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1. THE ESTIMATION OF THE EFFECTIVE DEGREES OF 
FREEDOM 

In the analysis of complex survey data, study trends 
and comparisons usually involve t-type tests and 
confidence intervals. The National Assessment of 
Educational Progress (NAEP), which uses a multistage 
stratified probability sample design, provides examples 
of these studies. NAEP is designed to assess and report 
on student academic achievement and educational trends 
in the United States. 

In t-type tests, one basic issue involved is the 
calculation of the variances of the statistics of interest. 
Several approaches are often employed in practice such 
as, interpenetrating subsamples, Jackknife repeated 
replication (JRR), balanced repeated replication (BRR), 
bootstrap, and the Taylor series method. In NAEP, the 
paired JRR is used to estimate variances. Another 
practical issue in t-type tests is the estimation of the 
effective degrees of freedom for the variances. 
Satterthwaite's formula can be used to obtain the 
effective number of degrees of freedom for the 
variances estimated by the approaches (Rao & Scott, 
1981; Johnson & Rust, 1992) discussed in Section 1.1. 

In application, however, some deficiencies in the 
Satterthwaite's formula would occur. First, it would 
underestimate the effective degrees of freedom; see 
Section 1.2. Johnson and Rust (1992) use an adjusted 
formula that is determined by empirical approach. 
Second, the measure of the effective degrees of freedom 
could be unstable; see the discussion in Section 1.3. 
Examples were found in the statistical tests conducted 
for the 1996 NAEP long-term trend assessments. To 
verify the cause of downward bias and instability, a 
computer simulation was done; see Section 1.4. 

The objective of this research is to find approaches 
that produce stable estimates of the effective degrees of 
freedom, which are discussed in Sections 2.1-2.2. 
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1.1 The Satterthwaite's Formula 
In analysis of independent samples, the number of 

degrees of freedom for the variance of a linear 
combination of several estimates is not simply the sum 
of the numbers of degree of freedom for each estimate. 
One estimate of the effective number of degrees of 
freedom is obtained by matching estimates of the first 
two moments of the variance to those of a chi-square 
random variable (Satterthwaite, 1941, 1946; Cochran, 
1977). The degrees of freedom are the measure of the 
stability of a variance estimator. 

For a linear combination of independent normally 
m 

distributed x = ~ xj estimates, the effective degree of 
j=l 

m 

freedom of the variance of x is 

C[fs: ~ Sx2j / (S~](n,-1)) 
j=l 

nj 

2 _~j)2 wherenj (Satterthwaite 1941), Sxj= 1/(nj - 1 ) ~  (xji , 
i=1 

is the sample size of jth subsample. The effectivedf s 

always between the smallest of the nj - 1 and their sum. 

For a weighted combination of ~.j, 

/ ) : j=1 32 /j~x (w~S~l(n'-l))''= 
A special case is where the values of nj are 2. Then 

df s = Sx2j [ S 4 Obviously, 1 < df < m So a 
j=l xj . . . .  

smaller df s would cause hypothesis tests and confidence 
intervals more conservative rather than a traditional one. 

The Satterthwaite's formula can be used to calculate 
the effective number of degrees of freedom for 
variances estimated by interpenetrating subsamples, 
Jackknife and BRR approaches. 

In the paired Jackknife procedures, two Primary 
Statistical Units (PSU) are selected from each stratum. 
In NAEP studies, PSUs usually form 62 pairs. With a 
paired selection design, one PSU is dropped from 
stratum 1 at random; then the weights of elements in the 
other PSU in that stratum are doubled. Based on this set 
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of weights, s ta t i s t ic  81, say sample mean, can be 

calculated to estimate population parameter 0. 8 x is 

called a pseudo-value. Repeat the process by dropping 
one PSU from each of the strata in turn, doubling the 
weights of elements in the other PSU, and computing 

82, 8 3,... 8 m. Then V(0) is estimated by v(0) - 
I l l  

(8 i _ ~)2. This procedure can readily be extended to 
i=1 
designs with more than two sampled PSUs per stratum. 

In NAEP samples, the Jackknife variance has the sum 
of 62 squared variations, which are equivalent to 62 
pairs of independent samples in the Satterthwaite's 
formula. Therefore, the Satterthwaite's formula can be 
applied to estimate the degrees of freedom for Jackknife 
variances. Although the Satterthwaite's formula is 
broadly used in complex data analysis, Satterthwaite 
estimates have several deficiencies. 

1.2 The Adjustment of Downward Bias in Estimation 
of the Effective Degrees of Freedom 

One deficiency in Satterthwaite estimates is the 
underestimation of the effective degrees of freedom 
(Johnson & Rust, 1992). It will introduce downward 
bias in the estimation and cause tests to be too 
conservative. In NAEP data, the estimated effective 
degrees of freedom for the NAEP Jackknife variance are 
sometimes noticeably smaller than the degrees of 
freedom attributed to the corresponding error estimates 
from conventional techniques that assume a simple 
random sampling of students. When comparing the 

unadjusted df s from the data in Table 2.1 with the 

average df s in simulation in Table 1.1, the downward 

bias is clear. The simulation results show that the 
downward bias could be caused by a violation of the 
normality assumption. We found that the means and 

medians of df s when PSU means form a gamma 

distribution are smaller than those with PSU means 
normally distributed. 

To remedy the downward bias, Johnson and Rust 

(1992) proposed an adjustment to df s 

,,2 

j--1 
1.3 The Instability of the Estimates of the Effective 
Degrees of Freedom 

Another drawback is the instability in estimation by 
the Satterthwaite's formula. For example, the instability 
was found in the report on the 1996 NAEP 8th Grade 

Mathematics Long-Term Trend Across Assessments. 
Table 1.2 are the estimated effective degree of freedom 
for weighted proficiency scores, which are major 
measurements in NAEP studies. 

In Table 1.2 shows that the effective degree of 
freedom was 14.3 for male students in the 1992 NAEP 
mathematics long-term trend across assessments, and 
43.8 for female students. The largest effective degree of 
freedom for male students is 34.1 in 1990, which is 
more than twice that of 14.3 in 1992. The coefficients 
of the variation are 0.3 and 0.4 for male and female 
students, respectively. The larger coefficients of 
variation show instability. In general, the coefficients of 
variation are greater than or equal to 0.2. Similar 
problems were found in other NAEP data. 

The problems of downward bias and instability may 
cause errors in statistical results and misleading in 
decisions, which are unacceptable. 

1.4 The Empirical Distribution of the Effective 
Degrees of Freedom 

The problems of underestimation and instability could 
be caused by the following: First, in empirical survey 
data, the assumption of normality for the Satterthwaite 
formula could be violated. Second, the estimate for the 
effective degrees of freedom is a ratio of two high order 
moment estimates, so the variance of Satterthwaite's 
estimates would be very large. Third, the sampling 
methods within each PSU are usually complex, and 
therefore, could introduce weighing and design effects. 

To verify the causes of the problems, we used a 
Monte Carlo simulation to approximate the distribution 
of the estimates of the effective degrees of freedom. 
Although normality is the assumption for the 
Satterthwaite's formula, the normal, gamma, and 
uniform distributions of random variables were 
employed in the simulation. The simulation was 
repeated 2000 times. In a typical simulation, the number 
of random variables, group size, is set at 62, which is 
the same as the number of Jackknifing replicates in 
NAEP. The empirical distributions (see Figures 1-3) 
show that the effective degrees of freedom were 
distributed close to a normal one. 

Table 1.1 lists the means of the degrees of freedom 
and their standard errors for a typical simulation. When 
comparing them with the Satterthwaite' s estimates from 
NAEP data, in the first column in Table 2.1, a 
downward bias can be easily found. Table 1.1 also 
shows that the coefficients of variation from the 
simulation are relative small; however, those derived 
from NAEP mathematics long-term trend across 
assessments in Table 1.2 are large. These show the 
evidence of instability of Satterthwaite's estimates. The 
Figure 4 shows the linear relationship between degrees 
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of freedom and group sizes. 

2. THE IMPROVEMENT 
SATI'ERTHWAITE ESTIMATES 

IN INSTABILITY OF 

Several improvements are proposed here to solve the 
problem of instability. 

2.1 A Moderate Number of Degree of Freedom 
To remedy the instability, the mean or median 

estimate of the effective degrees of freedom, d f ,  can 
be used as the effective degrees of freedom in 

hypothesis tests. We can obtain d f  by a computer 

simulation. 

2.2 Composite Estimator 
To improve the accuracy of estimates for the effective 

degrees of freedom, a general composite estimator can 
be expressed as 

dfj = gdf~t + (1 - t~)df A, 

where df~, is the mean of the simulation distribution and df A 
is the improved estimate of the effective degrees of 
freedom (Johnson & Rust, 1991). 

2.3 Optimal Shrinkage Estimator 

To treat df n as "model-based" estimator, an optimal 
composite estimator can be defined: 

t Am](Au+Am) if A m>_0 and A u>_0, 
cs -~ 1 if A < 0, 

0 otherwise, 

with Am~V(c[f A) + Bias2(dfA) and Au~ V(df~). This is 
a special case of the optimal composite estimator 
proposed by Cohen and Spencer (1991). In calculation, 
Otcs can be estimated by sample moments for Am and 

Au. And V(df A) would be estimated by the Jackknife 

approach. 
This shrinkage estimator was used to estimate the 

effective degrees of freedom for the mean scale scores 
for NAEP assessments. The results of the shrinkage 
estimates are listed in the second and third columns in 
Table 2.1. They are stable, and also avoid 
overadjustments, which sometimes are caused by the 
adjustments (Johnson & Rust, 1991). 
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Distribution 

Table 1.1 The Means, Medians and Standard Errors 
for Three Distributions 

(In Simulation: N=2000; Group Size: m--62) 

Mean Median STD 

Normal: N(0, 1) 

Gamma" G(2, 1) 

Uniform: U ( 0, 1) 

22.10 22.39 3.72 

15.17 14.86 5.47 

33.98 33.97 2.93 
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Table 1.2 The Estimated Effective DF for the Variance 
of Mean Proficiency Scores 

in NAEP Mathematics Long-Term Trend Across Assessments (Age 17) 

1978 1982 1986 1990 1992 1994 1996 

Sex 

Male 

Female 

27.4 28.0 23.0 34.1 14.3 33.0 20.7 

25.9 22.1 19.3 39.5 43.8 18.6 12.1 

Ethnicity 
White 30.0 19.0 17.8 24.5 28.6 25.2 23.3 

Black 30.8 18.4 18.5 10.7 26.8 24.5 29.8 

Hispanic 6.8 7.1 6.4 12.8 9.1 7.0 19.5 

Other 17.0 3.3 6.2 10.6 21.7 6.3 5.0 

Region 
Northeast 16.1 7.2 8.8 28.2 11.3 16.6 12.9 

Southeast 8.0 6.0 14.2 9.0 14.6 12.4 15.5 

Central 6.0 5.1 14.4 13.6 7.8 9.1 26.0 

West 4.4 5.2 7.3 23.5 9.7 6.7 9.7 

Taken Computer Pgm 

Have 

Have not 

7.8 26.2 11.0 28.9 28.6 21.5 21.2 

31.4 21.6 26.7 33.8 39.8 32.9 38.2 

CV 

0.3 

0.4 

0.2 

0.3 

0.5 

0.6 

0.4 

0.3 

0.6 

0.6 

0.4 

0.2 

Table 2.1 The Composite Estimates of DF for the Variance for 
Mean Proficiency Scores 

in 1996 NAEP Eighth Grade Mathematics Assessments 

Not adjusted elf s Composite estimate 

for not adjusted df s 
Adjusted cff s Composite estimate 

for adjusted df s 

Sex 

Male 

Female 

11.6 

15.6 

21.0 

20.6 

32.5 

43.9 

23.1 

22.7 

Ethnicity 

White 

Black 

Hispanic 

Asian 

9.9 

6.5 

6.1 

7.8 

21.1 

21.3 

21.3 

21.2 

27.9 

18.3 

17.1 

22.0 

23.5 

20.6 

20.4 

22.0 

Region 

Northeast 

Southeast 

Central 

West 

3.8 

5.6 

9.0 

8.2 

21.4 

21.3 

21.1 

21.2 

10.7 

15.8 

25.3 

22.9 

21.0 

20.8 

23.8 

22.8 
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Figure 2. The Distribution of Degree of Freedom 
Prof ic iency Has A G a m m a  Dist. 

Figure 1. The Distribution of Degree of Freedom 
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