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1. INTRODUCTION 

The Current Employment Statistics (CES) program 
supplies some of America's most vital leading-economic 
indicators. At the 1997 annual meeting in Anaheim, 
various authors reported on the status of an ongoing 
redesign of this important survey. Their papers 
discussed the rationale for the redesign, the new 
sampling design, the new estimation procedures for 
employment levels and trends, and special estimation 
issues for hours and earnings variables. In the current 
paper, we discuss variance estimation for all CES 
variables. 

The overall variance estimation strategy involves 
primary use of the balanced half- samples (BHS) method 
for higher-level, aggregate statistics, and secondary use 
of generalized variance functions (GVF) for the more 
disaggregated statistics. Our BHS method addresses 
many CES design features, such as stratification, more 
than 2 primary units per stratum, clustering, birth and 
death sampling, and rotation sampling. We incorporate 
allowances for the imputation variance and for the finite 
population correction. To improve variance estimation 
for nonlinear statistics, we employ both the half sample 
estimator and its complement. 

2. R E V I E W  OF THE M E T H O D  OF BHS 

In this section, we review the basics of the BHS 
method and describe a number of extensions that 
provide flexibility to handle a wide spectrum of 
sampling designs. 

2.1 Basic Method 

Suppose it is desired to estimate a population total, Y, 
from a statistical sampling design with two selected units 
per stratum, where the selected units comprise a simple 
random sample with replacement (srs wr). Let L denote 
the number of strata, Nh the number of units within the 
h-th stratum, N the size of the entire population, and nh 
the sample size within the h-th stratum. Assuming 
complete response, the unbiased estimator of the 
population total is given by 

L 

~" = Z Z Whi Yhi ' 
h : l  i~s h 

where sh is the sample in stratum h and Whi - N h / n h is 
the base weight attached to the hi-th unit. The standard, 
unbiased estimator of the sampling variance is 

L 

v(Y) : Z (Whl Yhl - Whz Yhz) 2 " 
h=l 

The BHS method works in terms of half samples comprised 
of one unit from each stratum. Define indicator 
variables 6h~ ~ and 6hz ~ that identifywhetherthe first 
or second selected unit from the h-th stratum is in the =-th 
half sample. Then, the unbiased estimator of the population 
total derived from the ~-th half sample 

L 

L = ~ Z Whit~ Yhi~ , 
h=l iEs h 

where the half-sample weight, Wh~ ~ = 2 Whi 6hi ~ , is 
either twice the full sample weight or zero. A set of k>_2 
half samples are required in order to provide the following 
unbiased estimator of the sampling variance of Y" 

1 £ 

It is desirable to employ a balanced set of half samples, 
where balance is achieved by defining half samples 
according to the rows of a Hadamard matrix (see Wolter 
(1985), Appendix A). Each column represents a different 
stratum and each row a different half sample. The symbol 
"+" in the ah-th cell of the matrix signifies that the first unit 
in the h-th stratum is in the ~-th half sample, while "-" 
signifies that the second unit is in the half sample. To 
achieve full, orthogonal balance the order of the Hadamard 
matrix must exceed the number of sampling strata. To 
achieve partial balance the order of the Hadamard matrix 
can be smaller than the number of sampling strata, in which 
case the columns may be assigned to multiple strata. Given 
full, orthogonal balance, the BHS estimator of variance, vk, 
is algebraically identical to the standard unbiased estimator, 
V. 
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In many survey applications, the last stratum is a 
certainty stratum, contributing zero sampling variability. 
To properly accommodate this situation, we must assign 
each and every unit in stratum L to each and every half 
sample. Thus, 6 L i ~ : 1 and WLi ~ = WLi for i = 1, 
.... NL and a = l, ..., k. The foregoing discussion of 
Hadamard matrices and full, orthogonal or partial 
balance applies only to the noncertainty strata. 

In two-stage surveys with two primary sampling units 
(PSU) selected per stratum, the half samples should be 
defined based upon whole PSUs. The BHS estimator of 
variance, vk, is defined as before, but in terms of the 

qa  - Z Z Z W h i j a  Yhij ' 
h = 1 iES h iEShi 

half-sample estimator where the subscript j signifies the 
elementary unit selected within the hi-th PSU. 

Let 0 = 0 (Y, X, Z, ...) denote a general population 
parameter of interest, defined as a function of population 
totals. In our experience, virtually every parameter of 
interest in real sample surveys is of this general form. 
The standard estimator of 0 is t) : 0(57, J(, Z,. . .)  and 
the BHS estimator of its variance is defined by 

1 £ 0) 

where the half-sample 
) 

estimator is 

2.2 Simple Methods for n h _> 2 

We now consider the general case with two or more 
units selected per stratum. While it is possible in select 
cases to construct variance estimators based upon fully- 
orthogonal, fractional samples, such as for nh a prime or 
a power of a prime, we believe there is merit in 
continuing the simple BHS method. There are two basic 
approaches. First, we may subdivide the units in each 
stratum into two random groups, and then apply the 
basic BHS method to the two groups. The subdivision 
may be done systematically or randomly. The estimated 
totals, ~" and ~" , and the BHS estimator of 
variance, vk, are defined as in Section 2.1. 

Second, we may subdivide the h-th stratum into Gh 
artificial strata, each of sample size 2, for h = 1, ..., L .  
Now thereare G = ~ G h artificial strataoverall, and 
the sample size in the h-th real stratum is 

n h -- 2 G h . Given this approach, the full-sample 

estimator and half-sample estimator are defined by 

L Gh 2 

q = Z ~ ~ Whgi Yhgi 
h=l g : l  i=l 

L Gh 2 

L = ~ Z ~ Whgi~ Yhgi ' 
h : l  g=l i=l 

r e s p e c t i v e l y ,  w h e r e  

Whg i = N h / n h , Whgia : 2 Whg i 6hgia , 6hgia is 
an indicator variable signifying whether the first or second 
selected unit from the hg-th artificial stratum is in the a-th 
half sample. We obtain the BHS estimator of variance, Vk, 
by applying a fully- or partially-balanced design to the G 
artificial strata. 

Given nh >- 2 sample units in the h-th stratum, the 
standard, textbook estimator of variance is based upon nh- 
1 degrees of freedom (dr), while the first and second simple, 
BHS estimators are based upon 1 and Gh df, respectively. 
On this basis, one might prefer the second simple estimator 
to the first. On the other hand, the first simple estimator is 
probably easier to apply in practice, and may be good 
enough as long as L is large. 

2.3 Correction for Without Replacement Sampling 

If sampling is without replacement within the h-th 
stratum, then we may find it desirable to incorporate in the 
variance calculations a finite population correction factor 
(fpc), 1 -f~, wherefh is the sampling fraction in the stratum. 
We define the corrected half-sample estimator of the 
population total by 

L 

h =1 ies h 

where the corrected weight for the a-th half sample is 

f,+ l, l tW i 
estimator of variance, is defined as before, but with 

5?* replacing q~ .  
Assuming full, orthogonal balance, we can show that vk* 

is algebraically equal to the standard estimator of variance 
for simple random sampling without replacement. Thus, we 
have successfully incorporated the fpc's, as desired. 

776 



2.4 Use of the Half Sample and Its Complement 2.5 Combining All the Features of the BHS Method 

Thus far, we have been discussing variance 
estimation based upon k half samples. For nonlinear 
estimators and for thin samples, we occasionally find it 
useful to employ both the half samples and their 
complements, or 2k half samples overall. 

The complement of the ~-th half sample is defined by 
c 

the new indicator variables 6hi~ = 1 - 6hi~ . The 
corresponding estimator of the population total is 

L 
Lo o 

= Whi  ix Yhi ' 
hl  i e s  h 

where the half-sample weights are now 
c : 2 W h  6~ i W h i  ix i ix " 
One possible estimator of variance is a weighted 

average of the BHS estimator of variance based upon the 
k original half samples and of the BHS estimator based 
upon the k complementary half samples, defined by 

v~(~') : yv~(Y') + (1 - y ) v : ( Y ) .  

A second possible estimator of variance is defined by 

y 2 k  0~:1 

k 

= ~ ( ~ ' ~ - ~ ' ~ / 4 k ,  
0~=1  

where 57~ is an estimator based upon a weighted 
average of the half sample and its complement, defined 
by 

l - y q ~  

2 2 

L 

= Z Z Whtic~ Yhi 
h = l  i E ~ .  

and 

i~r~iix = Whi  {.(1 + y)(~hiix + (1 - y ) ( 1  - ~ h i a ) }  
While the mixing parameter, y, may be chosen 
anywhere in the half-open interval (0, 1 ], we know of 
reason not to choose the value y= 'A. The estimators 

* and v-- k are discussed by Wolter (1985) and Fay v k 

(1989). 

We now combine all of the features of the BHS method 
discussed in Section 2. This means we assume possibly 
multiple-stages of sampling, nh > 2 primary sampling units 
per stratum, sampling without replacement, and use of both 
the half sample and its complement. 

To estimate the population total, the combined, half- 
sample estimator is now 

L 
+ 

~'~ : Z Z Z Whij Yhij' 
h : 1 i e s h J £ Shi 

where the combined weight is 

Whi j = Whi j [ 1 + ( 1 - fh) '~ { ( 1 + y )6hiix + 

( 1 - y ) (  1 - 6hict ) - 1 } . 

And to estimate a general parar 
sample estimator is t)2 = 0 
estimators of variance are 

rater 0, the combined, half- 
Yix , Xix , ...) . The " + BHS 

yZk ~:1 

and 

v:<0t 1 (0: 0 ;  
y Z k  ix : l  

3. IMPUTATION VARIANCE 

We now examine modifications to the BHS estimator of 
variance to accommodate the problem of nonresponse. To 
begin, we consider simple random sampling without 
replacement in one stratum, and for notational convenience, 
we temporarily suppress the stratum subscript. After 
developing methods for this simple problem, we shall 
reintroduce the full sampling design and correspondingly 
extend the methods. 

We shall assume that r units respond and m units do not 
respond, such that n = r + m. And we assume a random 
response mechanism within stratum. 

We are interested in estimating the stratum mean, 
Y . Given complete response, one may consider the 

sample mean, ~, as the unbiased estimator of the stratum 
mean. We shall consider this estimator following 
imputation for missing values based upon a trend (or ratio) 
model. 
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Let x denote a lagged value of the y-variable. 
Suppose the x-variable is complete (observed) for all 
units in the sample, even for the m nonrespondents. 
Then the imputed data set consists of the values 

Yi -- Yi' i f  i responds 

= X i ~,  if i does not respond, 

where [~ : ~-r/~ and y~ and ff denote the 
sample means of the respondents. The estimator of the 
stratum mean, the sample mean of the imputed data set, 
is now given by 

- 1 - I x ,  Y I -  ~ Yi (Y'r/Xr I n its 

where ~- denotes the overall sample mean of the x- 
variable, and s denotes the overall sample. 

Using a conventional Taylor-series expansion, we 
find the sampling variance of Y-I is given 
approximately by 

V a r { ~ - l } .  ( 1  _ _  1)  2 
r N Sd + 

2 --1 []Sd× + _ _ 
n n N ' 

(2) 

where [3=Y/X is the stratum-specific regression 
coefficient, d i = Yi - xi [3 is the residual for the i-th 

2 -1 2 
u n i t , S d = (N - 1) ~ d i , 

2 - 1 E  -- , S X = ( N  - 1 ) ( X  i - -  X )  2 a n d 

Sdx = (N 1 ) - I E  di Xi"  

Our aim is to employ the BHS approach to estimating 
the sampling variance. Towards that end, we establish 
two random groups -- sz and s2, where s = Sl u s2 --  

within the stratum and we employ separate imputation of 
the missing values within each of the groups. Note that 
separate imputation implies three sets of imputed values: 
one each for s, s~ and s~ . 

A provisional estimator of the sampling variance is 
given by 

v ( ] i ) :  (]I1 - y-x2)z/4, 

where 9-~1 and Yxz are the sample means of the two 
imputed data sets. Given the assumed random 
nonresponse mechanism, and given that the sizes of the 

two random groups (nl and n2 ) are equal and that the 
numbers of respondents in the two random groups (rl and 
r2) are equal, we find that the expectation of the 
provisional estimator of variance is 

E { v ( ~ - i ) }  1 2 1 1 [32 2 
: - -  S d + 2 -  [3 S d x  + - -  S x . 

r n n 
(3 

Comparing Equations 2 and 3, we conclude that v is 
unbiased except for failure to apply the appropriate fpc' s. 

To correct for the upward bias due to without 
replacement sampling, we recommend the fpc-corrected 
estimator, v* (Y-i): (1 - f ) v (Yx), where f =  r / N o r n / N .  

The first choice of the sampling fraction f is the more 
conservative, leaving a residual upward bias. In some 

2 
applications, the mean square, S d , and cross 
product, Sdx, will be small relative to the mean square, 

S~ , of the lagged variable, in which case, the second 
sampling fraction may be preferred. 

We close this section by returning to the full sampling 
design with L strata introduced in Section 2. The basic BHS 
estimator of variance essentially implements the preliminary 
estimator, v, within each stratum. Thus, in the presence of 
imputation for nonresponse, the basic BHS estimator of 
variance is upward biased. Similarly, the BHS estimator 
corrected for without replacement sampling essentially 
implements the fpc-corrected estimator, v*, within each 
stratum. Thus, in the presence of imputation for 
nonresponse, we recommend the BHS estimator defined in 
Equation 1, defining the stratum sampling fractions 
as fh = r h  / Nh or n h / N h . And for applications that 
warrant a conservative approach, we advocate the smaller 
sampling fraction, fh = r h  / N h  " 

4. I M P L E M E N T A T I O N  OF T H E  

CES REDESIGN 

The background and details of the CES Sample Redesign 
are detailed in Butani, Stamas and Brick (1997). The 
sample design is a stratified probability sample of 
Unemployment Insurance (UI) Accounts. These accounts 
may consist of one or many individual worksites in different 
SICs and MSAs within a single state. Although estimates 
are then produced using data collected for the individual 
worksites, this sampling mechanism provides the only 
operationally feasible method of capturing employment 
growth due to new worksites opening for existing 
businesses. 

Sample stratification of UI accounts is based on SIC (11 
major industry divisions), employment size class (8), and 
MSA of UI accounts. The MSA dimension is implicit, 
while the industry and size dimensions are explicit. The 
three largest size classes are collapsed into one size class for 
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purposes of imputation. We decided to use these 6 
imputation size classes for defining variance estimation 
strata since units within the largest (collapsed) size class 
are all sampled at or near certainty. Also, we decided 
not to recognize the MSA dimension of the stratification 
scheme in the variance calculations. These decisions 
result in 11 x6 = 66 variance strata per state. 

4.1 General Approach to Variance Estimation 

Our general approach to variance estimation is to 
form two random groups within each variance stratum 
and to apply a BHS method to the two groups as 
described in Section 2.2. We will use 68 half samples 
per state to obtain a fully balanced set of replicates. The 
same half sample design will be repeated within each of 
the states to produce variance estimates for national 
estimates. The assignment of sample units to random 
groups is accomplished by first sorting all sample units 
within a state by industry/size/MSA/PRN (permanent 
random number). All sample units are then alternately 
assigned to random groups 1 and 2 from this sorted list. 
The random groups will thus reflect the same implicit 
stratification by MSA employed during sample selection. 

A Hadamard matrix of order 68 will be used to define 
68 replicates as described in Section 2.1. The rows of 
the matrix represent half sample replicates and the 
columns represent the 66 variance strata. The replicates 
for national estimates will be defined by repeating the 
columns for each state, thus creating a partially 
balanced design. However, the columns will be repeated 
in a circular fashion such that for a given industry 
different columns of the matrix will be used in different 
states. In our implementation, the first industry for the 
first state will use columns 1-6 of the matrix while the 
second industry for the first state will use columns 7-12 
• The first state will use 66 of the 68 available columns 
(two of columns are not used). The first industry for the 
second state will use columns 7-12 of the matrix while 
the second industry for the second state will use columns 
13-18. The last industry for the second state will use 
columns 1-6. Eighteen states will necessarily be forced 
to double up on the columns already used by the other 
states. This circular assignment of columns to states 
should increase the precision of the variance estimates 
for national estimates. 

4.2 Sample Maintenance and Sampling Births 

Once a year the sample will be re-selected for the 
purpose of maintaining near optimum sample allocations 
using the most current stratification variables available 
on the sample flame. The use of PRNs for sample 
selection provides an annual sample overlap of 85 to 90 

percent. Once each quarter, except the first quarter when 
the entire sample is re-selected, the sample frame is updated 
for the purpose of identifying business (UI) births and 
deaths. Following a quarterly update, the deaths remain in 
the sample and random groups with collection variable 
values of 0. The births are sampled using the same 
stratification definitions as the initial sample, and assigned 
to random groups in the manner described earlier. 

4.3 Incorporating Imputation Variance 

Imputation will be implemented for each random group 
to incorporate the variance due to imputation in the BHS 
estimator. To this end we will also assign certainty units to 
the two random groups and use the fpc of (1 - rh/N~) as 
described in Section 3. The results of our simulation study 
suggest that this will result in reasonable and conservative 
estimates of the variance. If all certainty units respond for 
any stratum, the fpc will result in a zero variance 
contribution for the stratum. 

At least some of the variance strata, as defined above, 
will have relatively few numbers of sample units and even 
fewer responding sample units. Imputing for 
nonresponding units for each random group within these 
strata may pose problems if we are limited to the use of only 
one of two random groups within each stratum. Therefore, 
we decided to use the half sample and its complement-  
with weights as described in Section 2.5 - for the purpose 
of half-sample imputation, Yi • 

Incorporating all of these features leads to the estimator 
and weights as described in Section 2.5 with the 
conservative fpc of (1 - rh/Nh). 

5. SIMULATION STUDY 

The population used in the simulation is a real data set 
from the BLS. 1,000 stratified simple random samples 
were drawn without replacement from the population. The 
sampling fraction in each stratum (constructed by 
employment size and industry type) is similar to the real 
CES. Within each industry, there are some certainty strata 
consisting of large establishments. 

For each unit in the population, there is an indicator 
value which equals 1 if the unit is a respondent, 2 if the unit 
is a nonrespondent but becomes a respondent in the next 
month, and 3 if the unit is a nonrespondent. All values of 
units in the population are observed, whether or not the 
indicator is 1, 2, or 3. These indicator values reflect the 
response pattern and are used in the simulation to generate 
respondents (and nonrespondents). With each sample, an 
independent stratified simple random sample of these 
indicator values was obtained and used as response 
indicator values for the obtained sample. 
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Two statistics were considered: the monthly total all 
employees and the monthly change. 

Four different BHS estimators of variance were used. 
Method 1: fpc is used; separate imputation by half 
sample is not used. Method 2: fpc is used; separate 
imputation is used. Method 3: fpc is not used; separate 
imputation is not used. Method 4: fpc is not used; 
separate imputation is used. 

Summary of the simulation results" 
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Table  1. Results  of  S imulat ion 

Month RB 

Estimator 

VAR RB 

Method 1 Method 2 Method 3 Method 4 

[ CV RB CV RB ] CV RB ] CV 

Monthly Total 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

5.17×107 

8.98x107 

1.47× 108 

2.35× l0 s 

27.7×108 

2.70×108 

-47.8 32.5 -1.3 60.6 -33.4 39.1 24.3 71.0 

-40.8 25.8 -10.6 37.8 -25.4 30.9 11.4 44.9 

-31.4 29.3 -9.1 40.3 -14.5 34.7 12.6 47.3 

-29.2 30.7 -9.8 20.9 -11.0 37.5 13.5 49.6 

-21.6 36.4 -5.5 46.5 -1.1 45.4 19.0 57.6 

-13.3 39.3 -6.9 41.4 10.0 49.0 17.9 51.6 

0.3 

-0.5 

-1.3 

6.2 

3.6 

18.5 

5.17×107 

5.94×107 

7.48x107 

1.21×108 

1.13x108 

1.15×108 

Month-to-Month Trend 

-47.8 32.5 -1.3 60.6 

-55.8 21.9 -10.9 40.5 

-42.7 30.4 -5.7 46.3 

-45.2 32.3 -11.2 50.6 

-49.2 28.4 -8.8 59.2 

-49.5 28.4 -12.0 43.7 

-33.4 39.1 24.3 71.0 

-44.7 25.7 10.3 47.5 

-29.4 35.2 15.1 53.2 

-29.9 40.7 13.1 63.0 

-35.0 41.4 15.6 70.7 

-36.2 33.3 9.9 51.6 
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