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Abstract: 

The usual design-unbiased estimators in adaptive 
cluster sampling can be improved using the Rao- 
Blackwell method by conditioning on the minimal 
sufficient statistic. However, the resulting estima- 
tors are not commonly used because they are com- 
plicated to compute. In this paper easy-to-compute 
unbiased estimators are presented. These estima- 
tors are obtained by conditioning on a statistic that 
is sufficient but not minimal. 

1. I n t r o d u c t i o n  

When dealing with rare or hidden populations, it 
is often useful after locating a unit that meets a 
specified criterion to continue sampling in that re- 
gion. One way of doing so is provided by adaptive 
cluster sampling. In spatial sampling, adaptive clus- 
ter sampling can provide efficient unbiased estima- 
tors for the abundance of rare, clustered populations 
(cf., Thompson and Seber 1996). For sampling hid- 
den human populations, social links play the same 
role as geographic proximity in spatial sampling and 
adaptive cluster sampling becomes a type of link- 
tracing design in a graph or social network (Thomp- 
son 1997). In the simplest form of adaptive clus- 
ter sampling an initial sample of units is selected 
by random sampling without replacement (Thomp- 
son 1990). Whenever the variable of interest for a 
unit in the sample satisfies a prespecified condition, 
neighboring or connected units are added to the sam- 
ple and observed. This procedure continues until no 
more units are found that  meet the criterion. Con- 
ventional estimators, such as a sample mean or ex- 
pansion estimator, that  are unbiased with a conven- 
tional design such as simple random sampling are 
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Figure 1" The Numbers represent the value of the 
variable of interest. The network consists of all HIV 
positive sexually linked people and the edge units are 
people who are sexually linked and HIV negative. 

(o) 
-) 

not unbiased with an adaptive design but for adap- 
tive cluster sampling simple design-unbiased estima- 
tors of a population mean or total are available. 

The usual unbiased estimators in adaptive clus- 
ter sampling are very simple but do not necessar- 
ily utilize all the information gathered. In partic- 
ular, the values of edge units are utilized in the 
estimators only for edge units that were picked in 
the initial sample. Estimators of higher efficiency 
can be obtained by taking the expected value of one 
of the usual estimators conditional on the minimal 
sufficient statistic. Unfortunately the Rao-Blackwell 
version of the original estimator, is computationally 
complex. In this paper new estimators will be pre- 
sented along with the Rao-Blackwell estimators that  
can incorparate this previously unused information. 
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0 O r d i n a r y  E s t i m a t o r s  i n  A d a p t i v e  

S a m p l i n g  

As in the typical finite population sampling situ- 
ation, the population consists of N units labeled 
1, 2, .., N and their associated variables of interest, 
y = {yl, y2, ..., YN}. The population vector y will 
be considered fixed but unknown constants. The 
parameter of interest in this paper is the population 
mean, 

N 
1 

. -- -~ E yi. (1) 
i=1  

In the simplest form of adaptive cluster sampling 
an initial sample of units is selected by random 
sampling without replacement (Thompson 1990). 
Whenever the variable of interest for a unit in the 
sample satisfies a prespecified condition, neighbor- 
ing or connected units are added to the sample and 
observed. This procedure continues until no more 
units are found that  meet the criterion. Conven- 
tional estimators, such as a sample mean or expan- 
sion estimator, that  are unbiased with a conventional 
design such as simple random sampling are not unbi- 
ased with an adaptive design, but for adaptive clus- 
ter sampling simple design-unbiased estimators of a 
population mean or total are available. 

The set of all units meeting the criterion in the 
neighborhood of one another is called a network. 
The units that  were adaptively sampled that did not 
meet the criterion are called edge units. Figure 1 il- 
lustrates a network and its associated edge units, 
which together will be called a cluster. In the fig- 
ure, the neighborhood of a unit is defined as people 
who are sexually linked, and the criterion for extra 
sampling is if a person is HIV positive. Units that 
do not meet the criterion, including edge units, are 
considered networks of size one. 

Two estimators of the population mean which are 
design-unbiased with adaptive cluster sampling are 
described below. We call them the ordinary estima- 
tors and denote them a s  J~l and ~2. Neither of the 
two estimators is uniformly better than the other, 
though in empirical studies/22 is generally more el- 
ficient than 121 (Thompson 1992). These estimators 
are used when simple random sampling is used to 
select the initial sample. The units selected in the 
initial sample are denoted by so and the units in the 
final sample by s. so is the set of unit labels obtained 
in the initial sample and s is the set of distinct unit 
labels in the final sample. Let n denote the initial 
sample of size and v the final sample size. 
Let ¢i denote the network which includes unit i and 
rni the number of units in that  network, wi rep- 

resents the average value of a unit in the network 
which contains unit i, that  is 

1 
wi = mi .i~e¢ yj (2) 

An unbiased estimator of the population mean is 

/21 1 
n 

i = 1  

The variance of ~1 is 
N N - n  

var(~tl) - N n ( N -  1) E ( w i  - # ) 2  
i=1  

An unbiased estimator of this variance is 

(3) 

(4) 

N - ~ n  n 

va~'-r(~l)- N n ( n -  1) i~l  (wi .=  -- ~1)2 (5) 

We next consider how to calculate 122. Let K equal 
the number of distinct networks in the population, 
Ck is the set of units in the k th network and Xk de- 
notes the number of units that  make up network Ck. 
(Note: Xk is equivalent to rni except Xk is defined for 
the distinct networks and rni the individual units.) 

y l -  y, (6) 
iECk 

The sum of the y-values in network k 
and the inclusion probability of network k 

(7) 

zk is an indicator variable which equals one if any 
unit in the initial sample intersect the k th network. 

1 if any unit of the k th network is in so (s) zk - 0 otherwise 

The estimator/;2 is 

1 ~ y;~zk (9) 
k = l  

The joint probability of two networks, k and h being 
intersected in the initial sample is 

+ 
n n C~kh- 1-- (~) (10) 

Also akk -- ak. The variance of/~2 is 
I K K , , 

- var(ft2 ) (11) 
O~ k OL h 

k = l  h = l  

An unbiased estimator of this variance is 

1 K K , , 

vat~(t;2) - ~ E E YkYhZkZh(C~kh -- C~k~h) (12) 
O L k ~ h ( ~ k h  

k - -1  h--1 
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3 .  N e w  E s t i m a t o r s  

In this section, two new estimators are arrived at 
by applying the Rao-Blackwell theorem (Rao 1945 
and Blackwell 1947) to ~1 and/?t2. These estimators 
are virtually as easy to compute as their ordinary 
counterparts. When computing the ordinary esti- 
mators ftl and /~2, we incorporate only those edge 
units which were in the initial sample. The new es- 
timators, which we call/,1+ and/~2+, are developed 
considering only how many edge units were initially 
picked, but not which ones. 

3.1 T h e  N e w  E s t i m a t o r / ' 1 +  

The final sample s can be partitioned into two parts, 
a "core" part Sc and the remaining part se. The 
core part Sc is the set of all the distinct units in the 
sample for which the criterion yi >_ c is satisfied. The 
remaining part s~ consists of all the distinct units in 
the sample for which yi < c. For unit i, let fi be the 
number of times the network to which unit i belongs 
to is intersected by the initial sample; that is, fi is 
the number of units in the initial sample that are in 
the network to which unit i belongs. 

Let the statistic d + be defined as 

d + - {(i, yi, f i)" i e Sc, (j, yj)" j C s~} 
(13) 

In d +, the intersection frequency fi is included only 
for i C so. Let D + denote a random variable that 
takes on possible values of d +. Also let D + denote 
the sample space for d +. 
For i C s, define the indicator variable ei as 

e i - {  1 

0 

if Y i < C  a n d i i s i n  
the neighborhood of some j C Sc 

otherwise 

(14) 

Thus ei = 1 if i is an edge unit and the network 
that  makes it an edge unit is selected in the initial 
sample. Should ci = 1, we shall refer to that unit as 
a sample edge unit. Other units picked in the initial 
sample may be edge units, but sample units are the 
edge units whose network that  classifies them as an 
edge unit was intersected in the initial sample. 

The number of sample edge units in the sample is 

12 

e s - E e i - E e i  (15) 
i = 1  iEs 

The number of sample edge units picked in the 
initial sample so is 

n 

e s 0 -  E e i -  E ei (16) 
i = 1  iCso 

The average y-value for the sample edge units in the 
final sample is 

v 

Ye - ~-]~i=, eiyi (17) 
e s  

For the ith unit in the sample, define a new variable 
! 

of interest w i by 

! 

wi - w i (1  - ei) + 9~ei (18) 
! 

The variable w i is the original wi when not dealing 
with sample ,edge units. When dealing with sample 
edge units w i equals the average of the sample edge 
units. 

The new estimator/~1+ is defined by 

f t l +  - -  E[ftllD + - d +] (19) 

By the Rao-Blackwell Theorem, ~1-t- is unbiased for 
p, since/51 is unbiased, and the variance of the new 
estimator/~1+ is less than or equal to the the vari- 
ance of the ordinary estimator/~1. 

var(ttlRB) <_ var(f~l+) <_ var(ftl) (20) 

Further, unlike ftlRB, the new estimator is very 
easily computed, as shown by the following theorem. 

T h e o r e m  1 

n t 

-- -Ewi (21) ~ 1 +  - -  n 
i = 1  

Since the initial sample determines the final sample 
t 

and every value of the statistic d +, let g(so) denote 
the function that maps an initial sample into a 
value of d + resulting from its selection. For any two 

! 

values of s o and d + let 

, { 1 if g(s'°) - d+ (22) 
I (s0 ,d  + ) -  0 otherwise 

Let L(d +) be the number of initial samples com- 
patible with d + and P(d +) be the probability that  
D + = d +. Also let S be the sample space containing 
all possible initial samples. The variance of/~1+ is 
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var(f t l+) 

N 
N - n  

N n ( N -  1) E ( w i  - p ) 2  
i--1 

Tt 2 E 
d+ 67)+ 

P(d+) I(so , d +) × 
L(d  +) 

SoCS 

( Z Y~-%~)~ 
iE S'o ,ei = l 

(23) 

An unbiased est imate of the variance of/~1+ when 
sampling is done without replacement is given by 

va~'--¢ (~1 + )  = 

n 

N - n i~l ( W i - /~1) 2 
N n ( n -  1) : 

E ' 1 I ( s  o d +) x 
L n  2 

! 

SoE8 

iES'o,ei=l 

(24) 

However a more efficient est imator  is 

va~'-P (#1 +) - E[~(/21+)ld +] 
1 , N - n  

= Z Z I(~0 ,e+)N~(~_ 1) × 
! 

% 6 8  

n 

Z(~ _~1)2 
i=1 

1 
L n  2 E I(so'  d+) x 

! 

% 6 8  

( Z y~ - ~'o~) ~ 
• ! 

ZESo,ei=l 

(25) 

3.2 The New Estimator/22+ 

For the kth network in the sample, define the indi- 
cator variable 

4 - {  1 
0 

ify~ < c  and k is in the 

k' neighborhood of some C Sc 
otherwise 

(26) 

! 

The variable ek, for i -- 1 , . . . K  has meaning 
similar to ei but is indexed by network rather  than 
individual unit. Note tha t  all networks of size 

! ! 

greater than one must  have e k - O. Also e k - 0 for 
those units not in s. 

Let 

! 

, {y~ if e k - O  (27) 
Yk -- Ye if e k -- 1 

Thus, for a network of units satisfying the condition, 
! 

Yk is the total  of the y-values in tha t  network, while 
! 

for an sample edge unit (a network of size one) Yk 
is the average of the y-values for all the sample edge 
units in the sample. 

The new est imator/22+ is defined by 

f~2+ - E[f~e]D + - d +] (2s) 
By the Rao-Blackwell Theorem /~2+ is unbiased 

for p since/22 is unbiased and the variance of/22+ is 
less than or equal to the variance of p2. In fact, 

var(ft2RB ) <_ var(ft2+ ) < var(ft2 ) (29) 

Unlike ~t2RB, the new est imator  is very easily com- 
puted, as shown by the following theorem. 

T h e o r e m  2 

1 K ! 

Z y~z~ (30) 
k--1 

and the variance of/;2+ is 

vat(f!2+) = 
1 K K , , 

N 2 CtkOl k 
k = l  h = l  

1 P (d  +) /(So , d+ ) × ~ ~ L(~+) 
d+ C'D+ So CS 

E 
! ( y~- ~oy~) ~ 

iE S!o ,ei = l 

(31) 

An unbiased est imator  of this variance is 

va-'-C(ft2+ ) = 
1 K K , , 

N 2 OLkOLhOLkh 
k = l  h = l  

1 
Ln2 E /(So' d+) x 

! 
soCS 

( Z Y~-~'o~): 
! 

iCso,ei=l  

(32) 
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A more efficient estimator of the variance is 

0 

- E[~'d-C(~2+)ld +] 

1 , d+ 1 = 

S~o ES 

K K , , 

E E  ~kOLhO~kh k=l  h=l  
1 ~ , 

Ln 2 )_£ I(so, d +) x 
t 

SoES 

( Z 
! 

iEso ,e i=l  

(33) 

A n  E x a m p l e  

(0) 

The initial sample consists of the n - 10 people in 
the bot tom two rows. 
For the network intercepted with HIV (+) people 
mi - 3 wi - (20 + 0 + 25)/3 - 15 
No te :  There are seven networks in the initial sam- 
ple with y i -  0 
f t  I - -  1 / 1 0 ,  (7 • 0 + 30 + 15 + 5) - 5 
9¢ - 1 / 3 ,  (30 + 12 + 0) - 14 
t~l+ - 1/10 • (7 • 0 + 14 + 15 + 5) - 3.4 
Inorder to calculate variance estimates the popula- 
tion size will be N -  1000000. 

1 0 0 0 0 0 0  - 1 0  

va~'~(/~l) = 1000000(10)(10- 1) x 

7 x ( 0 -  5) + ( 3 0 -  5) 

+ ( 1 5 -  5) 2 + ( 5 -  5) 2] 

9.9999 

va-'~ (/~1+) 
1 

- 9 . 9 9 9 9  - x 

102x (~) 

( 3 0 -  14) 2 + ( 0 -  14) 2 + 

( 1 2 -  14) 2] 

= 8.4799 

va-~"r(ftl + ) - (9.99 + 2.33 + 3.24)/3 - 1.52 

= 3.67 
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