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1. I n t r o d u c t i o n  

Semicontinuous variables have a proportion of re- 
sponses equal to a single value (often zero) and a con- 
tinuous distribution among the remaining responses, 
as shown in Figure 1. Semicontinuous variables are 

Figure 1: Histogram of a semicontinuous variable 

common in many fields of research. Examples in- 
clude: individual consumption of alcohol, tobacco, 
or other controlled substances; annual household ex- 
penditures on a class of durable goods (e.g. refriger- 
ators); and annual income from specific sources (e.g. 
dividend income). Despite the prevalence of semi- 
continuous variables, current techniques do not han- 
dle this type of data well, particularly when change 
over time is to be assessed. Using methods not 
specifically tailored to semicontinuous variables may 
produce incorrect estimates or limit the types of hy- 
potheses researchers would like to test. 

Multilevel linear models, or general linear mixed 
models, (e.g. Bryk and Raudenbush, 1987; Lind- 
strom and Bates, 1988) may be used to study in- 
dividual growth when it can be assumed that the 
response is continuous and normally distributed. 
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Many software packages are available for fitting 
multilevel linear models, including MLn (Multilevel 
Models Project, 1996), HLM (Bryk, Raudenbush, 
and Congdon, 1996), and SAS PROC MIXED (Lit- 
tell et al., 1996). For convenience, researchers often 
apply these models even when the distributional as- 
sumptions are clearly violated, as when the response 
semicontinuous, leading to unreliable estimates and 
standard errors. 

Another popular method for longitudinal data 
is to estimate marginal or population-averaged el- 
fects using generalized estimating equations (GEE) 
(Diggle, Liang, and Zeger, 1994). This method 
does not impose a full parametric distribution on 
the response, nor does it require correct specifica- 
tion of the covariance structure for repeated ob- 
servations within units. GEE methods estimate 
population-average regression functions for mean re- 
sponse. When the response is semicontinuous, how- 
ever, estimates of a single regression function may 
be of dubious value; dual regression functions--one 
describing the binary split, the other describing the 
continuous aspect--are probably more appropriate. 
Another limitation of GEE methods is that  they do 
not handle missing values well; they may be ap- 
propriate when the missing values are missing com- 
pletely at random (MCAR) but not missing at ran- 
dom (MAR) as defined by Rubin (1976), which tends 
to be quite restrictive. 

Analyses of semicontinuous variables in cross- 
sectional data have appeared in the econometric lit- 
erature. Manning et al., (1987) and Duan et al., 
(1983) address a semicontinuous distribution of med- 
ical expenses with a two-part model. The observed 
response is decomposed into two random variables 
and two regression equations. The first random vari- 
able represents whether or not a person has any med- 
ical expenses; this probability is modeled with a logit 
or probit dichotomous regression. The second ran- 
dom variable represents the amount of medical ex- 
penses given that the person had any. The parame- 
ters in the two regression equations are functionally 
independent and can be estimated separately using 
standard methods. 

An extension of this two-part model forms the 
conceptual basis of our model for semicontinuous 
longitudinal data. The longitudinal semicontinuous 
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response, Y/j, can be recoded into two variables, 

1 if Y/j > 0, 
U i j -  0 if Y/j - 0, 

and 
_ ~ g(Yi j )  if Y/j > 0, 

V~j 
missing if Y/j - 0, 

where j = 1 , . . . ,  r t i  indexes the time points for indi- 
vidual i = 1 , . . . ,  rn and g is a monotone increasing 
function (e.g. log) that will make V/j approximately 
normally distributed. A multilevel logistic model for 
Uij, and a multilevel linear model for V/y using only 
the occasions where Y/j > 0, can be fit separately 
with existing software (e.g. HLM). Fitting these 
models separately, however, does not allow for re- 
lationships between the two parts of the data, im- 
plying that  Uij is independent of V/j,, j ¢ j~. For 
example, in a study of adolescent alcohol use, this 
assumption means that whether or not a student 
uses alcohol in seventh grade does not influence his 
or her amount of use in eighth grade. Not allowing 
for relationships between the two parts of the data 
is equivalent to giving identical treatment to values 
of V/j that  are unseen because Y/j = 0 and values of 
V/j that  are unseen because Y/j is truly missing. 

We propose to model incomplete longitudinal 
semicontinuous data by fitting correlated longitudi- 
nal models for the binary and continuous parts of 
the response. By working with Uij and V/j, we will 
be able to express a dual set of relationships among 
the Y/j's across time, and a dual set of relationships 
between the response variable and other covariates. 

2. P r o p o s e d  M o d e l  

As shown in Figure 2, each individual has two corre- 
lated growth curves one for the logit probability 
of Uij = 1 and one for the mean response, E(Vi j )  for 
the occasions when Uij = 1. 

logit  P(Ui j  = 1) E(I/~j I ggj - 1) 

I I I 1 I I I I I I I 
1 2 . . .  ni 1 2 ' ' '  

Figure 2: An individual's two growth curves 

I 
ni 

The logit model is 

rli -- logit(Tri) _ X i f l + T  zTci ,  

where Uij ~ Bernoulli(Trij), 7rij = P(Uij = 1), and 
7ri --  (Tril,  7 r i 2 , . . . ) T .  The linear model is 

V/ . T  . T  
- -  X i ")/ + Z i di  + ei,  

where ei ~ N(O, ~2I)  and V/is the vector of V/j for 
all  j such that  Uij = 1. The random coefficients, ci 
and di, are possibley correlated, 

( cc 
This model has several desireable properties. The in- 
tercepts and slopes for each curve can be either fixed 
or random, and additional covariates (either static 
or time-varying) may be included in either curve. In 
addition, because the random effects of each curve 
are correlated, this model can describe possible re- 
lationships between the binary and continuous parts 
of the data. 

In many situations, the hypotheses of primary in- 
terest will focus on ~ and 7, the fixed effects for the 
logit and linear models, respectively. It may also 
be useful, however, to examine ¢, the covariances of 
the subject-specific features, and to test hypotheses 
of interest for example, the hypothesis that  the 
models are separable (¢cd = 0). 

3. S t r a t e g i e s  f o r  m o d e l  f i t t i n g  t h e  

E M  a l g o r i t h m  

Because our proposed model has logit and linear 
parts, obtaining parameter estimates and standard 
errors poses a unique challenge. Some prelimi- 
nary approaches that we have investigated include 
Markov chain Monte Carlo (Gilks, et al., 1994) and 
an approximate EM algorithm. In this paper we will 
present results from the approximate EM algorithm, 
in which the E-step is carried out by importance 
sampling (for an example of importance sampling, 
see Gelman et al., 1995). 

The EM algorithm (Dempster, Laird, and Rubin, 
1977) is a common technique for parameter estima- 
tion in incomplete-data problems. Traditional ap- 
proaches of EM to growth curve models treat the 
random effects as missing data. We maximize the 
expected loglikelihood which assumes that  the ran- 
dom effects are observed (M-step). This expectation 
is taken with respect to the conditional distribution 
of the random effects given the observed data and 
the other model parameters (e.g. ~ or ¢) fixed at 
their most recent estimates (E-step). The EM al- 
gorithm iterates between the E-step and the M-step 
until the difference between the parameter estimates 
at each iteration is negligible. 
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Under our proposed model, the likelihood function 
based on the assumption that  the random effects are 
observed can be written as 

LA or. 
m 

H l¢[-1/2 exp --lhT~/'-lh" 
2 ~ b~" ~"~ 

i:1 
n i  

× I I  (1- 
j=l  

n i  

x Hexp ( -~ (V~ j -A~ j )T (v~ j -A~ j ) ) ,  (1) 
j*=l 

where  Aij - -  x*Ti j ' ) '  "k- z*Tijdi and  j* indicates only 
those time points j for which Uij - 1. The ex- 
pected loglikelihood can be written as the sum of 
three parts, 

E(IA) oc 
m 1 bT¢_x E ---~- log 1¢] - ~ bi + 

i - - 1  

E[~i,jUij~Tij-l°g(1-k-exp(rlij)) ] - 

IN* 2 I E(I/~j_Aij)T(vIj_Aij)](2 ) E ---~loga -- ~ 
i,j* 

where N* - ~-].im__l ni for those time points j for 
which Uij = 1. Notice that  E(1A) can be factored 
into three distinct functions of ¢, /3, and ('y, a2), 
respectively; therefore, we can maximize each of the 
three parts of E(1A) separately. 

3.1 T h e  E - s t e p  

In contrast to a standard growth curve model, 
which assumes the errors are normally distributed, 
the multidimensional integral associated with E(IA) 
cannot be evaluated directly. Gelman et al. (1995) 
describe several computational techniques to ap- 
proximate the integral expression, including impor- 
tance sampling. The part of E(lA) which is a func- 
tion of/3 can be written as 

m 

(3) 

where h(ci) - Y'~jn~l (Uijrlij - log(1  +exp(Thj))). The 
marginal distribution of the random effects for the 
logit part  of the model, q(cill3, 7, a2, ¢, data), is non- 
standard, so we cannot obtain draws from it directly. 
Details of this distribution are given in a technical 

report (Olsen and Schafer, 1998). Instead, we can 
choose a standard distribution, g(ci) from which we 
can sample K random draws of ci and approximate 
the integral given in (3) by 

E K k=l 
i----1 ~ K W ( C l  k) 

The importance ratios, w(cl k)) are defined to be 

g( l IZ, z ,  ¢ ,  

(4) 

Gelman et al. (1995) note that  importance sampling 
works best if the ratio hq/g is fairly constant. 

We take g(ci) to be a multivariate t-distribution 
with df=4, mean equal to the maximum likelihood 
(ML) estimate, d/, and covariance matrix equal to 
the inverse Hessian of the loglikelihood. At each 
iteration of the EM algorithm, the mean and covari- 
ance matrices for g are calculated via the Newton- 
Raphson algorithm. Details of this algorithm are in 
Olsen and Schafer (1998). 

From equation (2), we can see that  the remaining 
two parts of E(1A) (the functions of ¢ and "y, cr 2) 
require the calculation of E(bib T) and E(di). It can 
be shown that 

~-J Z *  - i  - i  dilci N (di,a2(Z*i T + a2H ) ),  

where 

-1 
- + + z : z ;  

x Zi (Vi - Xi T i) _ Zi Zi Cac¢cc ci 

and H - e g g -  Cdc¢ccl¢cd • Therefore, using the im- 
portance sampling results, 

E(di) - E(E(dilci)) 

= Ek=  . (5) 
-~ ~-~k=l w 

If we write out the expression for E(bib T) in terms 
of ci and di, it is clear that  we just need to find 
E(cicT),E(cidT),  and E(didT). Applying the rules 
of taking the expectation of a conditional expecta- 
tion and importance sampling, expressions for these 
can be found in the same way as for E(di). For 
details, see Olsen and Schafer (1998). 

3.2 The M-s tep  

As stated previously, we can maximize the three 
parts of E(1A) separately. Expressions for finding 
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the maximum values for ¢, V, and cr 2 are attained 
by taking the derivative of E(1A), setting it equal to 
0, and solving for the parameter of interest. The part 
involving ~ is maximized at ¢ - rn -1 y~'n=l E(bibT). 
The maximum for 7 has the standard least-squares 
form, 

,T X* z*TE(di)). - -  X * i j  X i j  i j  (~ / i j  - -  i j  

i , j  * i , j  * 

The maximum for a 2 is given by 

m n i  

6 ~ _ 1 

i = 1  j*  =1 

2 ( V i i  --(x*T3,(t))z*TE(di)trZ*ijZ*TE(did T )  

where 7 (t) is the most recent value of 3' in the (t + 
1) st iteration of the EM algorithm. 

Maximizing E(1A) with respect to fl requires an 
application of the Newton-Raphson algorithm. The 
maximum,/~, can be found numerically by repeated 
application of 

/ ~ ( t + l ) _  / ~ ( t ) _  [OE(1A) (t) 5E(1n) (t) 
o#o# w o #  " 

where 
rn n i K 

i = 1  j = l  k = l  

5E(ZA) 
0# 

and 

U i j X iTj 

i = 1  ' =  

m n i  K "] 

IEEE / ~v~ - l~(c} ~))x~!~) . 
i = 1  j = l  k = l  

When the Newton-Raphson algorithm converges, 
/ ~ -  3(t+i) ~ 3(t). 

4. E x a m p l e  

The data in this example come from a panel of 
the Adolescent Alcohol Prevention Trial (AAPT) 
(Hansen and Graham, 1991). In one wave of AAPT, 
measurements were collected from 3,581 fifth graders 
in public schools of Los Angeles county. The stu- 
dents were re-surveyed each year in grades 6-10. The 
response variable of interest is a composite measure 
of reported recent alcohol use. In this measure, 0 
represents no recent alcohol use or sips for religious 
purposes only. The histograms in Figure 3 show the 
distribution of the response at each grade. The miss- 
ing values are denoted NA. There is a high concen- 
tration of values at zero and a positive continuous 
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Figure 3" Histograms of reported recent alcohol use 

right skewed distribution. Notice, also, that  at each 
successive year the proportion of missing responses 
increases due to attrition. 

In our linear and logit models, girls are coded as 
0 and boys as 1. Time is coded 0 to 5, where 0 
represents grade 5 and 5 represents grade 10. As a 
result, the intercepts in the both the linear and logit 
models represent the average level at grade 5. 

Our design matrices for the logit model have four 
fixed effects and a random intercept. The fixed ef- 
fects are an intercept, time, sex, and sex by time. 
The linear model has exactly the same form, except 
that there is an additional random effect allowing the 
slopes to vary by individual. For this model, the ap- 
proximate EM algorithm took 341 iterations to con- 
verge using a maximum relative parameter change of 
0.001. Histograms of the importance ratios indicate 
that  importance sampling provided a good approxi- 
mation. 

5. Resu l t s  

Parameter estimates for the fixed effects in the logit 
(/3) and linear (~) models are shown in Table 1. Re- 
call that  the logit model is for the probability of 
any recent alcohol use (except sips for religious put- 
poses). The linear part models the expected amount 
of recent alcohol use among those who reported use. 
Figure 4 displays the average trends over time for 
boys and girls for the logit-probability of any recent 
alcohol use (shown on the probability scale) and the 
expected amount of recent alcohol use among those 
who reported use. Notice that  boys show a higher 
probability of use initially, but the girls' probability 
increases faster so that  beyond seventh grade girls 
have a higher probability of reporting any recent al- 
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intercept -3.22 -.370 
sex 0.408 0.021 
time 0.604 0.194 
sex*time -0.161 0.0085 

Table 1" Parameter estimates of the fixed effects 

cohol use. Girls and boys have similar increasing 
trends of the mean amount of recent alcohol use, but 
the boys' use is consistently higher and increases at 
a slightly faster rate than the girls' use over time. 
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Figure 4: Average growth curves for boys and girls 

To gain insight into the relationship between the 
two parts of the model, we can look at the variance 
components of the random effects. 

2.32 0.316 0.056 ) 
- 0.316 0.203 ~ 0 ~ 0 2 4 

0.056 -0.024 0.010 

Recall that the logit part of the model only has a 
random intercept, while the linear part has both a 
random intercept and slope. The relatively small 
variance component for the random slope of the lin- 
ear model (0.010) indicates that including a random 
slope may not be necessary. So, we restrict our at- 
tention of the ¢cd matrix to just the first element 

the covariance between the random intercepts of 
the linear and logit model (estimated at 0.316). The 
correlation between the random intercepts for the 
linear and logit models is 0.46, providing us with 

strong evidence that modeling the two parts of the 
data separately is not appropriate. 

6. F u t u r e  W o r k  

We regard this EM algorithm as a preliminary ap- 
proach. Simulation work has shown that it is com- 
putationally accurate but too slow for practical use. 
Our future efforts will focus upon developing faster 
algorithms for parameter estimation. 

Researchers have addressed analyzing binary lon- 
gitudinal data under the generalized linear mixed 
model using a variety of methods, including penal- 
ized quasi-likelihood (e.g. Goldstein and Rabash, 
1996; Lin and Breslow, 1996; Wolfinger and 
O'Connell, 1993) and MCMC methods (e.g. McCul- 
loch, 1997; Zeger and Karim, 1991). Recently, Rau- 
denbush and Yang (under review) have developed 
an algorithm which implements a Taylor series and 
Laplace approximation to evaluate the likelihood be- 
fore maximizing it using Fisher scoring; they have 
found this approach to be both accurate and compu- 
tationally fast. Accurate and efficient algorithms for 
the linear part of the model are considerably more 
developed. Schafer (under review) reviews standard 
methods for general linear mixed models and derives 
a new set of procedures (a combination of EM and 
scoring) which significantly speed up conventional 
algorithms for ML estimation. We plan to modify 
these current likelihood-based methods to incorpo- 
rate the non-standard type of missing data in V/j and 
the assumption that the random effects for the logit 
and linear parts of the model are correlated. The 
implementation of these full-likelihood methods will 
enable us to test hypotheses about the covariance 
parameters of the random effects and other types of 
goodness of fit measures in addition to hypotheses 
about the fixed effects. Finally, we plan to incorpo- 
rate these algorithms into a software that researchers 
will be able to use to analyze semicontinuous longi- 
tudinal data. 
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