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I. Introduction 
The U.S. Census Bureau publishes estimates of medians 

for several characteristics of new houses, with a key estimate 
being sales price of sold houses. These estimates are 
calculated from data acquired from interviews of home 
builders by the Survey of Construction (SOC). In the near 
future, the Survey of Construction (SOC) will move its 
current variance estimation system to the Census Bureau's 
re-engineered post-data-collection processing system, the 
Standardized Economic Processing System (STEPS). For 
sample designs that do not use Poisson sampling, the STEPS 
system uses replication methods to estimate standard errors. 
The SOC is a multi-stage probability survey whose sample 
design is well suited to the modified half sample (MHS) 
replication method ~ for reasons outlined in section III.B. 

The literature supports the use of Balanced Half-Sample 
Replication (e.g. Rao, Wu, and Yue (1992); Rao and Shao 
(1996); Kovacevic and Yung (1997)) and MHS replication 
(Judkins (1990)) for estimating variances of medians from 
complex survey data. We considered two methods of 
median estimation for variance estimation purposes. The 
first method uses the replicate weights to estimate medians 
via replicated empirical cumulative-distribution functions 
(i.e., calculate the median of each half-sample). The second 
method uses linear interpolation of grouped continuous data 
to approximate the median of each half-sample. The latter 
method is implemented in VPLX (Variances from 
ComPLeX Survey, Fay (1995)), a variance estimation 
software package developed at the Census Bureau. 

Direct calculation of sample medians can be 
computationally intensive because it requires separate sorts 
for each value of a given classification variable. An 
alternative estimation method is to group the continuous data 
into discrete intervals (called bins) and use linear 
interpolation over the interval containing the median. 
Provided that the data are approximately uniformly 
distributed over the interval containing the median, 
interpolation yields a good approximation. However, 
optimal bin widths and locations may change over time, as 
the sample distributions change. These considerations 
motivated our research. 

In this paper, we compare six methods of median- 
estimation for MHS replication: the sample median and five 
variations using linear interpolation. Section II provides a 
brief overview of the SOC design. Section III presents 
general methodology. Section IV describes the empirical 
results from four months of SOC data that motivated the 
simulation study presented in Section V. Section VI 
provides our conclusions and recommendations. 

II. SOC Sample Design 
The SOC universe contains two sub-populations: local 

areas that require building permits and local areas that do 
not. The SOC sample units selected from the first sub- 

~Balanced repeated replication with replicate 
weights of 1.5 and 0.5. 

population comprise the Survey of the Use of Permits (SUP), 
and those selected from the second sub-population, the 
Nonpermit Survey (NP). The SUP sample comprises the 
majority of the SOC estimate. The two samples are multi- 
stage probability samples stratified by variables with high 
expected correlation with the survey's key statistics: 
housing starts, completions, and sales. 

The first stage of the SUP and NP sample selection is a 
subsample of Current Population Survey (CPS) Primary 
Sampling Units (PSUs), which are contiguous areas of land 
with well-defined boundaries. Thus, both surveys are 
conducted in the same PSUs but are otherwise independent 
samples. One PSU per stratum was selected. Self- 
representing (SR) PSUs were included in the sample with 
certainty. Nonself-representing (NSR) PSUs were selected 
with probability proportional to size (PPS) from strata 
containing more than one PSU. 

The second stage of SUP sample selection is a stratified 
systematic sample of permit-issuing places within sample 
PSUs (selected once a decade). In many cases, only one 
second stage unit was selected. The third stage of SUP 
sample selection is performed monthly: each month, Field 
Representatives (FRs) select a systematic sample of building 
permits from the permit offices in each sampled permit- 
issuing place. The third-stage samples are independent by 
month; the first and second stages are not. 

The second stage of NP sample selection is a stratified 
systematic sample of small land areas (1980 Census 
Enumeration Districts, or EDs). For the third stage of NP 
sample selection, field representatives completely canvass all 
of the roads in the sampled EDs (called segments). All new 
housing units are included in the NP sample with certainty. 

Median estimates are derived from the pooled SUP and 
NP samples and are calculated using a post-stratified weight 
for the SUP portion and an unbiased weight for the NP 
portion. 

III. Methodology 
A. Median-Estimation Procedures 
1. Sample Median 

One procedure for estimating the median of a 
population is calculate the sample median from ungrouped 
data, using the sample weight to locate the median as 
recommended in Kovar, Rao, and Wu (1988) and Rao and 
Shao (1996). 
2. Linear Interpolation 

Another approach for estimating the median of a 
population is to group the sample data and interpolate for the 
sample median. Woodruff (1952) provides the following 
formula for linear interpolation of a sample median: 

1 ^ 
--N - cf 

ffI= F- ' (1 )V)  = ll + ( 2 f ,  ) , ( i )  (2.1) 

where 
F = the cumulative frequency of the characteristic using 

sample weights 
11 = lower limit of the bin containing the median 
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~q - estimated total number of elements in the 

population 
cf = cumulative frequency in all intervals preceding the bin 

containing the median 
f~ = estimated total number of elements in the population of 

the interval containing the median 
i - width of the bin containing the median 

This is the method used by the current SOC production 
variance estimation system for monthly estimates and is 
also the linear interpolation method employed by VPLX. 

We considered two options for setting the class size (bin 
widths) for the interpolation. The first option develops bins 
based on the specific characteristic under consideration using 
the original data. The second option linearly transforms the 
data to a standard scale and then uses a standard set of bins 
for every characteristic. We used the following linear 
transformation: 

X / -- Xoriginal * (1,000/Q3) (2.2) 
where Q3 is the third quartile of the sample distribution 
(estimated using the sample weight). The interpolated 
median of the X / is multiplied by (Q3/1000) to obtain an 
estimated median of Xoriginal. 

Using the original data to develop medians has the 
advantage of producing production ready estimates and SEs. 
Determining the appropriate bin width is difficult, however. 
As the bin widths get small, the variance estimates become 
more unstable. As the bin widths increase, the bias of the 
estimate due to interpolation increases. The "optimal" bin 
size balances estimate bias and variance-estimate stability. 
Unfortunately, the optimal bin width may not remain 
constant between samples. Often, the distributions change 
over time, and the bins widths/locations in the sample should 
reflect this change in scale. Moreover, the optimal bin width 
may be different for different values of a classification 
variable: for example, the optimal bin width for the 
Midwest's sales price is probably different from the optimal 
bin width for the South's sales price. 

The desire to have the width of the bin depend on the 
sample motivated the linear transformation. Our procedure 
of linearly transforming the data and then using standard bin 
widths is equivalent to simply dividing the original sample 
from 0 to Q3 into x bins of equal width and placing the 
remainder of the data into one bin, which, by design, is 
much larger than the others (containing up to 25% of the 
sample). Indeed, the "standard" bin widths used on the 
transformed data are not standard on the untransformed 
scale: they are data dependent. As the distribution changes, 
the bin widths on the untransformed (original) scale also 
change. Using the linearly transformed data requires more 
bookkeeping in terms of scaling constants but easily allows 
for changes in the scale and shape of the distribution. 

The procedure described above was designed for non- 
negative data. If the distribution contains negative values 
(e.g., a distribution of net income), then a modification of the 
linear transformation described in (2.2) is required. To make 
all of the observations in the sample non-negative, replace 
Xoriginal with X / / =  (Xoriginal -X(1)) , where X(l) is the smallest 
observation in the sample. Calculate Q3 from the 
distribution of X//(using the sample weight associated with 
Xong~n~), and apply (2.2) to the X//. 

To evaluate the first option, we used two different sets 
of bin widths (classification sizes): bins of size $2000 (the 
same bin width used in the current production variance 
estimation system) and bins of size $1000. [Note: The 
VPLX variance estimation software would not allow any bin 

size smaller than 1000 because the number of classes 
exceeded the allowable array range.] Based on our data 
analysis, we assumed that median sales price would always 
be larger than $36,000 and smaller than $550,000, so the 
first original-data classification is always (low - 35,999) and 
the last original-data classification is always (550,000 - 
high): this yields 257 bins of size $2000 or 514 bins of size 
$1000, plus one bin of size $36,000 and one bin whose 
width depends on the largest observation in the sample. 

To evaluate the second option, we used three different 
sets of bin widths: bins of size 4, 25, and 50. The bins of 
size 4 were chosen to be analogous to the bins of size 2000 
in terms of the number of bins: 251 bins total. The 
selection of widths 25 and 50 was somewhat arbitrary: we 
chose bin size 50 to get a total of twenty bins for the data 
less than Q3; and we chose bin size 25 to examine the effect 
of doubling the number of bins/halving the width of the bins 
for data less than Q3. The transformed-data median will 
always be less than 1,000, so the last transformed-data 
classification is always (1,000 - high). 

This procedure is designed for symmetric or positively 
skewed distributions. The data in the last bin is not used to 
estimate the median because it is greater than Q3., which is 
expected to be far from the median. We guarantee that the 
first and last bins are not immediately below or above the 
bin containing the median by the standard bins sizes: 6.7 
bins per quartile for bin size 50; 13.3 bins per quartile for 
bin size 25, and 83.3 bins per quartile for bin size 4. 
Consequently, there is no loss in precision in making the last 
bin so much larger than the others. 
B. Variance Estimation 

We used the Modified Half Sample replication method 
(Fay, 1989 and Judkins, 1990) to estimate the variance of a 
median. Modified half-sample replication is a variation of 
the "traditional" balanced half-sample (BRR) variance 
estimation described in Wolter (1985, Chapter 3), using 
same replicate assignment methodology as BRR (a 
Hadamard matrix) with replicate weights of 1.5 and 0.5 in 
place of the 2 and 0. The SE for a median estimate using 
MHS replication is given by 

~ 4 , ~  (Med r _ A/edo) 2 (2.3) SE(Med) = --~ ,,:-', 

where the r subscript refers to the replicate median estimate 
(r = 1, 2 ..... R) and the 0 subscript refers to the full sample 
median estimate. This expression contains a four (4) in the 
numerator because the MSE of the replicate estimates is too 
small by a factor of 1/(1-0.5) 2. See Judkins (1990). 

As stated in Section II, neither the SUP nor the NP 
designs are two-sample-unit-per-stratum designs. To address 
the one sample unit per stratum problem, we "split" the SR 
sample-units into two panels per sample unit using the 
original sampling methodology and form collapsed strata by 
pairing two (or three) "similar" NSR sample-units. We then 
apply the half-sample approach in such a way that the 
elements contributing to the half samples are panels within 
sample units for SR sample units and are sample units within 
collapsed strata for NSR sample units. 

The current SOC production variance system uses a 
Keyfitz estimator (a paired difference estimator) for NSR 
sample and a design-based estimator for SR sample to 
produce level estimate variances (Luery, 1990). Because 
SOC methodologists had already collapsed NSR strata for 
their paired difference estimator, a B RR-like application was 
a logical extension of the pre-existing variance estimation 
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structure. For the SR cases, we sort permits within 
predetermined sample-unit groups by geography and permit 
authorization date and systematically split the ordered 
sample into two panels as suggested in Wolter (1985, p. 
131). This method of assigning units to panels is referred to 
as the grouped balanced half sample (GBHS) method in Rao 
and Shao (1996) and is discussed further in Section V. For 
more details on the replicate assignments, see Thompson 
(1998). 

The SOC production system uses the Woodruff method 
(Woodruff, 1952) to estimate the SE of a median. This is 
not a replicate variance estimation method. This 
methodology has had mixed success in the past according to 
survey analysts. 

IV. Empirical Data Results 
Initially, we used four months of SOC sample data to 

examine the variances of the median-estimation methods for 
sales price of sold houses: March 1997, May 1997, June 
1997, and July 1997. We produced medians by region and 
by type of financing. We used the same weight used by the 
SOC production estimation and variance systems (post- 
stratified for SUP sample and unbiased for NP sample), 
pooling both surveys' data to obtain medians. Each set of 
variance estimates was produced using 200 replicates. 

We found that the six median-estimation methods 
produced three distinct sets of SEs" one set for the sample 
median, one set for the original-data-interpolated medians, 
and one set for the transformed-data-interpolated medians. 
There was no clear relationship between bin width and SE 
estimates for the two sets of interpolated medians. Indeed, 
within type of data (original or transformed), the SEs were 
all very close. Clearly, there was a linear transformation and 
an interpolation effect. None of the median-estimation 
methods yielded SEs resembling the published SEs, so there 
was no available argument for publication consistency. 

The empirical results left us in a quandary. We had 
three distinct sets of variance estimates, and no "gold 
standard" against which to measure them. Because our 
empirical results were inconclusive, we conducted a Monte 
Carlo simulation study to evaluate the properties of the MHS 
variance estimates produced from the different median 
estimators. 

V. Simulation Study Comparison 
A. Procedure for Simulation Study 

We created four finite artificial populations based on a 
data analysis of four SOC sample populations' one type-of- 
financing population (Conventional Financing) and three 
regional populations (Midwest (Region 2), South (Region 3), 
and West (Region 4)). These populations represented a 
variety of the types of SOC populations from which 
estimates are produced. Note that the SOC type-of-financing 
population is no.._!t independent of the SOC-region 
populations. 

To approximate the finite population of sales price for 
houses sold, we generated w~ records for each sample unit 
i, where w~ is the sample weight associated with unit i. The 
distributions of sales price for single-unit sold houses could 
be approximated by lognormal distributions. The lognormal 
distribution has the probability density function 

fly) = 1 L .exp( 1 (log(y - 0)- ~) 
y - 0 ~/27to - 2 (  o )2) f o r  0 < y < oo 

where 0 is the threshold parameter, ~ is the scale parameter, 
and o is the shape parameter. 

After performing this data analysis, we generated four 
artificial finite populations of bivariate random normal 
variables with expected correlation p=0.6 using the method 
outlined in Naylor et al (1968). One of the two variables 
represented sales price for houses sold and is generated using 
the parameters determined above. This variable was 
exponentiated and shifted by the appropriate location 
parameters to obtain the sales price variable. The second 
variable was distributed as a standard normal and is used to 
form strata. Each population's size was the estimated 
population total in the given category rounded to the nearest 
50. The sample size is the original sample size rounded to 
the nearest 50. Model parameters and sample correlations 
(between simulated sales price and stratifying variable) are 
reported in Table 1. 

We compared the percentiles, sample skewness, and 
sample kurtosis of each simulated population to its 
corresponding original population, and they were quite 
close. To examine the effect of outliers in the original 
population on the model, we removed outliers using the 
resistant outer fences rule described in Hoaglin and Iglewicz 
(1987) and found that this improved agreement between the 
two populations for the 90%, 95%, and 99% percentiles. 

Table 1" Population Parameters and Sample Sizes 
Population 0 o q p N 
Con. Financing 
Midwest 
South 

27578 0.4895 11.84 0.5703 25150 500 
31801 0.5957 11.69 0.5584 6500 150 
29414 0.5549 11.55 0.5593 14550 300 

West 53781 0.5822 11.59 0.5553 11550 250 
After generating the finite populations, we sorted them 

by the stratifying variable and formed 50 equal sized strata 
in each population. From these strata, we selected 5000 
stratified without-replacement random samples from each 
artificial population using the same sampling rate in each 
stratum (self-weighting design). To perform the MHS 
replication, we sorted the sample within each stratum by 
stratifying variable and then systematically split the sample 
into two panels. Thus, the simulation study captures some of 
the stratification properties of the SOC design and mimics 
the panel assignment for SR permit sample but does not take 
the multistage sample and PPS sampling into account. 

We determined the median of each finite population 
(~p). Using the 5000 samples, we estimated empirical Mean 
Square Errors (MSE) and Mean Absolute Errors (MAE) for 
the following six median-estimation procedures: 
SM: the sample median of each half-sample 
102000: interpolated medians using original data, bins of 

size 2000 (fixed bin width) 
IO1000: interpolated medians using original data, bins of 

size 1000 (fixed bin width) 
IT4: interpolated medians using linearly transformed 

data, bins of size 4 (data dependent bin width) 
IT25: interpolated medians using linearly transformed 

data, bins of size 25 (data dependent bin width) 
IT50: interpolated medians using linearly transformed 

data, bins of size 50 (data dependent bin width) 
The linear transformation was performed once for 

procedures IT4, IT25, and IT50. The original data were 
transformed using the full sample Q3, and these transformed 
data were assigned to the half-samples. Table 2 provides the 
median and third quartile of each finite population, along 
with the bin widths on the original scale for the transformed 
data. 
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Table 2: Median, Third Quartile, and Bin Widths on Original 
Scale for Transformed Simulated Data 
Population Median Q3 Bin Width 

4 25 50 

Con. Financing 167173 222263 889 5557 11113 
Midwest (Region 2) 151312 210647 843 5266 10532 
South (Region 3) 133745 180868 723 4522 9043 

West (Region 4) 162130 214320 857 5358 10716 

To measure the precision of  the six median-estimation 
procedures over repeated samples, we calculated empirical 
MSEs and Mean Absolute Errors (MAEs) for each procedure 
in each population. M(~i), the empirical MSE of median- 
es t imat ion  procedure  i, was calculated 

r 

as M(~,) = 5ooo + (~' - ~p)2, where ~ri is the 

estimated median for sample r and estimator i, ~i is the 

average of  the ~r~, and ~p is the population median. This is 
the empirical MSE described in Judkins (1990).The Mean 
Absolute Error (MAE) of each median-estimation procedure 
i was calculated as MAE(~i) = [~-~[~-~ri - ~p[]/5000 as defined in 
DeGroot (1986). 

To compare the variance estimation properties of the 
different median-estimation procedures, we calculated an 
MHS variance estimate (v~j) corresponding to each median- 
estimation procedure i from 1000 of  the 5000 samples. 
These variance estimates were compared in terms of relative 
bias [(~vij/1000)/M(~i) - 1]; relative stability [ [ ( 2 V i j -  
M(~i))2/1000]'~/M(~)]; and error rate [(the number of samples 
where ~p< 0Li or ~ > 0ui)/1000 where 0Li is the lower end of 
a 90% confidence interval, and 0u~ is the upper end of a 90% 
confidence interval]. These criterion are used in Kovar, Rao, 
and Wu (1988) and in Rao and Shao (1996). With an 
"optimal" variance estimator, both the relative bias and 
relative stability will be near zero, and the error rate will be 
ten percent. 
B. Results  

Table 3 presents the empirical root MSE, SE, the bias, 
and the MAE for each median-estimation procedure. Each 
of these statistics was calculated from 5000 independent 
samples. The results from Table 3 can be summarized as 
follows: 
• The transformed-data-interpolated medians with bins of 
width 50 have the smallest root-MSE in three of  the four 
populations (all but Region 3), with the transformed-data- 
interpolated medians with bins of  width 25 a close second. 
However, the root-MSEs of all six procedures are very close 
in each population, so there is no dramatic loss in overall 
precision with the choice of  any particular estimator. 
• Similarly, the transformed-data-interpolated medians 
with bins of  width 50 have the smallest SE in each 
population, with the transformed-data-interpolated medians 
with bins of width 25 a close second. Again, the differences 
in SE are very close between all six procedures (within 
approximately 3% of each other in all populations). 
• The bias of  the estimation procedures does not have 
much influence on overall error. In all populations, the bias 
as a percentage of  the MSE is very small. 
• The six sets of MAEs in each population are very close, 
reinforcing the conclusion above regarding the equally-good 
performance of  the different median-estimation methods. 

Table 3" Precision of Median-Estimation Procedures 
Population Median- Root SE Bias MAE 

Estimation MSE 
Procedure 

Conventional SM 3345 3345 -12 2671 
Financing iiiO2000 3320 3316 161 2698 

:, m • 

)IO1000 ~ 3387 3368 -354 2642 
m n m 

~IT4 1, 3351 3340 273 2673 
i n n 

IT25 [ 3304 3293 276 2617 
| n | 

IT50 3282 3265 329 2606 
m m m m 

Region 2 SM 6316 6287 -598 4966 
m | m m 

Midwest 102000 6276 6275 -127 4992 
IO1000 6343 6297 -767 4939 
IT4 6372 6363 328 5004 

n i n 

IT25 6273 6 2 7 2  127 4937 
i i i 

IT50 6220 6218 160 4936 
Region 3 

South 
SM 3670 3658 301 2931 

i i i 

102000 3708 3669 539 2998 
IO1000 3742 3740 101 2941 
IT4 3718 3662 i~ 639 2951 

i i i 

IT25 3699 3638 669 2924 
l l 1 

IT50 3692 3616 745 2912 
I I I 

SM 4385 4382 -140 3509 
i i i 

102000 4425 4421 185 3578 
Region 4 

West 
IO1000 4477 4469 -258 3530 
IT4 4414 4403 318 3514 
IT25 4376 4364 315 3460 
IT50 4367 4350 391 3455 

Table 4 summarizes the three different comparison 
measures for the variance estimates in the four populations. 
The numerators for the relative bias and stability and the 
coverage rates are based on 1000 samples. The denominator 
for the relative bias and stability ("truth") are based on 5000 
samples. An asterisk (*) in the last column of  Table 4 
indicates that the error rate is significantly different from the 
nominal error rate of 0.10 using the normal approximation 
to the binomial distribution at the 90% confidence level. 

The variance estimates of  the transformed-data- 
interpolated medians perform best in terms of relative bias, 
stability, and coverage (error rates). Specifically, 
• The variance estimates of the transformed-data- 
interpolated medians (IT4, IT25, IT50) have the smallest 
relative bias. The difference in estimation method is quite 
pronounced in three of the four populations, where the 
largest  relative bias of  the transformed-data-interpolated 
medians is less than one-half the size of the smallest relative 
bias of the original-data-interpolated and sample medians. 
In all four populations, using bins of  width 50 on the 
transformed data yielded the smallest relative bias; 
• The variance estimates of the interpolated medians had 
the best stability. The sample median had the poorest 
stability in all four populations. This result was expected 
due to the smoothing effect of  interpolation. The 
transformed-data-interpolated medians generally performed 
slightly better than the original-data-interpolated medians; 
• The confidence intervals constructed from transformed- 
data-interpolated medians and SEs have the best coverage: 
in each population, the data dependent bins (all widths) yield 
statistically nominal coverage [Note: there is no clear 
relationship between size of bin width on the transformed 
scale and improved/reduced error rates]. The coverage for 
the confidence intervals constructed from original-data- 
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interpolated medians and SEs is very poor, yielding very 
conservative intervals, and the coverage with the sample 
median is erratic. 

Table 4: Relative Bias and Stability for Variance Estimates 
and Error Rates and Coverage Error Rates 
Population M e d i a n -  Rela t ive  Relative Error 

Estimation Bias  Stability Rate I 
Procedure i 

Conventional SM 0.19 0.69 ! 11.0% 
Financing I02000 0.25 0.35 6.9%* 

IO1000 0.21 0.32 7.0%* 
IT4 0.06 0.25 10.0% 
!IT25 0.07 0.25 10.9% 
IT50 0.05 0.26 9.5% 

Region 2 I SM 0.57 1.24 7.3%* 
Midwest 1iO2000 0.33 0.44 6.9%* 

I01000 0.30 0.42 7.0%* 
IT4 0.15 0.41 : 10.1% 
IT25 0.16 0.40 ! 9.8% 
IT50 0.15 0.42 9.0% 

Region 3 SM 0.30 0.88 12.4%* 
South 102000 0.31 0.42 6.7%* 

IO1000 029 0.40 6.7%* 
IT4 0.04 0.29 11.0% 
IT25 0.02 0.28 11.0% 
IT50 0.01 0.29 11.1% 

Region 4 SM 0.39 0.98 8.9% 
i 

~West IO2000 0.32 0.42 6.2%* 
IO1000 0.29 0.39 6.2%* 
IT4 0.11 0.32 86% 
IT25 0.10 0.31 9.4% 
IT50 0.08 0.31 9.5% 

These tests of error rates have good power, as verified 
through a simple power analysis. Let PA = binomial error 
rate probability under the alternative hypotheses (PA ~ 
0.10). Using the normal approximation to the binomial, for 
PA > 0.10, we have 90% confidence and x-percent power 
when the upper limit of a 90% confidence interval equals the 
x-percent lower limit (one sided) under the alternative 
hypothesis. For PA < 0.10, we have 90% confidence andx- 
percent power when the lower limit of a 90% confidence 
interval equals the x-percent upper limit under the alternative 
hypothesis. Solving for P A, we find that we have 90% 
confidence and at least 70% power when PA -< 0.079 or PA >- 
0.121 (when IPA - Pol ->- 0.021). The power increases to 80% 
when PA -< 0.075 or PA>_0.125. 

To determine whether the differences in error rates 
between estimators was significant, we performed a one-way 
ANOVA in each population modelling each median 
estimator as a treatment effect using the variance stabilizing 
arcsin-square root transformation on the error rates. Because 
the error sums of squares for the transformed binomial 
random variables is 821/n (Snedecor and Cochran, 1980), we 
tested for overall fit using a chi-square(5) critical value. All 
tests are highly significant: p-values of 0.0007 for 
Conventional Financing; 0.0168 for Region 2; 0.0000 for 
Region 3; and 0.0053 for Region 4. Thus, we can conclude 
that the six treatments yield different results. 

Moreover, in all four populations, all pairwise 
differences between error rates greater than 0.10% are 
significant at the 95% joint confidence level (based on 

Scheff6 95% joint confidence intervals for all pairwise 
contrasts, using the 95% confidence level due to the 
conservative nature of the procedure). Absolute differences 
between two error rates is greater than or equal to 0.0010 are 
significant. Consequently, error rate comparisons between 
median-estimation-method variances are statistically 
meaningful. 
C. Validation of Simulation Results Using Randomly 
Grouped Balanced Half Sample Replication 

Inferences from this simulation study are as valid as the 
variance estimates used. Rao and Shao (1996) establish the 
asymptotic inconsistency of the grouped balanced half 
sample (GBHS) estimator for estimating the SE of quantiles 
from samples with a fixed number of strata as the strata 
sample sizes nh--'oo. Instead, they recommend a repeatedly 
grouped balanced half sample (RGBHS) estimator, i.e. 
repeating the random panel assignment T times and using the 
average of the T GBHS estimators. Because we used the 
MHS variance estimator in all our applications, so GMHS 
refers to GBHS with replicate weights of 1.5 and 0.5, and 
RGMHS refers to RGBHS with replicate weights of 1.5 and 
0.5. 

We performed a small simulation study (300 samples 
per population) comparing GMHS and RGMHS (T = 15) 
variance estimation for the six median-estimation 
procedures. Because the RGMHS estimator requires a great 
deal of computer overhead (4,500 runs per procedure for 
T-15 ), we restricted our comparisons to two of the four 
sample populations (the largest and smallest). Table 5 
presents the relative bias, stability, and error rates for 90% 
confidence intervals calculated from the first 300 samples for 
each median-estimation procedure i for the GMHS and 
RGMHS in the Conventional Financing and in the Region 
2 (Midwest) populations. An asterisk indicates that an error 
rate is significantly different from the nominal error rate of 
10%. The results in Table 5 can be summarized as follows: 
• The relative biases are generally the same using GMHS 
and RGMHS for each treatment, although the RGMHS 
variance estimate does reduce the relative bias for the SM 
procedure by twenty-five percent in the Region 2 population; 
• As expected, the RGMHS procedure yields more stable 
variance estimates. In the Conventional Financing 
population, the reduction is as great as thirty-five percent for 
three of the six median-estimation procedures. However, the 
improvements  in stability for all median-estimation 
procedures are less pronounced in the Region 2 population, 
and neither the RGMHS and GHMS variances have good 
stability; 
• In both populations, the error rates for the SM 
confidence intervals constructed from the GMHS and 
RGMHS SEs are the same and are indeed nominal. Error 
rates constructed from the GMHS and RGMHS SEs for other 
treatments are close, and for most treatments these error rates 
are not significantly different from 10%. The error rates for 
RGMHS original-data-interpolated medians (102000 and 
IO1000) in the Conventional Financing population are 
significantly less than 10%, providing more evidence that 
the original-data-interpolation procedures are too 
conservative (although this pattern is not seen in the Region 
2 population). In Region 2, the error rates for both the 
GMHS and RGMHS transformed-data-interpolated medians 
with bins of width 4 and the error rates for the GMHS 
transformed-data-interpolated medians with bins of width 25 
are significantly higher than nominal. We believe that the 
conflicting results between Tables 4 and 5 for confidence 
interval coverage for the different median-estimation 
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procedures in Region 2 is caused by the inherent instability 
in the variance estimates due to small sample size in that 
population, since the Table 5 error rates within median- 
estimation procedure are very similar for the GMHS and 
RGMHS SEs. 

In terms of relative bias and error rates, the results in 
Table 5 are fairly consistent for the two variance estimates 
for each median-estimation procedure. The RGMHS 
estimator does improve the stability, but improved stability 
does not appear to be reflected in confidence interval 
coverage (at least for these samples). The consistency 
between the GMHS and RGMHS results reinforces our 
earlier conclusions vis-h-vis the different estimation 
procedures. Moreover, it supports the variance estimation 
methodology used in the larger simulation study and in SOC 
production" comparable results are achieved with 1/15 the 
replicate estimates. 

Table 5" Relative Bias, Stability, and Error Rates Using 
GMHS and RGMHS Variance Estimation 
?opulation dedian- Relative 

Estimation Bias 
Procedure 

GMHS RGMHS 

Son. gM 

~'inancing [02000 

[O1000 

[T4 

[T25 

[T50 

~egion 2 ~M 

Midwest) [02000 

[O1000 

IT4 

[T25 

IT50 

VI. Conclusion 

0.18 0.18 

0.27 0.26 

0.22 0.21 

0.08 0.07 

0.09 0.07 

0.07 0.06 

0.64 0.48 

0.32 0.31 

0.30 0.28 

0.14 0.14 

0.16 0.16 

0.17 0.17 

Stability 

GMHS RGMHS 

0.67 0.62 

0.37 0.28 

0.33 0.23 

0.26 0.17 

0.26 0.17 

0.26 0.17 

1.33 1.06 

0.44 0.37 

0.41 0.34 

0.39 0.36 

0.39 0.35 

0.43 0.38 

Error 
Rate 

GMHS RGMHS 

11.3 11.3 

8.0 6.7* 

8.0 6.3* 

9.3 9.7 

10.7 8.7 

9.3 8.3 

10.0 10.0 

10.7 10.3 

11.3 10.0 

13.3" 14.0" 

13.0' 12.7 

12.7 12.0 

We explored the effect of using variations of two 
different methods of estimating the median of continuous 
data on MHS variance estimation" direct estimation versus 
linear interpolation. Linear interpolation requires classifying 
continuous data into bins of standard width. This width can 
be arbitrary, and "optimal" widths may change as the sample 
distribution changes over time. The linear transformation 
based on the third quartile appeared to correct this problem. 
With the transformed data, the bins' locations change 
depending on the data. 

Our empirical results indicated that the choice of 
method has a pronounced impact on the variance estimates 
given modified half sample replication. Our simulation 
study results examined the properties of the different 
median-estimation procedures on the variance estimates, 
using the grouped MHS variance estimator. In all four 
simulated populations, the transformed-data-interpolated 
medians performed the best, usually by a wide margin. Since 
all three bins widths considered with transformed data 
appeared to have the same variance estimation properties, we 
recommend using the fewest number of bins examined, i.e. 
use twenty-one bins (bins of size 50 on the transformed 
scale). 

The recommended method has several advantages. 
First, it takes the scale of the different distributions into 
account through the linear rescaling. Second, the larger bin 
size should ameliorate some of the sampling effects. Finally, 

using linear interpolation saves computing resources by 
avoiding sorting each half-sample. 
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