTr* n u ( t x l  - -  t x l T r )  / i l l s  
(1) 

where /[y~. = }--]~k is unbiased for ty, tx~ = 
E u X l k ,  t X l T r  - -  E s : ~ l k  is unbiased for tx l  , ~;xrr 

is analogous to t*l~, tx~* is analogous to [y~., 
A A A t " .  A 1 A 

B l s  - -  M x l x l s M x l y s ,  and B,  - Mxx~M×v,, with 

XlkXlk/Wlk,  M x l y s  - Es:~lkYk/Wlk, 
A A 
Mxx  - E xkx;/ k, and E xkYk/ k. In 
A i 

BI~ and B~, Wlk and wk, respectively, are weights, 
pre-specified by the statistician, that  reflect the rel- 
ative importance, based on a priori knowledge, as- 
signed to element k by the survey statistician. 

It is not uncommon that no auxiliary information 
is available at the onset of the study, i.e. x - x2. 
Under these circumstances, all terms involving Xl 
drop out of (1). 

4 T h e  v a r i a n c e  o f  [~ 

Clearly, s ince  i l ls  and B~ are stochastic, [~ is not 
unbiased for t v. However, using a linearized ver- 
sion of the G R E G ,  it is possible to conclude (see, 
e.g., S/irndal and Swensson, 1987) that  t,  is approx- 
imately unbiased for tv, provided that  the sample 
size is large in each of the two phases. 

A 

Let ElkU -- Yk -- x~pBiu and E k ~  = Yk -- x~Bso, 
where B1u - M x l x l v M x l y  U with g x l x l u  - 

~uXlkX t l k /Wlk  and M x l y U  -- EuXlkYk /Wlk ,  a n d  

Bs~ - Mxxs M x ~  with Mxx~  = Y]~ XkXk/Wk 

and Mxy~o - Y ] ~ k Y k / W k .  Hence, Elku  is defined 
for k E U, while E k ~  is defined for all k C s~. S/irn- 
dal and Swensson (1987) show that  the variance of 
[,, which can be written as 

v - v, + (2) 

where V1 -- Vpo[E(trlSa)] and V2 -- Ep~[V(trlSa)], 
is well approximated by 

A V  (t~) - AV1 + AV2, (3) 

where AV1 - EEuAakIFJlkuF_IIIU and AV2 = 

Ep,~(~'~saAkllsa~_~ksJ~ls,~), w h e r e  }--~Y]u is short 

for Y~-kcU~tcV and ~-]~s~ is analogous to ~--]Y~-u" 

5 E s t i m a t i o n  o f  t h e  v a r i a n c e  o f  t~ 

5 .1  T h e  s t a n d a r d  a p p r o a c h  

As an estimator for V( t , )  in (2), S/~rndal et al. 
(1992, section 9.7) suggest 

^ ^ g l  ^ Vd 1;g - Vi o + V~o , (4) 

where 

V10" gl __ E E 8  Aakl glksaelkgllsa~ll (5) 
7 r a k l T r k l l s a  

and 

- -  ~ g k s e k g l s e t ,  (6) 
s 7rk l ls  ~ 

where elk and ek are the sample-based counterparts 
to Elku  and Eksa respectively, 

) - ~ ' Mxx~Xk/W~, 

arid 

glksa - -  1 + ( t x l -  t x ~ ) '  ~IxlxlsaXlk/W21k, 
where Mxaxls~ is analogous to Mxxs~. This esti- 
mator follows from an extension of the g-weighted 
residual technique for one-phase sampling, which 
was proposed by S/irndal (1982) and further elab- 
orated in SSxndal, Swensson, and Wretman (1989). 
A simplified estimator for V ([,) is given by 

~ 2 - 2 ; 1  _ " 1 " 1 , Vl o -Jr- V2o (7) 
^ ^ 

Wo fonow from (6)r sp c- 
tively, by setting all g-weights equal to unity. 

The estimators Vd 1;~ and Vo TM are both known 
to have acceptable large sample properties, in that  
they both are approximately design unbiased and 
yield satisfactory results when used for construction 
of confidence intervals. However, considering condi- 
tional inference, as advocated by, for example, Holt 
and Smith (1979) and Rao (1985), we expect I)d~;g 
to be the better estimator, in analogy with the find- 
ings regarding one-phase sampling in S/irndal et al. 
(1989). 

Despite the fact that  Vo ~ ;~ and ~1;1 have accept- 
able large sample properties, the variability of the 
estimators may be unduly large. In Section 5.2, we 
propose a new approach to estimation of 171 which 
makes more complete use of the observed sample 
information. If the available auxiliary information 
has strong predictive power, we expect the new ap- 

^ ^ 

proach, when combined with either V~o or V~o, to 
yield estimators for V(t~) that  are more efficient 

^ 

than either of Vd 1 ;~ and Vo ~;1. 
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5.2 T h e  n e w  a p p r o a c h  

In the search for a new estimator for V1, we start 
by considering a variance estimator, implicitly sug- 
gested by the term AV1 in (3), that  could be used 
if Yk was recorded for k E Sa. That  is, using~ the 

' B g-weighted technique with Elkso -- Y k -  Xlk 1so, 
where Bls~ is analogous to Bso, 

~/~gl Aakl JE gllsaJ~lls~ (8) 1,hyp;so = ~-']~o g:kso lk~o 
7rakl 

will serve as the starting point in the search for an 
alternative estimator for V1. Since Elksa : Dks. + 

Eks. ,  where Dkso -- x~Bso - Xlk' Blso, (8) can be 
rewritten as 

^ 91 ^ gX ^ g l  ^ g l  
Vl,hyp;sa : CIDDs a -+- 2CIDEs a n t- CIEEs~,  (9) 

where 

^g: Aaklg:ks~JDksaglls~blsa (10) C1DDs~ -- E E s a  7~ak---- ~ 

^ g l  ^ 91  and C1DEs a and GlEEs  ~ are obtained from (10) by 
substitution of, respectively,/~tso for btso and/~kso 
for [gk~o and Elso for/) tso.  By focusing on estima- 

^ g l  ^ g l  tion of the conditional parameters CIDDso, CIDE8 ° 
^ g l  and CIEEsa, an alternative approach to estimation 

of V1 is suggested. 
Now consider two-phase sampling, with XIk 

known for k E U, Xk observed for k E Sa, and Yk 
observed for k E s. If BI~o and B~o were known, 

^ 9 1  CIDDs a could easily be computed and conditionally 
^ g l  ^ g l  unbiased estimators for C1DEs ~ and GlEEs ~ would 

be given by 

^ gl __ glks~ ksa C1DEs E E s  Aakl D g:t~oE, t~a (11) 
7raklTrklls~ 

^ g l  ^ g :  and GlEEs  respectively, where GlEEs is obtained 
^ g l  from C1DEs by substituting/~k~o f o r  D k 8  a Hence, 

~ g l  ~ ^ 9 1  ^ g l  ^ g l  
1,hyp C1DDsa % 2C1DEs + GlEEs  (12) 

would be conditionally unbiased for ~ g l  1,hyp;s~ " 
Despite the fact that  ~g~ is purely hypothetical 1,hyp 

it nevertheless suggests an estimator of practical in- 
terest. Replacing the unobservable Dksa and Eksa in 

- ' B ,  i (12) with dk x k , , --XlkBl~ available for k E s~ 
and ek, available for k E s, we get, in obvious no(a- 
(ion, 

^ g l  ^ g l  ^ g l  Via ^g' . (13) 
- -  Cldds a -Jr- 2Cldes + Clee s 

Rather than replacing Ek~o with ek, one might con- 
sider using gksek, in analogy with using V~o as an 

estimator for V2 " AV2. Thus, an alternative esti- 
mator for V1 is given by 

^gig ^91 9~glg ~glg Via + + (14) m Clddsa "'-~ldes "Jlees, 

where ~gxg and ~gx g V l d e s  "~lees are obtained from, respec- 
^ g l  ^ g l  tively, C:de~ and Cle~ by substituting gksek for ek. 

In deriving ^ g: Via ~91 in (9) served Via and ^ 919, :,hyp;sa 

as the starting point. Thus, using 

lh y p ; s a -- E E S a  makl f-~lks~F--Jlls~ 
7rakl 

as the starting point, rather than (9), the above ap- 
proach results in yet two more estimators for V1. 
Setting glkso = 1 for all k C Sa in (13) and (14), we 
get, respectively, 

Y ~ a  ^1 8 ^ 1  ^ -- C1 ddsa + 2d~ de -~- Glees (15) 

and 

i rma  m C 1  ^ g ^ g lddsa + 2Cldes + Glees" (16) 

Theoretically, in order to construct an estimator 
for V(tr) ,  any one of (13), (14), (15), and (16) can 

^ ^ 

be combined with either V~o in (4) or V~o in (7). 
Thus, the new approach to estimation of V: leads to 
no less than eight possible estimators for V(tr) ,  all 
of which are given in Table 1 below. 

At present, little is known about the performance 
of the suggested estimators, why further work is 
needed before any general recommendations can be 
made about which estimator to use in practice. 
However, by examining the simplified expressions for 
the two special cases when (i) 7rak -- 1 for all k C U 
(i.e. 8a -- U), and (ii) ~k}8o -- 1 for all k e 8a 
(i.e. S=Sa), and comparing them to the reference 
estimators given in (4) and (7), a group of four esti- 
mators emerges as more interesting than the remain- 
ing ones. Note that  under (i) and (ii), we are sim- 
ply studying generalized regression estimation un- 
der one-phase sampling, the auxiliary information 
being either (i) x, or (ii) Xl. Thus, it follows from 
(4) that  Vo ~:;g simplifies to V2~o under (i) and V:ô gl 
under (ii). Similarly, it follows from (7) that  @;1 

^ ^ 

simplifies to V~o under (i) and V~o under (ii). Thus, 
no matter  if the auxiliary information used is x or 
Xl, using Vo ~l~g under one-phase sampling amounts 
to using the g-weighted residual technique for vari- 

^ 

ance estimation, whereas using V 2 ; :  amounts to us- 
ing the simplified approach that  completely ignores 
the g-weights. This feature of ~rOgl ;g and ~1:1, which 
we choose to label phase-c°mpliance' is attractive. 
As indicated, only four of the estimators in Table 1 
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are phase-compliant, namely ~/r: 1;g , l ~ ' r :  l g ; g  , IPa ~;1 , and 
I)ag;1. Since phase-compliance is a desirable feature of 
any estimator for V(tr)  under two-phase sampling, 
we restrict our attention to these estimators in the 
sequel. 

Estimator 

^ ^ ^ 

V 2  ;1 - -  V 1 1  ÷ V 2 0  

Ca 
^ ^ ^ 

V a  g ; 1  - V ~ a  ÷ V 2 o  

^ ^ ^ 

v:;~ --Via +V~o 
~ / ~ g l  ;1 ^ g l  ^ a - V i a  ÷P2o 
~ gl ;g ^r gl ^ a -- ~/la ÷ V~o 

^ 
f (  g l g ; 1  ^ g l ÷ V ~ o  a -- Via g 
? ( ~ 1  g;g ^ gl  g ^ --Via ÷V~o 

Simplified expr. Phase- 

compl. 7rak = 1 

for 

k c U  

"7['k18a = 1 
for 

k C S a  
^ 

^ 

^ 

^ 

^ 

^ 

^ 

^ 

^ 

V~o yes 
^ 

V~o no 
^ 

V~o yes 
^ 

V~o no 
^ g l  l o no 
^ g l  Vi o yes 
^ g l  l o no  
^ g l  Vf o yes 

Table 1" Simplified expressions for I)2;1, I)l;~, ~r:;1 
^ 

V a g ; g  ? a l ; 1  ^ V a g l g ; 1  , V g l ; g  , ^ , a n d  ? : l g ; g  w h e n  ( i ) a l l  

7raa = 1 for all k C U, and (ii) all 7ral~. = 1 for 
all k C S a. 

6 D i scus s ion  

As mentioned in Section 5, the new approach to vari- 
ance estimation makes more complete use of the ob- 
served sample information. Therefore, it should re- 
sult in estimators for V (tr) that are more efficient 

than either of 1)o 1;~ and @;1, given reasonable cir- 
cumstances, i.e. circumstances such that two-phase 
regression estimation is preferred to ordinary double 
expansion estimation. To exemplify, let us compare 
17~;1 - % + I721 ° with @;1 _ l)llo + i?~o in terms of 
variances. 

EXAMPLE 1. We start by noting that 

V ( 7 2 ; 1 )  - V ( ? 2  ;1) - V(?~a ) - V(?~o I 

+ Vlo ~ )  (17) 

Now, given the relation e l k  = dk +ek,  it follows from 
^ 

(5), setting all g-weights to unity, and (15), that  V~a 
can be rewritten as 

~A, rlla __ d l  "1 " , ~dd~o --Cld~ + V?o (18) 

^ 1  ^ 1  where Cldds is analogous t o  Clees. Under reason- 
able circumstances, we expect dk -- elk for a major- 
ity of k C sa, regardless of the particular second- 
phase sample obtained. This implies that condi- 
tionally on S a the term 01 ^1 ^ , ldds~ -- Cldd~ in V~a will 

^ 

serve as an adjustment term, calibrating V~o to- 
wards its conditional expected value and thus re- 
ducing its conditional variance. Consequently, since 

E(VllI 'da) " E(V~ol,da) , we conclude from (18)  

that  V(V~a ) - V(l)11o) < 0 under circumstances 

deemed reasonable from a practitioner's point of 
view. Furthermore, since x - (xl, x~)' is a stronger 
predictor than Xl by assumption, using arguments 
from standard regression theory, we expect elk to 
be larger than ek, in absolute value, for most k C s. 
Moreover, we expect a majority of the paired residu- 
als elk and ek to coincide in terms of their sign. Indi- 

^ ^ 

rectly, this indicate that V~o and V~o should be posi- 
tively correlated under circumstances deemed rea- 
sonable from a practitioner's point of view, since 
the observed estimate of V~o in a sense imposes 
a restriction on the possible range of outcomes of 

^ ^ 

V~o. Since V~a to a large extent is based on in- 
formation observed for k C S a - s, we expect the 

^ ^ 

correlation between V~a and V:~ o to be negligible. 

Hence, since E(l)l~alSa) " E(V~olSa ) ,  we expect 

C(I)I 1 - 1)11o, 1721o) _<0 under circumstances deemed 

reasonable from a practitioner's point of view. From 
(17) we thus conclude that the above arguments,^al- 
though rather heuristic by nature, indicate that V TM 

^ 

should be more efficient than V 1;1 under reasonable 
circumstances. D 

Given a reasonably large sample size in each 
phase, each one of the four phase-compliant estima- 

^ ^ 
tors V2 ;1 1 ^ 91;9 ^ 919;9 , VJ; ,  Va , and Va is approximately 
design unbiased for V (tr) and should yield approx- 
imately valid confidence intervals. However, using 
the same arguments as in Section 5, we expect VJ 1 ;g 
and I?g lg;~ to exhibit better conditional behavior. 
Two references regarding conditional vs. uncondi- 
tional behavior, relevant for this paper, are Rao and 
Sitter (1995) and Sitter (1997). The references are 
similar, in that they both concern variance estima- 
tion for the G R E G  when simple random sampling 
without replacement is used in both phases, S I ,  S I  
for short, no auxiliary information is available at the 
onset of the study, and the auxiliary information ob- 
served for k C sa is scalar valued. 

EXAMPLE 2. In Rao and Sitter (1995), the point 
estimator of interest is ~r - (fls/2s)28~ - B ~ 2 ~ ,  
where ~ = Y~sYk/ns,  28 is defined analogously, and 
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2~o is the first-phase analogue to 28. Using Wk (x Xk 
in (1), it is a matter of simple algebra to show that 
~ - t r / N  under the design S I ,  S I .  It is straightfor- 
ward to show that the reference variance estimator 
considered by Rao and Sitter, 

) Cs 2 
V o ( ~ r )  - -  cs--'--z-~ B2sS2xs Zr-  2JBsSxes  - ' t -  - - S e s  , 

Tts a Us 
(19) 

where c,o - 1 - n s o / N ,  c8 - 1 -  ns / N ,  $28 = 
2 ~J-~s (Xk -- 2s) 2 / ( n s  -- 1), S2es - }-~sek/(ns -- 1) with 

ek -- Y k -  B s x k ,  and Sxe8 - ~? -~sxkek / (n , -  1), is 
identical to the variance estimator for ~ given by 
V2;~/N2. Two variance estimators included in the 
study are the linearization-type estimators 

) as 2 
V ] - ( ~ r )  - -  Cs.._.~.~ B2sS2xs~ + 2JBsSxes + - - S e  s, 

~t s a 7t s 

and 

(20) 

( ) C o. 

ns----~ BsSxs~  + 2--BsSxeSxs 

Cs ['2s~ ~ 2 
+ -  [=- S~, (21) 

] ns \ x ~  

where S~,o is the first-phase analogue to S~.  While 
1771 (~r) is derived using arguments somewhat similar 

in spirit to those given in Section 5.2, V2(~) is a 
linearized version of a jackknife estimator. It is a 
matter of simple algebra to show that (20) and (21) 
are identical to lYa ~;~/N 2 and 991g;g/N 2 respectively, 
under the given model and design. N 

In the simulation study conducted by Rao and 
Sitter (1995), IYl (~ )  and 172 (~)  are both found to 

be substantially more efficient than l)0 (~r) uncon- 
ditionally, under reasonable circumstances. How- 
ever, from results regarding one-phase sampling (e.g. 
Royall and Cumberland, 1981a, 1981b; Wu and 
Deng, 1983; Sgrndal et al., 1989), one may expect 
lY2 (~)  to outperform 1)1 (~ )  conditionally, given the 
approximately ancillary statistic 2~o/2~. This hy- 
pothesis is supported by the results of the simulation 
study; V2 (~ )  reveals acceptable conditional behav- 

ior, whereas 91 (~r) does not. 

EXAMPLE 3. In Sitter (1997), the point estima- 
tor of interest is ~r - ys +/3~ (2~o-  2s), where 
Bs - S~s/S2zs with S2ys analogous to Sz 2s. Using 
xk -- (1,Xk)' and wk - 1 in (1), it follows that 
9r - t r / N  under the design S I ,  S I .  Apart from the 
reference estimator, which is identical to V2;~/N2, 
based on ek -- Y k -  Y s -  B~ ( X k -  2s),  five other 
variance estimators are studied, including two esti- 
mators suggested by Dorfman (1994). Of these, two 

are linearization-type estimators that are of interest 
within our context, namely 

Us q2 - Cso + (22) 
T~,8 a ~ 8  ~XSa ~n 8 ~e8  

and 

1 , 1 

ns  nsa 
(23) 

where 

and 

/~1"-- --nsl Ese~ (a~2 + 2a;8 ) 

nso 2 B~ E (Xk - 2 s a  ) eka*ks 
ns ns~ -- 1 s 

where a~, - aks / (1  - -bks) ,  with 

aks - n ~  (Xk - 2~) (2s~ - 2~) / [(ns - 1)S~] 

and 

bk, - 1Ins  + (xk - 2~) 2 / [(n, - 1)S~,]. 

The derivation of the estimators (22) and (23) is sim- 
ilar to the derivation of the estimators (20) and (21) 
respectively, and it is easy to show that, under the 
given design, (22)is identical to V2;1/N2. Moreover, 
from Va ~1 g;g we get 

~/~r2(~r ) -- 9 g19;gN 2 58 C8 a : l?a ( ~ ) + - - R 1  + ~ R 2 ,  (24) 
ns 7ts a 

where 

1 
_ 2 (a2k, + 2aks) t~ 1 -- E s e k  

n s - 1  

and 

R2 z 
ns - 1 
~ B ~ } - ~ s  (Xk -- 2~o)ekak~. 

When the second-phase sample size, ns,  is large, 
a'ks " aks, which implies that the estimators (23) 
and (24), while not identical, have similar large- 
sample behavior. CI 

The properties of the variance estimators consid- 
ered in Sitter are studied through simulation. Both 
171 (~r) and I72(9r) are found to be substantially 

more efficient than I)0(~)unconditionally,  with 

1)1 (~ )  being slightly better. However, when study- 
ing the properties conditional on the approximately 
ancillary statistic 2so - 2s, a slightly different picture 
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emerges. Both V1 (~)  and 1)2 (~r) perform well when 
the population data conform to a homoscedastic re- 
gression model, but 1)2 (~r) continue to perform well 
also when the population data deviates slightly from 
such a model, whereas V1 (~)  does not. These find- 
ings are in line with what might be expected; consid- 
ering one-phase sampling, some support is given in 
Royall and Cumberland (1981b) and SSrndal et al. 
(1989). Furthermore, since I)2 (~)  and 1)2 (~)  are 
approximately equivalent^in large samples, the sim- 
ulation results regarding I72 (.~) should hold approx- 

imately for 1)2 (~r) as well. 
The final example concerns the problem of nega- 

tive variance estimates, which indeed may be a prob- 
lem of practical concern under two-phase sampling. 

EXAMPLE 4. Axelson et al. (1996) consider two- 
phase regression estimation for the special case when 
no auxiliary information is available at the onset of 
the study. For the first phase, they consider two- 
stage sampling, such that stratified simple random 
sampling is used in the first stage, whereas an arbi- 
trary design is allowed for in the second stage of the 
first phase. For the second phase, any design such 
that rrkllsa > 0 for all k&l E Sa is allowed for. 

As a first choice of variance estimator, they con- 
sider VHT -- I71,HT + V2, where V1,HT is a slightly 
modified version of 1)11o, while 1)2 is identical to V~o. 
Through a simulation study, Axelson et al. show 
that Vur, due to unstable performance of fTl,Ur, 
results in negative estimates unacceptably often un- 
der circumstances deemed relevant for the particu- 
lar application considered. In order to avoid this, 
an alternative estimator for V1, denoted l)l,reg, is 
suggested. I)l,reg utilizes more of the available aux- 
iliary information than I?I,HT, why the authors ex- 
pect I?~eg - I)l,reg + 1)2 to perform better than 
IPHT under conditions such that the GREG outdoes 
the double-expansion estimator. This expectation is 
confirmed in the above mentioned simulation study. 
Although derived using a different line of argument, 
it is easy to show t h a t  ~/1,reg alternatively can be 
derived using the approach suggested in Section 5.2 

with E(V1,HTISa~ as the starting point. V] 
\ • / 
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