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1. Introduction 

Systematic probability proportionate to size (PPS) 
sampling procedures (Wolter, 1985, section 7.6) are 
efficient in terms of ease of selection and lowering 
sampling error. For this reason they are used extensively 
in large-scale surveys. Since each stratum systematic 
sample is selected using a single random start, the sample 
can be viewed as a sample of size one, where each sample 
consists of a single sample cluster of n h primary 

sampling units (PSUs). Therefore, it is impossible to 
produce an unbiased variance estimator since the sample 
size is one. However, a number of biased methodologies 
are used for variance estimation. 

These methodologies generally take one of two forms: 
1) assume the systematic sample can be approximated by 
a simpler sample design with a known variance estimator 
or 2) assume the response variable follows some super- 
population model and a variance estimator is produced 
appropriate for that model. Both these approaches allow 
for grouping of PSUs, so variances can be computed 
within groups. Wolter (1985, chapter 7) provides a good 
discussion of a number of systematic sample variance 
estimators that can be classified into one of these two 
forms. An example, using balanced half-sample 
replication (BHR) is provided below. 

BHR is a widely used variance replication 
methodology for complex survey designs. It is designed 
for samples where two PSUs within each stratum are 
selected with replacement. With B H ~  choosing one PSU 
within each stratum generates a half-sample. A number of 
half-samples are generated by alternating which PSU, 
within stratum, go into the half-samples. The BHR 
variance is the simple variance of the half-sample 
estimates. Through a balancing process of the half- 
samples, the BHR variance estimate, for linear estimates, 
equals the direct sample variance estimate. 

BHR can be adapted to designs where more than two 
PSUs are selected in a stratum by consecutively pairing 
selected PSUs, after placing them in the original order of 
selection; and assuming each pair is a stratum for 
variance estimation (variance stratum). If without- 
replacement sampling is used then a f'mite population 
adjustment can be applied. See (Wolter, 1985 pp. 110- 
152) for a more complete description of BHR. 

In order to use BHR with systematic PPS sampling, it 
must be assumed that a PPS selection can be 

approximated by the deep stratification induced by the 
pairing described above. This assumption is reasonable, 
considering that the first sort variable, ignoring the lack of 
independence between breaks in the variable, can be 
considered an implicit stratification. However, BHR also 
assumes that the variance estimate is proportional to the 
inverse of the sample size. (This follows from 

VBn R ( X )  = V ( ( X ~  + X 2 ) / 2) = 1 / 2 V ( X ~  ) , where 
subscript 1 and 2 represents the estimate based on the first 
and second PSUs respectively selected in each stratum.) 
In section 2.0, it will be demonstrated, through a 
simulation study, that systematic sampling variances are 
not necessarily inversely proportional to the sample size. 
2.0 Using the BHR Model with Systematic Sampling 

For the BHR model to work, the stratum variances 

must be proportional to 1 / n h ,  as nhincreases or 

decreases, since BHR makes this assumption. If this 
assumption is not true then the BHR model is unlikely to 
produce accurate results. To investigate the 1 / n  h 

assumption, a simulation study is done, using the sample 
design described in section 4.2. Four thousand systematic 
PPS samples are selected with sample sizes of n h and 

0 . 5 n  h . By computing the simple variance of the 4,000 

simulation estimate, an estimate of the true variance is 
computed. This is done for estimates of total students, 
teachers and schools. If the variance is proportional to 

1 / n h , then the ratio, R100 / 50 = 

I~,h (Xt) / I)05, h (Xt )x0 .5 -1  should be close to 0; where 

l represents the estimate type (total students, teachers or 
schools). When the ratio is less (greater) than 0, the 
systematic sample variance decreases faster (slower) than 
the  1 / n  h assumption would imply. A negative (positive) 

ratio means that BHR should overestimate 
(underestimates) the variance. 

Table 1 demonstrates that sometimes the ratio is close 
to 0. Other times, it is a great deal different than 0. The 
systematic PPS sampling variance does not necessarily 
decrease faster than the 1/rl h assumption would imply; 

sometimes its decrease is slower. This is an indication that 
BHR will not necessarily produce an overestimate of the 
variance, which is a common assumption among 
sampling statisticians. When there is a large difference 
from 0, the magnitude is dependent on the variable. This 
seems to imply, since the sampling rates are not high, that 
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the violation of the 1/n h assumption is due to the initial 
sort ordering (i.e., within sample correlation). 

It should be noted that the table 1 results exaggerate 
the true impact of the 1/ nh assumpt ion.  Using the 

1 / n  h assumption, the ratio, used in the table, adjusts the 
variance with the smaller sample size to approximate the 
variance with the larger sample size. This approximation 
uses the smaller sample estimate's unknown finite 
population correction. Since the true finite population 
correction is likely larger than the one used in the 
approximation, the absolute value of the true impact of 
the 1 / n  h assumption should be expected to be smaller 

than what table 1 indicates. 
The important conclusion from this example is that 

variance estimates, based on designs using systematic 
sampling, will not necessarily be proportional to 1/n h , as 

n h increases or decreases. When this occurs, an important 
BHR assumption is violated, and the BHR variance 
estimator should not be expected to perform well when 
the magnitude of the violation is large. 

The statements concerning the proportionality of the 
variance estimate are qualified with 'as n h increases or 
decreases'. The importance of this qualification can be 
seen with equal probability systematic sampling. Here, 
the variance can be expressed proportional to 1/n h (e.g., 

V ( y  h ) = [ ( N  h - rl h ) / N h ][S2st / n h ][1 + ( n  h - 1)Pws t ] ,  

see (Cochran, 1977, pp. 209)). If S2~tand p ~ t  are 

constant for an arbitrary n h then V ( y  h) would be 

approximately proportional to 1/r/h, as /7 h increases or 

decreases. However, both S2~tand ~Owstare within 
systematic sample population estimates. This implies that 
as n h changes, the systematic samples change; hence 

S2~t and Pwst also change by some unknown function of 

n h . Therefore, even though V(Yh)is proportional 

to 1 / n h for fixed nh, as n h increases or decreases, the 
variance may not be proportional or even closely 
proportional to 1 / nho 

3.0 Bootstrap Variance Model 
To address the situation when the systematic variance 

in not proportional to 1 / n  h, a bootstrap variance 
estimator is proposed in this paper, which is less 
dependent on the 1/ nh assumpt ion  than the BHR 
estimator. This section first describes the consistency 
theorem for the bootstrap estimator; by example, the 
super-population model, used in the proposed bootstrap 
procedure, is demonstrated; next, the mechanics of the 
bootstrap procedure is presented; and finally, the 

consistency of the bootstrap procedure is established. We 
begin by describing the super-population model. 
3.1 The Consistency Result 
Theorem 
The required assumptions are: 

1) a systematic PPS sample ( s  i h )  has a known 
Cih 

partition (i.e., sih - I,]sih c ); 
c = l  

2) 2 = ~ ~ whjx j = 1 / n ~ ,  ~ , y j  is the estimate of 
h j~h h j~h 

interest, with Whj being the sampling weight and 

xj being the variable of interest; 

3) as n increases, the sample allocation between 
stratum remains constant; 

4) for PSUs in Sih c , the y j ' s  are conditionally i.i.d 

given Sih c and are generated from an otherwise 

unspecified distribution function Fhc ( y )  w h i c h  

satisfy conditions for Mallows' distance; 
and 
5) between partitions, the y j ' s  are conditionally 

independent given the Sih ~ 'S, but not identically 
distributed. 

Bullets 1-5 specify the super-population model. 
It then follows that the bootstrap variance estimator 

of A" given sih generated from the bootstrap estimates 
^ , • • 

X b = 1 / n ~  ~ y j ,  where the y j ' s  are generated from 
h j~h 

Fh~(Y), is consistent, as n ---> oo, provided 

Fh~ (Y)  - >  Fhc (Y)  and /Z yh~ --> f l  yhc ' as n --> oo. /Zyhc is 

the bootstrap expectation of y within a partition. 

The proof follows from the super-population 
assumptions using the argument in example 3.1 from 
(Shao and Tu, 1995). The details are provided in 
(Kaufman, 1998). 

3.2 Bootstrap Model Example 
In practice, the statistician rarely knows the required 

Ch 
partitioning (S~h =[.JS~h ~ ). However, the statistician 

c = l  

usually orders the frame before sample selection. With 
this ordering, the statistician is implicitly assuming that 
nearby PSUs are similar, at least in terms of the most 
important response variables. This implicit assumption 
can be used to develop a partitioning that approximately 
meets the required assumptions. 

An example is provided below. 
For a fixed even numbered sample size (n h), the 

elements of the partition (S~c h ) can be determined by 
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pairing the sets of PSUs within consecutive sampling 
intervals, after the frame has been placed in its original 
sort ordering. All samples have the same partitioning 
(i.e., the partitioning is only a function of stratum, --s c h, 

c = 1 to C h ) and each sic h ( s¢h ) has exactly two PSUs. 
In terms of consistency, it is assumed that the 
partitioning remains fLxed as the sample size increases 
and more PSUs are selected within a partition. This 
"type" of partitioning is used in the bootstrap 
procedures proposed in this paper. 

An additional observation about this partitioning is: 
If the partitioning methodology described above 

correctly models the distribution of X;  the n h's are 

even and increase by multiples of Chthen the 

E(LIs~'s)=K,a constant; where E refers to the 
2 - - '  2 

expectation with respect to the super-population model. 
Therefore, 

where 1 refers to the selection of the S h ' S .  Since the 

bootstrap variance estimator is consistent for 

V ( X ,  Ish's) ,  the bootstrap variance is consistent to an 

unbiased estimator for the unconditional variance. 

3.3 Bootstrap Sample Size (n~,) 

Since it is assumed that the relationship between the 

variance and nhis  unknown, the actual bootstrap 

sample size (n~) used in the bootstrap selections must 

be computed through a series of trial and error 
simulations. This is done by comparing and estimate of 
the true variance with the bootstrap variance for a 
specific bootstrap sample size. 

Determining n h through a simulation provides a 

robust variance estimate because V* (A'h), by 

construction, will be almost unbiased, even if the model 
assumptions are false. The disadvantage of the 
simulation is that it can only be implemented with frame 

variables. However, if n;, is relatively fiat for non- 

frame variables, the bootstrap replicate weights should 
be applicable for those variables, too. 
3.4 Bootstrap Implementation 

To perform the simulation study, frame variables are 
used, so estimates can be computed for any selected 
sample. The statistician always has three estimates 
available for this purpose. One is the measure of size or 
some function of the measure of size. The second is the 
estimate of the total number of PSUs (sum of the 
sample weights). The third is the average measure of 

size per PSU or the average per PSU of some function 
of the measure of size. If the measure of size is used in 
the simulation, it will be necessary to use a different 
year's data to produce estimates; otherwise, the 
variances will be zero. 

To determine the appropriate n h s, the simulations 
must f'trst be applied to individual stratum estimates 
O h . The simulation process for estimating the 

bootstrap variance, V* (19h) for an estimator ®h , 
works as follows: 
3.4.1 Bootstrap Procedures 
1. Select a sample (s~) from the original frame, using 

the PPS methodology of the original sample design. 

2. For the initial bootstrap sample size values, n~, use 

n h . After the initial simulation, n~ will likely require 

adjustment for at least some of the strata. 
3. Generate a bootstrap frame based on the selected 

sample. For each selected PSU j ,  wj bootstrap 

PSUs (bj)  are generated by replicating the jth PSU 

wj times. The bj th bootstrap-PSU has the following 

measure of size ( mbj ): 

mbj = Ibj " I / wj , 

~ if bj is an integer component of wj 

Ibj = ~, if bj is a noninteger component of wj 

C j being the noninteger component 

4. Randomize the bootstrap frame according to super- 
population model specification. This is accomplished 
by placing the bj bootstrap-PSUs generated from 

PSUj within stratum hand sample s i in their 

original order of selection. Next, bootstrap-PSUs 
generated from the first PSU are paired with the next 
set of bootstrap-PSUs generated from the second 
PSU. The third set of bootstrap-PSUs is paired with 
the fourth set. This process continues until all 
bootstrap-PSUs are paired. If there are an odd 
number of PSUs then the last set of groupings of 
bootstrap-PSUs contains the bootstrap-PSUs 
generated from the last three PSUs in stratum h. 
This is repeated for every stratum in s~. Now, the 

bootstrap-PSUs are randomized within their 
respective pair. 

5. The bootstrap frame, bootstrap frame ordering, 
measure of size (mbj), and bootstrap sample size 

(n~) have been specified. Select B bootstrap 

samples, atter re-randomizing the bootstrap-PSUs 
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after each selection, using the same procedures used 
to select the original systematic PPS sample. The one 
exception to this is that a bootstrap-PSU generated 
from noncertainy PSUs that become certainty in the 
bootstrap selection should not be eliminated from the 
selection process and taken in sample with 
probability 1. Their selection probability should 
remain unchanged and if the bootstrap-PSU is 
selected multiple times that should be reflected in the 
bootstrap weight (see 6 below). 

6. For each bootstrap sample, b, compute a set of 

bootstrap weights, w~ b , and then compute ®~bh by 

using w~ b instead of wj in the formula for ®h • 

The bootstrap-PSU weight, w~ b , is ° 
p b w~ b = ~ Wbj, S j is the set of all bj generated from 

bj~S b 

j that are selected in the b th bootstrap sample. 

and w~ = Ibj " Mbj / Pbj 

Mbj" is the number of times the bj 'h bootstrap- PSU 

is selected, 
Pbj" is the bootstrap selection probability for the 

bj tn bootstrap-PSU. 

Pbj = mbj / S in ,  SIn = ~ mbj / nh . 
bj~s h 

7. The bootstrap variance is" 
B 

V" (O,h ) = 1 / ( B - 1 ) Z  (O,b h ---O,h) 2, 
b=l 

8. Repeat steps 1-7, for a large number of samples (T).  
9. Compute the simple variance of ®in from 

i = 1 to T, I~(® h), as a measure of the true variance; 

and compute the average bootstrap variance 
m 

V* (®h), averaged over the T, V ° (®in) estimates. 

10. Compare V-' (®h) with I~(®h) and adjust n~ to 

reduce the bias between V" (Oh) and I~(® h )" 
11. Repeat steps 1-10, until this bias has been reduced to 

a satisfactory level. 

12. Using the n~ from step 11, repeat steps 3-6 for the 
actual collected sample, generating a set of 

bootstrap replicate weights, w~ b that can be used to 

compute variances of other, more complex statistics 
that are not necessarily computed within h. 

3.5 Consistency of the Bootstrap Estimator 

Fn~ (Y) --> Fn~ (Y) and /.tyh¢ --> ,l.lyhc , as n --> oo follows 

from E, ( ~ wbj p Xbj ) = ~ IbjXbj = ~_, w j X j  , where D is 
bjeD bj~.D jeD 

a domain and E. is the bootstrap expectation. See 
(Kaufman, 98) for details. 
4.0 Simulation 

To demonstrate the advantages of the bootstrap 
variance estimator, a simulation study is presented 
comparing BHR and the bootstrap variance estimator. 
Two thousand simulations, denoted by s,  are generated 
using frame variables. The frame is the National Center 
for Education Statistics' (NCES) Private School Survey 
(PSS). The PSS is NCES's school frame for private 
elementary and secondary schools. Three totals (number 
of schools, number of teachers, and number of 
students), two averages (average students and average 
teachers per school), and one ratio (ratio of number of 
students to number of teachers) are estimated in the 
simulation. In tables 3-5, estimates are computed by 
each stratification variable (affiliation, region and 
school level), as well as one of the sort variables 
(Urbanicity). The School and Staff'mg Survey (SASS) 
sample design is used to select the simulation samples. 
Relative error, relative mean square error, and coverage 
rates are used to measure performance. 
4.1 Comparison Statistics 

In this section, the statistics used to compare the 
bootstrap and BHR variances are described. 
4.1.1 Relative Error 

Rel. Error= (~(®)  '/2/Vt(®) '/2 -1).100 

Where: V, (®) is the average of the variance estimates 

( V e ( 0 , )  ) from either the bootstrap or BHR procedure. 
2,000 

Vt(® ) = 1/1999 E (®, _ ~ ) 2 .  
$=1 

4.1.2 Relative Mean Square Error 

{[ZV, (O) + (~  (O) -  V, (0))2 ] l'~ / V, (O)}.100, 
2,000 

Where: VV~ (®) = 1 / 1999 ~ (V, (®,) - V, (®))2. 
s=l 

4.1.3 Coverage Rates 
The coverage rate is the percent of the time the 95% 

confidence interval contains the true value. 
4.2 SASS Sample Design 

The sample frame, used in the simulation, is the list 
frame component of NCES's Private School Survey 
(PSS). The list frame is stratified by detailed School 
Association (19 groups), within Association by Census 
Region (4 levels), and within Region by school level 
(elementary, secondary and combined). The school 
sample is selected using the systematic probability 
proportionate to size sampling procedure, described in the 
introduction. The measure of size is square root of the 
number of teachers in the school. Before sample 
selection, the school frame is ordered by state, school 
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highest grade, urbanicity, zip code, and school 
enrollment. To reduce the time to complete 2,000 
simulation only one detailed school association is used. 

4.3 Determining n~, for the Bootstrap Variance 

As described in section 3.3, the determination of n~ 

requires a simulation study in itself. For each stratum, a 

series of simulations was done for various nho The 

optimum n h is likely dependent on the estimate of 

interest. Since we want only one set of replicate 

weights, a compromise nh is determined that works 

reasonably well for all estimates. The results presented 

below use the compromise set of n h . Table 2 presents 

the values for n h and n~. Each simulation used in the 

determination of n h had at least 250 samples. 
4.4 BHR Variances 

The r th school half-sample replicate is formed using 
the usual textbook methodology (Wolter, 1985) for 
establishment surveys with more than 2 units per stratmn. 
This is described in the introduction. Two BHR variance 
estimates are presented. The first (BHR without FPC 
Adjustment) is the variance estimates described above. 
This estimate does not make any type of Finite Population 
Correction (FPC) adjustments. The second BHR variance 
estimate (BHR with FPC Adjustment) adjusts the first 
variance estimator by 1 -  Ph, where Ph is the average of 

the selection probabilities for the selected units within 
stratum h. 
4.5 Number of Replicates 
Thirty-two and thirty replicates have been used in the 
BHR and bootstrap variances, respectively. 
4.6 Results 

Because of space consideration, three tables have 
been excluded from this paper. These tables are 
included in (Kaufman, 1998). 

According to tables 3-5, in terms of extremes, the 
bootstrap variance estimator is better than either BHR 
variance estimator with respect to relative error, relative 
MSE, or coverage rate. The bootstrap relative errors are 
large in absolute value (greater than 20% or less than -  
20%) once, while the BHR, with and without FPC 
adjustment, relative errors are large 8 and 4 times, 
respectively. 

Only 5 of the bootstrap relative MSEs are larger than 
50% and none are greater than 100%. The BHR without 
FPC adjustment has 18 relative MSEs larger than 50% 
and 3 greater than 100%. The FPC adjusted BHR has 14 
relative MSEs larger than 50% and 2 larger than 100%. 

The bootstrap procedure has no high coverage rates 
(coverage rate greater than 98%) and 1 low coverage 
rates (coverage rate less than 89%). The bootstrap has 
no coverage rate greater than 99%. The BHR without 
FPC adjustment has 7 high coverage rates, no low 
coverage rate and 5 larger than 99%. Even with a FPC 
adjustment, the BHR has 6 high coverage rates, 1 low 
coverage rate, and 5 coverage rates greater than 99%. 

The difference between the bootstrap and BHR is 
largest for the Urbanicity estimates. For these estimates 
the BHR relative MSE can be almost 4 times larger than 
the bootstrap relative error (see tables 3 and 4 Urban). 
One possible explanation for this may be that the 
Urbanicity sample size is indirectly controlled by the 
third sort variable, while the other estimates are directly 
controlled by the stratification. 
4.7 Conclusion 

This paper discussed how BHR can be used to 
measure the variances from surveys utilizing systematic 
PPS selection procedures. Two assumptions are 
necessary: 1) the extra stratification introduced by the 
variance stratum is sufficient to reflect the systematic 
process and 2) the variance is inversely proportional to 
the sample size. In table 1, it has been observed that 
systematic PPS sampling variances may not be 
inversely proportional to the sample size. 

To correct this problem, a bootstrap variance 
estimator has been introduced which does not make the 
inverse sample size assumption. Given an appropriate 
super-population model, the bootstrap procedure 
produces consistent variance estimates. Based on the 
simulation of the SASS survey design (Tables 3-5), the 
bootstrap variance estimator performs better than the 
BHR with respect to relative error, relative MSE and 
coverage rates. This is especially true with the 
Urbanicity estimates. One drawback of the proposed 
bootstrap procedure is that the determination of an 
appropriate bootstrap sample size can only be 
implemented using frame variables. However, with 
appropriate frame variables, the bootstrap variances are 
close to unbiased, even when the super-population 
model assumption fails. 
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Tables 1 - Measurement of degree the true systematic sampling variance 

is proportional to 1 / n, with respect to different sample sizes 

Stratum nh / Nh Teacher Student Schools 

--~,h) (%) R100/50 R100/50 R100/50 ( 
(%) (%) (%) 

01911 2.0 -31.2 14.1 -28.0 
01912 2.8 -27.0 -2.5 -14.3 

01914 3.4 -23.8 -5.3 -19.3 
01931 4.5 23.7 18.0 4.6 
01932 4.9 2.4 -25.8 3.9 
01934 4.3 -20.4 -26.3 -7.0 

Table 2 -  Original ( n h ) and Bootstrap ( n;, ) Sample Size by Stratum 

01911 14 12 01921 10 5 01931 48 35 
01912 16 11 01922 10 8 01932 46 33 
01913 52 28 01923 10 10 01933 114 81 

Table 3 -- % Relative Error, % relative Mean Square Error and % coverage rates for the 
Bootstrap and BHR variance estimator for Schools estimates by Affiliation, Region, Level and 
Urbanicity 

Bootstrap BHR without FPC BHR with FPC 
Adjustment Adjustment 

r.- 

Rel. Rel. Cov. Relo Rel. Cov. Rel. Rel. 
Estimate Error MSE Rate Error MSE Rate Error MSE 

C o v .  

Rate 

Other Affil. -4.5 27.8 93.1 12.7 40.7 97.0 9.7 35.4 97.0 

Northeast 4.3 43.6 94.6 10.3 52.3 94.9 8.0 49.0 94.9 
~ m 

Midwest 4.2 42.8 92.9 12.5 51.4 98.3 9.8 46.9 95.7 
South - 10.9 32.7 90.7 -6.6 26.5 89.6 -10.3 29.0 89.4 
West -2.4 35.1 92.9 7.8 43.7 92.2 5.1 40.0 92.2 

E l e m e n ~  1.3 34.9 93.6 . 16.1 57.0 95.9 14.0 52.9 95.9 
S e c o n d ~  -2.9 57.0 9 0 . 5 .  26.3 107.1 97.2 14.8 81.9 95.9 
Combined -6.2 29.5 91.2 -1.1 28.2 92.3 -4.2 27.7 92.3 

Rural 7.5 36.8 95.7 24.2 71.2 98.7 20.9 63.8 98.7 
Suburban 6.5 36.6 95.0 23.1 67.5 97.4 19.9 60.6 97.4 

Urban 96.1 53.7 97.5 

Table 4 -- % Relative Error, % relative Mean Square Error and % coverage rates for the 
Bootstrap and BHR variance estimator for Teachers per School estimates by Affiliation, 
Region, Level and Urbanicity 

Bootstrap BHR without FPC BHR with FPC 
Adjustment Adjustment 

Rel. Rel. Coy. Rel. Rel. Cov. Rel. Rel. Cov. 
Estimate Error MSE Rate E r r o r  MSE Rate Error MSE Rate 

Other Affil. -5.8 28.4 92.4 ! 4.0 27.3 95.9 1.0 24.6 95.8 
i 

Northeast 2.1 42.1 93.7 i 0.6 41.2 90.9 -1.7 39.4 90.8 
Midwest -0.7 37.7 92.5 18.2 60.7 99.7 15.0 54.0 99.7 

South -10.9 32.5 89.4 -9.6 28.0 89.4 -13.2 31.4 88.1 
Wes'-'-----"F~ 5.5 41.3 95.1 " 12.1 45.4 93.6 9.2 40.1 93.6 

Elementary 4.6 38.7 94.0 17.7 57.2 97.1 15.3 52.4 97.1 
Secondary 8.6 54.2 95.2 29.4 93.3 97.4 16.6 63.8 93.7 

-6.9 29.9 9 1 . 6 -  -4.1 26.2 92.3 -7.2 27.1 91.0 

Rural 1.1 37.4 93.2 27.9 83.6 99.6 24.2 74.6 99.6 
Suburban -10.7 34.4 89.7 . -2.9 34.9 91.8 -5.5 34.3 91.8 

Ur--'-U-'rb--~~ 95.5 61.6 99.8 

Table 5 -- % Relative Error, % relative Mean Square Error and % coverage rates for the 
Bootstrap and BHR variance estimator for Students/Teacher Ratio estimates by Affiliation, 
Region, Level and Urbanicity 

Bootstrap BHR without FPC BHR with FPC 
Adjustment Adjustment 

Rel. Rel. Coy. Rel. Rel. Cov. Rel. Rel. Coy. 
Estimate Error MSE Rate E r r o r  MSE Rate Error MSE Rate 

Other Affil. -0.3 31.9 94.2 12.3 46.0 96.1 9.1 40.6 94.7 

Northeast -4.3 56.3 91.6 9.3 70.4 94.7 6.7 66.4 94.7 
Midwes----------'~-- -5.5 67.1 91.2 3.1 43.9 95.4 0.5 41.6 94.1 

South 6.7 45.2 95.4 3.2 31.5 95.9 -0.8 28.6 93.4 
West -1.0 38.3 93.9 9.8 46.9 97.3 7.1 42.8 97.3 

Elementary -2.5 43.9 93.2 11.8 52.2 99.5 9.5 48.5 99.5 
Secondary -25.3 49.1 81.1 1.2 33.2 94.1 -9.3 32.5 91.4 
Combined 9.7 46.2 95.8 16.3 53.0 95.9 12.6 45.7 95.7 

Rural 7.0 59.8 95.3 22.7 84.2 99.9 18.9 75.6 99.8 
Suburban 1.1 37.6 93.5 18.0 61.6 97.1 14.8 55.3 97.1 

Urban 


