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1. INTRODUCTION 

This paper addresses the construction of delete-a-group 
jackknife variance estimators for a variety of 
estimation strategies (an estimation strategy is a 
sampling design paired with an estimator). Relevant 
theoretical comments will be made where appropriate, 
but most proofs are left for the appendices of a 
companion document: "Using the Delete-a-Group 
Jackknife Variance Estimator in NASS Surveys"(Kott 
1998). 

The sampling designs to which the delete-a-group 
jackknife can be applied may have any number of 
phases. At each phase, one of the following selection 
schemes is assumed to be used: 

1) stratified simple random sampling without 
replacement, 

Ratio adjustments, the most common form of 
calibration, were used repeatedly by the National 
Agricultural Statistics Service (NASS) in the 1996 
Agricultural Resource Management Study (ARMS). 
Restricted regression, another population form of 
calibration, was used in both the 1997 Minnesota pilot 
Quarterly Agriculture Survey (QAS) and the second 
phase of the 1996 Vegetable Chemical Use Survey 
(VCUS). Only these forms of calibration are 
discussed in the text. 

The concise term "variance estimation" will be used 
throughout the text in place of the more cumbersome 
"mean squared error estimation." It should be 
understood, however, when the delete-a-group 
jackknife is a good estimator for the variance of a 
randomization-consistent estimator, it is also a good 
estimator for its mean squared error. 

For our purposes, the term "nearly unbiased" will 
mean that the bias of the estimator in question is an 
ignorably small fraction of its mean squared error. 
The term "biased" will be used to mean "not 
(necessarily) nearly unbiased." 

2) systematic probability sampling (usually called 
systematic probability proportional to size sampling; 
here we want to de-emphasize the "size" measure), 

3) the converse of systematic probability sampling 
(what remains in a frame after a systematic probability 
sample has been removed), or 

4) Poisson sampling (in which each element is given 
its own selection probability, and the sampling of one 
element has no impact on whether another gets 
selected). 

All stratum samples are assumed to be large (contain 
at least five sampling units). Violation of this 
assumption in the first-phase of sampling can cause 
the delete-a-group jackknife to be biased upward. This 
is shown in the Appendix. 

"Calibration" is a general term for a sampling-weight 
adjustment that forces the estimates of certain item 
totals based on the sample at one phase of sampling to 
equal the same totals based on a previous phase or 
frame (control) data. 

When first-phase stratum sample sizes are large, the 
delete-a-group jackknife is appropriate (has only a 
small potential for bias) whenever the conventional, 
randomization-based, delete-one jackknife is. Kott and 
Stukel (1997) have extended the use of the delete-one 
jackknife to two-phase estimators with calibration in 
the second phase. This paper relies heavily on their 
results. Here, however, systematic probability can be 
used in the second design phase, even though Kott and 
Stukel only treated strategies featuring stratified simple 
random sampling in the second phase. 

Section II provides on overview of why one would use 
a delete-a-group jackknife, while Section III provides 
on overview of how. Section IV focuses on paticular 
practical cases (stratified simple random sampling; 
calibration of a second-phase sample to a vector of 
first-phase totals using restricted regression or ratio 
adjustment). Section V addresses finite population 
correction in its simplest context: a single-phase 
Poisson sample. An appendix provides some 
theoretical support for the use of the delete-a-group 
jackknife variance estimator. 
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II. WHY USE THE DELETE-A-GROUP 
JACKKNIFE? 

The delete-a-group jackknife is simple to compute once 
appropriate replicate weights are constructed. The so- 
called "linearization" methods traditionally used by 
NASS for estimating variances can be very 
cumbersome when applied to estimators based on 
multi-phase samples. Estimators using calibrated 
weights derived from restricted regression pose even 
greater practical problems for linearization variance 
methods (a multivariate regression coefficient would 
need to be estimated for every item of interest). 

The advantage of the delete-a-group jackknife over the 
traditional, delete-one-primary-s ampling-unit-at-a- 
time jackknife (see Rust 1985) is that the number of 
needed replicate weights per sample record is kept 
manageable. A common practice for handling this 
problem with the delete-one jackknife is to group 
primary sampling units (PSU' s) into variance PSU' s. 
This practice reduces the number of replicate weights 
needed per r e c o r d -  there is one for every variance 
PSU. There is a problem when one needs to produce 
national and state-level estimates from the same 
survey. At least 15 replicate weights per record would 
be needed to compute variances for each state-level 
estimator. This would result in national variance 
estimates employing several hundred replicate weights 
per record. 

l l I .  COMPUTING A DELETE-A-GROUP 
JACKKNIFE: AN OVERVIEW 

Suppose we have a sampling design with any number 
of phases and a randomization-consistent estimator, t, 
we wish to apply to the resultant sample. To compute 
a delete-a-group jackknife variance estimator for t, we 
first divide the first-phase sample - both respondents 
and non-respondents - into R (jackknife) groups. 
Currently, R is 15 in NASS applications. 
Consequently, we will assume R = 15 in what follows. 
By setting R at 15, we lengthen the traditional, 
normality-based 95% confidence interval by ten 
percent. To see why this is so, observe that the ratio 
of the t-value at 0.975 for a Student's t distribution 
with 14 degrees of freedom and the normal z-value at 
0.975 is approximately 1.1. 

Suppose we have a survey which may have multiple 
phases. Let F be the sample selected at the first phase 
of the sampling process. The first-phase sample units 
may be composed of distinct elements (e.g., farms) or 
it may consist of clusters of elements (e.g., area 

segments). Many survey designs feature a single phase 
of sample selection. 

The delete-a-group jackknife begins by dividing the 
first-phase sample F, into 15 groups. This can be 
done as follows: order F in an appropriate manner 
(discussed below); select the first, sixteenth, thirty- 
first . . . .  units for the first group; select the second, 
seventeenth, thirty-second . . . . .  units for the second 
group; continue until all 15 groups are created. 
Unless the number of units in F is divisible by 15 
(which is unlikely), the groups will not all be of the 
same size. 

Ordering in an "appropriate manner" depends on the 
context. If F was drawn using stratified random 
sampling, then order the sample so that units in the 
same stratum are listed together (i.e., contiguously). If 
samples were drawn using Poisson sampling, order the 
sample units randomly. 

Let S denote the final respondent sample used to 
compute t, and let w i denote the sampling weight for 
element i in S. The elements in S may be the same as 
the sample units in F or they may be a subsample of 
those units. The elements in S may also have a 
different nature than the original sample units in F; for 
example, they may be farms as opposed to area 
segments or fields as opposed to farms. In all such 
cases, however, each element in S must be contained 
within an original sample unit in F in a clearly defined 
way. Let e i be the original sampling weight of the unit 
containing i (which may be i itself); that is, e i is the 
inverse of the unit' s first-phase probability of selection. 

Let S r denote that part of the final sample originating 
in first-phase sample units assigned to group r. The 
jackknife replicate S(r)is the whole final sample S with 
Sr removed. We similarly define F(r  ) a s  the set of first- 
phase sample units not in r. 

We need to create 15 sets of replicate weights { Wi(r) }, 
one for each r, in the following manner: Wi(r) = 0 for all 
elements in Sr; for other elements, Wi(r) will be close to 
(15/14)w i but adjusted to satisfy calibration constraints 
similar to those satisfied by wi (exactly how to do this 
in a number of situations is the subject matter of the 
following section). Observe that a Wi(r)-value has 
been assigned to every element in S including those in 
Sr. 

Now t is an estimate based on the sample S calculated 
using the set of weights, {wi}. Let t(r ) be the same 
estimate but with the member of { Wi{r)} replacing { wi}. 
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The delete-a-group jackknife variance estimator for t 
is 

Vj "- ( 1 4 / 1 5 )  ~ 15 (t(o _ 02. (1) 

IV. P A R T I C U L A R  CASES 

In this section, we see how the delete-a-group 
jackknife can be fruitfully applied in a number of 
estimation strategies where fpc may be ignored; that is, 
when the first-phase selection probabilities are all 
small (say less than or equal to 1/5). 

One sampling design not discussed in detail here is 
stratified multi-stage sampling, in which subsampling 
within each primary (first-stage) sampling unit is 
conducted independently of subsampling in other 
primary sampling units. When the first stage of 
sampling has ignorably small selection probabilities, 
the conventional variance estimator for a stratified 
multi-stage sample looks exactly like that for a 
stratified single-stage cluster sample with estimated 
totals for primary sampling units used in place of 
actual values. As a result, when a delete-a-group 
jackknife is appropriate for an estimator based on a 
stratified single-stage sample, it is appropriate for an 
estimator based on a stratified multi-stage sample. 

Stratified Simple Random Sampling 
Suppose we have a single-phase stratified simple 
random sample without any nonresponse (handling 
nonresponse will be discussed later). The original and 
final sampling weight for a unit i in stratum h is e i = 
wi = Nh/nh, where Nh is the population size of stratum 
h and nh is its sample size. 

Let us now consider the r'th set of replicate weights. 
For a unit i in S(r ) and stratum h, ei(r)-- (15/14)N h/n h. 
By contrast, the appropriate final r' th replicate weight 
for unit i recognizes the calibration equations inherent 
in the direct expansion estimator: Nh = ~j~S(r)nh Wj(r) for 
all h. As a result, the r'th replicate weight is 
Wi(r) = Nh/nh(r) = (nh/nh(r))ei, where nh(r)is the number of 
sample units in both S(r) and h. Observe that ei(r) = Wi(r) 
only when nh is divisible by 15. 

Stratified Systematic Probability Sampling 
Suppose we have a single-phase, stratified systematic 
probability sample. The original and final sampling 
weight for a unit i in stratum h is ei = wi = Mh/(nhrn~), 
where mi is the measure of size of unit i in stratum h, 
Mh is the sum of the mj across all units in stratum h, 
and nh is the stratum sample size. 

Analogous to the simple random sampling case, the 
appropriate final r'th replicate weight for element i 
recognizes the calibration equations inherent in the 
Horvitz-Thompson expansion estimator (i.e., Mh = 
EjeS(r)nh Wj(r)mj for all h). It is Wi(r) "-- (nh/nh(r))ei, where 
nh(r) is the number of sample units in both S(r) and h. 

Stratified simple random sampling can be viewed as 
equivalent to a special case of systematic probability 
sampling from randomly-order lists (one in which mi 
is constant within strata). The appendix provides some 
theoretical justification for using the delete-a-group 
jackknife as described above with a stratified, single- 
phase systematic probability sampling design under 
certain conditions. One of those conditions is that the 
systematic samples be drawn from randomly-ordered 
lists. Variance estimation can be problematic when 
systematic samples are drawn from purposefully- 
ordered lists. 

Purposefully-ordered lists can reduce the variance in 
est imators  based on sys temat ic  samples .  
Unfortunately, the reduction in variance due to a well- 
designed ordering usually can not be measured in an 
effective manner. 

Restricted Regression (A Form of Calibration) 
Suppose, for exposition purposes, we have a sampling 
design with two phases. Suppose further that the 
second phase sample is calibrated to a row vector of 
totals, 1], based on estimates from the first-phase 
sample or determined from the frame itself. 

Let fj be the weight for element j after the first phase of 
sampling, and let P.i be the element's selection 
probability in the second sampling phase. In the 
absence of non-response (again, nonresponse will be 
dealt with later) in the second sampling phase, a 
general form of the calibrated weight for j under 
restricted regression is 

Wi = f i/Pi + 
(1]* -- ~ies* [fi/Pi]Xi) 

( EieS* [fi , -1 , /pi]xi Xi) [fi/Pj]Xi (2) 

for i e S*, and a predetermined value otherwise 
(chosen so that wj is not too small or too far from 
fi/Pi), where S is the second-phase sample, S* a subset 
containing almost all the elements of S, xi is a row 
vector of covariates whose sum across all elements in 
the population is either 1] or has been previously 
estimated to be 1] - that is, rl - E F  fixi, where F denotes 
the elements in the first-phase sample; finally, 1]* = 
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'l~ -- ES-S* WiXi" 

Let fj(,) be the r'th jackknife replicate weight for unit 
j after the first sampling phase. The r'th jackknife 
replicate weight for element j is 0 when jeSr ; other- 
wise, it is 

Wi(r) "- wj[fj(r) ]fj] + 
(Tiff)- 2ieS(r)wi[fi(r) ]fi]xi) 

(2ieS(r)  wi[fi(r) ]fi]xi'xi)-I Wi [fi(r)/fj]xj', 

(3) 

where rl(,) = r I when rl has been determined from 
f lame; 'l](r) = 2F fi(r)Xi when r I has been estimated from 
the first-phase sample. 

Equation (3) is not the standard way to construct 
jackknife replicate weights. The expression Wk[fk(r)/fk] 
has been used in place of the more c o m m o n  fk(r)/Pk, 
with which it is nearly equal (because Wk "~ fk /Pk)" 
Equation (3)'s strength is that it forces the replicate 
weights (for elements not in group r) to be fairly close 
to the associated calibrated weights. This appears to 
reduce the upward bias that unexpected differences 
between the two can cause. It should be noted that any 
such upward bias is small; in fact, it is asymptotically 
ignorable. We live, however, in a finite world. 

Restricted-regression as described above can be done 
at any phase of sampling. At the r th phase, fi in 
equation (2) becomes the weight for element i at the t- 
l'th phase and Pi the element's conditional selection 
probability at the t'th phase. For a single-phase 
restricted-regression estimator, we can set all Pi = 1 in 
equation (2). 

When the phase of sampling calibrated in this manner 
contains more than a single stratum, the jackknife can 
have an upward bias. In addition, for a single-phase 
Poisson sample, Xi/~ -" 1 must hold for some ~.. See 
Kott (1998). 

Ratio.Adjusted Weights (Another Form of  
Calibration) 
Consider, again, a two-phase sample with fi and Pi as 
above. A very common form of calibration occurs 
when a vector of covariates for element i, xi, is defined 
in such a way that only one component of the vector is 
non-zero for each i. That is to say, the elements are 
categorized into G mutually exclusive calibration (or 
ratio-adjustment) groups, and Xig >0 only when 
element i is in group g; otherwise, Xig = 0. 
Under that structure, a ratio-adjusted weight for an 
element j in group g is 

Wj -- 'l]g ( 2ieS [fi/Pi]Xig)-l[fj/Pi ], (4) 

and rl = ('ql . . . . .  ']]G). Similarly, the corresponding 
replicate weight is 0 for jeSr, and 

Wj(r) -" 'fig(r) (2ieS(r)  fi(r)]pi]Xig)-I [fj(r)/Pj] (5)  

otherwise, where rl(,) = (~l(r) . . . . .  '~G(r))" 

If the second-phase sample is stratified, and more than 
one of these strata are contained within a calibration 
group, then the jackknife can have an upward bias. 

Extensions of these results to estimation strategies with 
t > 2 phases are straight-forward; the fi in equation (4) 
and fi(r)in equation (5) become the weight and replicate 
weight at the t-l'th phase. For a single-phase sample, 
we can set all the Pi equal to 1 in both equations (4) 
and (5). 

V. SINGLE-PHASE POISSON SAMPLING 
AND FINITE POPULATION C O R R E C T I O N  

In this section, we restrict our attention - at f i r s t -  to a 
single-phase Poisson sample of elements. Let Xi be the 
selection probability of element j. We assume there is 
no nonresponse. 

The versions of the delete-a-group jackknife developed 
in this section will contain finite population 
corrections. The versions are different for an estimator 
of a total and the estimator of a ratio. This is a 
reflection of the fact that a simple formula like 
equation (1) does NOT work for all smooth 
transformations of calibrated expansion estimators 
when finite population correction is an issue (note: a 
"smooth" transformation has first, second, and third 
derivatives; most statistics of interest are smooth 
transformations of expansion estimations, the major 
exception being percentiles). 

A Calibrated Estimator for a Total 
Suppose we have a calibrated estimator for a total, t = 
~,s wjYi, where 

Wj = 1/Xj + 

(1"1" -- 2ieS* [l/71;i]Xi)( 2ieS* [ 1]71:i]Xi'Xi) -1 [ 1/Xj]Xj' 
(6) 

for j ~ S*, and a predetermined value otherwise 
(chosen so that wj >_ 1 and, perhaps, not too far from 
1/xj), S is the sample, S* a subset containing almost all 
the elements of S, xi is a row vector of covariates 
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whose sum across all elements in the population is rl, 
and 1"1" = rl - ~s-s, wixi. There must also be a vector 
such that xj~, = x/(1 - n )  for all j (that is to say, either 
a component of xj or a linear combination of 
components must equal x/(1 - nj)). Since we are 
dealing with a single-phase sample, (6) is simply 
equation (2) with 1/Xk replacing fk /Pk (i.e., fk in 
equation (2) is 1, while Pk is Xk). 

To estimate the variance of t, we use equation (1) but 
replace t with (v) = ~s %~V)yj, and tCr ) with 

t(r) (v) - ~s Wj(r)(V)yj, 

where 
w.<V) = . ,  wjx/(1 - l /w) ,  (7) 

and 

W (v) j(r) "- wj(v){ 1 + (ES wi(V)xi- ES(r)wi(V)xi) 
(ES(r) wi(V)xitXi)- 1Xj ' } (8) 

when j ~ S(r ) and 0 otherwise. 

Observe that w i ~v) ~ wT/(1 - hi), so that %~v) = wj when 
the selection probability for element j is ignorably 
small. When all element selection probabilities are 
very small, there is little difference between this delete- 
a-group jackknife for a total estimator with finite 
population correction, Vj(fpcT), and the standard delete-a- 
group jackknife, vj. Moreover, the rather odd 
assumption that there exists a ~ such that xj~. = x/(1 - 
n j) becomes close to the more standard assumption that 
either a component of xj or a linear combination of 
components is a constant (i.e., xj~. = 1 for some ~.). 

In fact, if we were to ignore finite population 
correction (which we can do for most surveys, but not 
VCUS), we could estimate the variance of t with 
equation (1), replacing equation (8) with 

Wj(r) --" Wj{ 1 + (ES WiXi- ES(r)WiXi) 
(ES(r) WiXi'Xi)" lXj ' } (8') 

when j ~ S(r ) and 0 otherwise as long as xj~. = 1 for 
some ~.. This is what we did for the 1997 Minnesota 
pilot QAS (see Bailey and Kott 1977). 

A n  Est imator  f o r  a Ratio 

Suppose t R is an estimator for a ratio of the form, t R = 
~s  wjyj/~s wjzj, where wj is calibrated as above. One 
can estimate the variance of t with 

V,~ep~.) = (£s w%,  ,/Es wjzj) ~ 
(14/15)~ is (tR(0 (v)- tR(V)) 2, (9) 

where tR¢V) = ~s  wj<V)Yj/~'.s w i<V)zj, and 

(v)7. tR(r) (v) -" ~S  Wj(r)(V)yj ]ES Wj(r) "-'j" 

This assumes xj~. = e'(1 - nj) for some ~. Even 
without this assumption holding, in fact, even without 
calibration, vj(fpcm will likely be a reasonable variance 
estimator; as we shall see. 

Alternatively, we could estimate the variance of tR 
ignoring finite population correction with equation (1). 
We need not assume that xj~. = 1 for some ~.. In fact, 

the w i need not even be calibrated in this case (to see 
why, observe that multiplying all the weights in tR by 
a fixed constant so that ~s  wj equals the population 
size has no effect on the estimator; consequently, all 
ratio estimators are effectively calibrated on x i = 1). 

APPENDIX 
Justifying the Delete-a-Group Jackknife Under a 

Single-Phase, Stratified Sampling Design 

Suppose we have a probability sample design with H 
strata and nh sampled units within each stratum h. Let 
us assume that the sample was selected without 
replacement but the selection probabilities are all so 
small, and the joint selection probabilities are such, 
that using the with-replacement variance estimator is 
appropriate (this rules out systematic sampling from a 
purposefully-ordered lists). In particular, let us assume 
that the estimator itself can be written in the form: 

H n h 
t =  ~_, E thj. 

h=l  j= l  

Let qhi = thi-  ~g thg/nh. The randomization variance of 
t is Var(t) = ~H Var(~ th+), where th+ = ~i thj. Now 
Var(th+) can be estimated in a (nearly) unbiased 
fashion by 

nh 
var(th+) = (nh/[nh -- 1]) ~ qhj 2 

j= l  

("nearly" because we are ignoring finite population 
correction). 

In order to estimate Var(t) with a delete-a-group 
jackknife as suggested in the text, we first order the 
strata in some fashion and then order the units within 
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each stratum randomly. The sample is partitioned into 
R (i.e., 15) systematic samples using the resulting 
ordered list. Let Sr denote one such systematic sample, 
Shr the set of nhr units in both Sr and stratum h, and Sh~r) 
the set of nh~r) units in stratum h and not in r. 

The jackknife replicate estimator t~r ) is 

Now 

H 
t(r) = ~ (nh/nh(r)) ~ thj. 

h=l joSher) 

H 
t<r ) -- t = ~ [(nh/nh(r)) ~ thj -- th+]. 

h=l j~Sh(r) 

Treating each Sh(r) as a simple random subsample of 
the sample in stratum h, we have 

H 
E2[(t~r)-t) 2] = ~ Var2([nh/nh~r)] ~ thj) 

j~Sh(r) 
H nh 

= ~ (nh2/nh~r))[ 1 --(nh~r)/nh)] Y' qhj2/(nh- 1) 

= ~ (nh/[nh- 1])(nhr/nhcr)) ~ qhj 2 

= )-~H (nhr/nh(r)) var(th+), 

where E 2 denotes expectation with respect to the 
subsampling. 

Observe that for strata where n h < R, nhr/nh(r) is either 
zero because there are no units in both r and h or 
nhr/nh(r) is 1/(nh- 1) because there is one unit in both r 
and h. Since the latter situation occurs in exactly nh 
replicates, 2 R  nhr/nh(r) -" nh/(n h -- 1). 

For strata where nh> R, nhr/nh(r)= O(1/R) and 
2 R nhr/nh(r) = 1 + O(1/R). (Technical note: z = O(1/R) 
means limR_~ Rlzl is a constant). In fact, when nh/R 
is an integer, nhr/nh(r) exactly equals 1 / (R-1 ) ,  and 
2R nh r/nh(r) = R/[R - 1 ]. 

Since Var(t) can itself be estimated 
approximately unbiased fashion by 

in an 

var(t) = ~H (nh/[nh -- 1]) ~j qhj 2, 

it is not difficult to see that 
jackknife variance estimator, 

the delete-a-group 

vj = ([R - 1 ]/R) ~R (t~r) -- t) 2 

is approximately unbiased for var(t) and thus for Var(t) 
when all strata are such that nh >-- R and is biased 
upward otherwise. Moreover, the relative upward bias 
is bounded by ( [ R -  1 ]/R)minh { 1/(nh- 1)}. 

REFERENCES 

Bailey, J.T. and Kott, P.S. (1997). An Application of 
Multiple List Frame Sampling for Multi-Purpose 
Surveys. ASA Proceedings of the Section on Survey 
Research Methods, forthcoming. 

Hicks, S.D. (1998). An Evaluation of the Sample 
Design and Estimation Strategy Used for the 1996 
Vegetable Chemical Use Survey. 

Kott, P.S. (1990). Variance Estimation when a First 
Phase Area Sample is Restratified. Survey 
Methodology, 99-104. 

Kott, P.S. (1990). Using the Delete-a-Group Jackknife 
Variance Estimator in NASS Surveys. National 
Agricultural Statistics Service, RD Research Report, 
Number RD-98-01. 

Kott, P.S. and Fetter, M. (1997). A Multi-Phase 
Design to Co-ordinate Surveys and Limit Response 
Burden. ASA Proceedings of the Section on Survey 
Research Methods, forthcoming. 

Kott, P.S. and Stukel, D.M. (1997). Can the 
Jackknife Be Used With a Two-Phase Sample? Survey 
Methodology, forthcoming. 

Rust, Keith (1985). Variance Estimation for Complex 
Estimators in Sample Surveys. Journal of Official 
Statistics, 1, 381-397. 

768 


